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“Attack of GC” — Unpredictability in SSDs
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“The Tail Menace” in Flash Arrays
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“The Tail Menace” in Flash Arrays
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A slow SSD makes the entire flash array slow!
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“A New Hope” — NVMe Predictable Latency Mode

NVMe Predictable Latency Mode (PLM)

Predictable/Busy |

Device status

device-level predictability

breaking predictability

Requiring status tracking

™ ‘ Are you busy? || Go busy!

Busy Busy IR

Time

How to leverage NVMe PLM

and enhance it
for predictable latencies?
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The IODA Story

U Goal: Tail-free flash array system on top of slightly-extended PLM interface

1 Design Principles:

= Simple policies for efficiency
"= Minimal changes for easy deployment

O IODA Approach/Techniques:
* Per-1/0 latency predictability

* Busy Remaining Time (BRT) Exposure
* Time Window (TW) Formulation

* An end-to-end design exploiting above extensions

NVMe PILM
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0 Background & Motivation
0 IODA Overview

0 IODA Design

" Predictable latency flagged 1/Os

" Busy remaining time

* Time window formulation

" Relaxed TW for better write amplification

a Evaluation

Q Summary



Leverage Redundancy for Performance

An old, effective idea; || Yet, challenging for PLM

Tiny-Tail Flash: Near-Perfect Elimination of

Garbage Collection Tail Latencies in NAND SSDs W h e n to i SS u e th e P arity read S?

Trimming the Tail for Deterministic Read
Performance in SSDs

(1) Wait for timeout
s 108 Coded Q Best threshold? Tricky

RAL: Prcitable Low Tal Latncy for Ve I (2) AIWGyS Proactive (always send full-stripe)
@ Increased load=> Inefficient

MittOS: Supporting Millisecond Tail Tolerance with
act Reiacting S| O-Aware OS Interface

Semantic gap between the Host and SSD to communicate the “busyness™
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|OD;,: Predictable Latency Flagged |/Os

L

@< “Fail-if-Slow”: the SSD should fast-fail an 1/O if it contends with GC

Host
[ Lightweight
flag=true Fast-Fail

SSD #2

“Seems your submission

targets a crowded areaq,
early-rejection !
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The Effectiveness of “Fail-if-Slow”’ Interface N
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A Case Against Proactive Reconstruction
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Semantic Gaps the host
doesn’t know how long
SSD “busyness” will last

End up waiting for
the busiest SSD

13



Busy Remaining Time (BRT) Exposure

the SSD should fast-fail an |/O if it contends with GC

vy

~@- Piggybacking BRT to reconstruct data from less busy SSDs

Host

flag=true Fast-Fail% “BRT: 60ms™
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The Effectiveness of “BRT”’ Interface
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BRT helps a little
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IODA Busy Latency Windows

the SSD should fast-fail an 1/O if it contends with GC
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TW Coordination: SSDs take turns to perform GCs

[IODA: Always Predictable Latencies! ]
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How long should TW be?
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|IODA Time Window (TW) Formulation

______________________ - Bpurs: : User load

| SSD free space >= User load_ | 43 33

SSD I |
TW < Sp / ((Nssqg X Bpurst) _Bgc) t0 t1 t2 t3

Bgc : GC reclamation speed

SP : Over-provisioning space

Rpxst
W < Nawsa X (1—R,) XS (1= Ry) X Nep X Spg X N,
' dwpd X (1 = Rp) X ¢ s i ' il
Nss XM B cie;M B
(Nssa X Min(Bpeie, Max( 8hours/day % ((tr+tw+2><tcpt)XRUXNPQHE)

TW Upper Bound
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More in the paper!

Q IODA TW analysis

= 6 SSD models
= Relaxed TW
= TW vs. WAF tradeoffs

O Implementation
* Platforms: FEMU + OpenChannel-SSD
= Kernel: Linux Software-RAID + NVMe

Q More evaluation results
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Abstract Keywords
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advocates host-level controls 10 SSID iniernal management
tasks. While promising, challenges remain on how 1o exploit
it for truly predictable performance.

We present 10DA, an /0 deterministc flash array design
bl on 10p of small but powerful extensions 1o the I0D inier
Jace for easy deploymens. I0DA exploits data redundancy in
the contexs of 10D for a strong latency predictability contract.
In10DA, SSDs are expected to quickly fail an U0 on purpose
10 allow predictable VOs through prodctive data reconsiruc-
tion. In the case of concurrent internal operations, I0DA
introduces busy remaining time exposure and prediciable:
latency-window formulation 1o guarantee predictable data
reconstructions. Overail, ODA only adds 5 new fields 1o
the NVMe interface and a small modification in the flash
Jirmware, while keeping most o the complexiry in the hoss OS.
Our evaluation shows that IODA improves the 95-99.99°%
latencies by up to 75. 10DA is also the nearest 10 the ideal,
o disturbance case compared 10 7 state-of-the-art preemp-
tion, suspension, GC coordination, paritioning, tiny-tail lash
controller, prediction, and proaciive approaches
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1 Introduction
Flash arrays are popular storage choices in data centers nd
they mast address users’craving for low and predictable laten
cies [1-3]. Thus, many recent SSD products
evaluated notjust on the average speed bat the percenile a-
tencies as well [4-7]. These all paint the reality thatcustomers
would ke SSD wi deieminisic cocics.
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« many background /Os and disturb user re-
o Mo GO is a necessary path to overcome NAND
Flash's inability for in-place overwrites. It involves time-
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and contend with
user requests, thereby causing sev
lustruton,he gt on e bt shows s gat oy g2p
‘Base” (with GC) and the “Ideal” (a0 GC) cases.
D ofen resort o large e provisioniog space
it w NAND capacity) [11] to

latency hiccups. As

our profiling experiments on recent caterprise
SSDs showed that GCs can still cause up to 60 latency in-
crease (details omitted). This is unfortunately sil an ongoing

“To tame the SSD performance challenges, there have been
‘many efforts to evolve the device interfaces (15-17). The Stor

" 9 datacenter block traces + 21 real applications
= |ODA vs. 7 State-of-the-art approaches

= |ODA on OpenChannel-SSD

= |ODA throughput and write latency
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IODA Stack and Evaluation Setup

9 datacenter| | 6 FileBench 15 Data Intensive
/O traces Workloads Applications
N v
T Metic Read il latences
Z Software-RAID
Kernel - N r - -~ vs. State-of-the-art
K NVMe Driver ] ,’
/" Preemption Coordination
___________ :ﬁé‘ t@\ )
‘qp’ ‘qp’ / Speculation Suspension
!
/
, / Partitionin SLO-aware Tiny-Tail
SSDs { Oper;%lgannel J [ FEMU J g Y
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IODA Evaluation
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|ODA Results:

Up to 75X improvement over Base

/VS. N

Preemption

Coordination

Speculation Suspension

Partitioning  SLO-aware Tiny-Tail

IODA is more deterministic and

\efﬁcient in cutting tail Iatencies!/
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|IODA Throughput
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IODA doesn’t sacrifice the array’s aggregate bandwidth



|IODA Takeaways

QO A Co-Design Approach for Performance Predictability

- Proactive reconstruction via fast-fail interface

- BRT for improved latencies

- TW formulation to program the window length
- Cross-device synchronization

Thank you!

I’m on the job market.

|ODA: https://github.com/huaicheng/IODA
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