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U Goal: Tail-free flash array system on top of slightly-extended PLM interface

1 Design Principles:

= Simple policies for efficiency
"= Minimal changes for easy deployment

O IODA Approach/Techniques:
* Per-1/0 latency predictability

* Busy Remaining Time (BRT) Exposure
* Time Window (TW) Formulation

* An end-to-end design exploiting above extensions

NVMe PILM
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0 Background & Motivation
0 IODA Overview

0 IODA Design

" Predictable latency flagged 1/Os

" Busy remaining time

* Time window formulation

" Relaxed TW for better write amplification

a Evaluation

Q Summary
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|IODA Time Window (TW) Formulation

______________________ - Bpurs: : User load

| SSD free space >= User load_ | 43 33

SSD I |
TW < Sp / ((Nssqg X Bpurst) _Bgc) t0 t1 t2 t3

Bgc : GC reclamation speed

SP : Over-provisioning space
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More in the paper!

Q IODA TW analysis

= 6 SSD models
= Relaxed TW
= TW vs. WAF tradeoffs

O Implementation
* Platforms: FEMU + OpenChannel-SSD
= Kernel: Linux Software-RAID + NVMe

Q More evaluation results

IODA: A Host/Device Co-Design for Strong
Predictability Contract on Modern Flash Storage
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Camegie Mellon University
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et npredictabic siays due o he navoidabe distsbance /O Determinisn, S, Flash Sorage

advocates host-level controls 10 SSID iniernal management
tasks. While promising, challenges remain on how 1o exploit
it for truly predictable performance.

We present 10DA, an /0 deterministc flash array design
bl on 10p of small but powerful extensions 1o the I0D inier
Jace for easy deploymens. I0DA exploits data redundancy in
the contexs of 10D for a strong latency predictability contract.
In10DA, SSDs are expected to quickly fail an U0 on purpose
10 allow predictable VOs through prodctive data reconsiruc-
tion. In the case of concurrent internal operations, I0DA
introduces busy remaining time exposure and prediciable:
latency-window formulation 1o guarantee predictable data
reconstructions. Overail, ODA only adds 5 new fields 1o
the NVMe interface and a small modification in the flash
Jirmware, while keeping most o the complexiry in the hoss OS.
Our evaluation shows that IODA improves the 95-99.99°%
latencies by up to 75. 10DA is also the nearest 10 the ideal,
o disturbance case compared 10 7 state-of-the-art preemp-
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controller, prediction, and proaciive approaches
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1 Introduction
Flash arrays are popular storage choices in data centers nd
they mast address users’craving for low and predictable laten
cies [1-3]. Thus, many recent SSD products
evaluated notjust on the average speed bat the percenile a-
tencies as well [4-7]. These all paint the reality thatcustomers
would ke SSD wi deieminisic cocics.
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and contend with
user requests, thereby causing sev
lustruton,he gt on e bt shows s gat oy g2p
‘Base” (with GC) and the “Ideal” (a0 GC) cases.
D ofen resort o large e provisioniog space
it w NAND capacity) [11] to

latency hiccups. As

our profiling experiments on recent caterprise
SSDs showed that GCs can still cause up to 60 latency in-
crease (details omitted). This is unfortunately sil an ongoing

“To tame the SSD performance challenges, there have been
‘many efforts to evolve the device interfaces (15-17). The Stor

" 9 datacenter block traces + 21 real applications
= |ODA vs. 7 State-of-the-art approaches

= |ODA on OpenChannel-SSD

= |ODA throughput and write latency
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|IODA Takeaways

QO A Co-Design Approach for Performance Predictability

Proactive reconstruction via fast-fail interface
BRT for improved latencies

I'W formulation to program the window length
Cross-device synchronization

I’m on the job market.

|ODA: https://github.com/huaicheng/IODA
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|IODA Takeaways

QO A Co-Design Approach for Performance Predictability

- Proactive reconstruction via fast-fail interface

- BRT for improved latencies

- TW formulation to program the window length
- Cross-device synchronization

Thank you!

I’m on the job market.

|ODA: https://github.com/huaicheng/IODA

120



