JIODA: A Host/Device Co-Design
for Strong Predictability Contract

on Modern Flash Storage

Huaicheng Li**, Martin L. Putra*, Ronald Shi*,
Xing Lin*, Gregory R. Ganger*, Haryadi S. Gunawi *

The 28th ACM Symposium on Operating Systems Principles (SOSP’21)

*University of Chicago, * Carnegie Mellon University, * NetApp

: A Host/Device Co-Design
for Strong Predictability Contract

on Modern Flash Storage

: A Host/Device Co-Design
for Strong Predictability Contract

on Modern Flash Storage

- b “Small but powerful”’

: A Host/Device Co-Design
for Strong Predictability Contract

on Modern Flash Storage

'\ g “Small but powerful”

99.9t" Latency (ms)

N
° 3

Base

: A Host/Device Co-Design
for Strong Predictability Contract

on Modern Flash Storage

o Y “Small but powerful”

IODA close to ideal!

99.9t" Latency (ms)

N
° 3

Base [|ODA Ideal

“Attack of GC” — Unpredictability in SSDs

4 Host A

“Attack of GC” — Unpredictability in SSDs
" Host SSD

B controller NAND Flash

- ooooao
oooon

<—>Oooooag
ooooo
ooooo

“Attack of GC” — Unpredictability in SSDs

4 Host A i SSD
B controller NAND Flash
Q) 1o0us em000

<—>Oooooag
ooooo
ooooo

“Attack of GC” — Unpredictability in SSDs

g Host A i SSD
B Controller NAND Flash
@ 100us Flash Firmware =a0o0o

ooooo

<—>Oooooag
ooooo
ooooo

“Attack of GC” — Unpredictability in SSDs

4 Host A

@ 100us

Controller

Flash Firmware

SSD

NAND Flash

=00a0oao
ooogo

< —Oooooa
ooooo
EyEyEIN

10

“Attack of GC” — Unpredictability in SSDs
SSD

4 Host A

Controller

1111111

Flash Firmware

NAND Flash
20000

o W W o W |
e e b

—>OOoopao
ogr

- = |

11

“Attack of GC” — Unpredictability in SSDs

" Host i $SD
B Controller NAND Flash
@ 100us Flash Firmware =a00go

o W W o W |
e e b

—>OOoopao
oor’

‘10ms - = _

/
100x slower
due to GC

“Attack of GC” — Unpredictability in SSDs

 Host | B SSD
; B Controller NAND Flash
@ 100us Flash Firmware cSoooo

o W W o W |
e e b

—>OOoopao
oor’

‘10ms - = _

7
100x slower [GC is Invisible to the Host }
due to GC |

“The Tail Menace” in Flash Arrays

T

14

“The Tail Menace” in Flash Arrays

T
=

15

“The Tail Menace” in Flash Arrays

B
=

16

“The Tail Menace” in Flash Arrays

B
=

Ro R, R3

17

“The Tail Menace” in Flash Arrays

B
=

R, R, R,

Percentage

A
Ce——

Better

| 00us

18

“The Tail Menace” in Flash Arrays

| |

A

Percentage

RAID |00u©

R

Ro R, R;
?

|Oms

Worse

19

“The Tail Menace” in Flash Arrays

| |

A

Percentage

RAID |00u©

R

Ro R, R;
?

—)
Worse

Long Tails

|Oms

20

“The Tail Menace” in Flash Arrays

| |

A

Percentage

Ro R, R;
%

 ———
Worse

Long Tails

|Oms

21

22

“The Tail Menace” in Flash Arrays
D 100us |Oms
©

A slow SSD makes the entire flash array slow!
%

D —— —
Better Worse

Percentage

“A New Hope” — NVMe Predictable Latency Mode

NVMe Predictable Latency Mode (PLM)

23

“A New Hope” — NVMe Predictable Latency Mode

NVMe Predictable Latency Mode (PLM)

A 00 :
0 Predictable/Busy Time Window (TW)
Q Device status query & toggling

24

25

“A New Hope” — NVMe Predictable Latency Mode

NVMe Predictable Latency Mode (PLM)

™W
——

€ Predictable/Busy Time Window (TW) Busy Busy XL

Time

»
»

ﬂ Device status query & toggling

“A New Hope” — NVMe Predictable Latency Mode

NVMe Predictable Latency Mode (PLM)

. \eadP
of
A o)

€ Predictable/Busy Time Window (TW)
ﬂ Device status query & toggling

™ ‘ Are you busy?

—

Busy

Go busy!

Busy XX

26

Time

»
»

“A New Hope” — NVMe Predictable Latency Mode

NVMe Predictable Latency Mode (PLM)

A 00 :
€ Predictable/Busy Time Window (TW)
ﬂ Device status query & toggling

Sfficens

g Coarse-grained device-level predictability

Q “Soft-contract” breaking predictability
a Requiring complex status tracking

27

™ ‘ Are you busy? || Go busy!
Busy Busy IRA&d
Time g

28

“A New Hope” — NVMe Predictable Latency Mode

NVMe Predictable Latency Mode (PLM)
™ ‘ Are you busy? || Go busy!

—

Predictable/Busy | Busy Busy XD

Time

v

Device status

How to leverage NVMe PLM

and enhance it
for predictable latencies?

device-level predictability

breaking predictability

Requiring status tracking

The IODA Story

U Goal: Tail-free flash array system on top of slightly-extended PLM interface

29

The IODA Story

U Goal: Tail-free flash array system on top of slightly-extended PLM interface

1 Design Principles:

= Simple policies for efficiency
"= Minimal changes for easy deployment

30

The IODA Story

U Goal: Tail-free flash array system on top of slightly-extended PLM interface

1 Design Principles:

NVMe PILM

= Simple policies for efficiency
"= Minimal changes for easy deployment

O IODA Approach/Techniques:

31

The IODA Story

U Goal: Tail-free flash array system on top of slightly-extended PLM interface

1 Design Principles:

= Simple policies for efficiency NVMe PLM

= Minimal changes for easy deployment Q_Coarse-graine_d
1 IODA Approach/Techniques: © “sofithuiact”

* Per-1/0 latency predictability @ Hrmpiex

* Busy Remaining Time (BRT) Exposure

32

The IODA Story

U Goal: Tail-free flash array system on top of slightly-extended PLM interface

1 Design Principles:

= Simple policies for efficiency NVMe PLM

= Minimal changes for easy deployment Q_Coarse-graine_d
1 IODA Approach/Techniques: © “sofithuiact”

* Per-1/0 latency predictability @ Hrmpiex

* Busy Remaining Time (BRT) Exposure
* Time Window (TW) Formulation

33

The IODA Story

34

U Goal: Tail-free flash array system on top of slightly-extended PLM interface

1 Design Principles:

= Simple policies for efficiency
"= Minimal changes for easy deployment

O IODA Approach/Techniques:
* Per-1/0 latency predictability

* Busy Remaining Time (BRT) Exposure
* Time Window (TW) Formulation

* An end-to-end design exploiting above extensions

NVMe PILM

g Codrse-gudined

Q “Softtc@ntsact”
a Complex

0 Background & Motivation
0 IODA Overview

0 IODA Design

" Predictable latency flagged 1/Os

" Busy remaining time

* Time window formulation

" Relaxed TW for better write amplification

a Evaluation

Q Summary

35

Leverage Redundancy for Performance

An old, effective idea;

36

everage Redundancy for Performance

An old, effective idea

Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs

Trimming the Tail for Deterministic Read
Performance in SSDs

Latency Reduction and Load Balancing in Coded
Storage Systems

RAIL: Predictable, Low Tail Latency for NVMe
Flash

MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface

EC-Cache: Load-balanced, Low-latency Cluster Caching
with Online Erasure Coding

K. V. Rashmi', Mosharaf Chowdhury*, Jack Kosaian’, Ion Stoica', Kannan Ramchandran*
*UC Berkeley *University of Michigan

Abstract

Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the IO
performance demands. These systems routinely face the
challenges of populariy skew, background load imbal-
ance, and server faluses, which result in severe load im-
balance across servers and degraded LO performance.

o Gintng
A soluions

Object A of sizeA.

e S et i e n
tackle these challenges, where the number of cached o ~
o Ll s
L | N e R
sure coding. ‘each of sizeAlk
B 74 i Y iy e -

cache that uses online erasure coding 10 overcome the.

limitations of selective replication. EC-Cache employs Figure 1: EC-Cache split individuslobjects snd encoes them

erasure coding by: (i) splitting and erasure coding it wing an erasure code to ensbl resd parllelim s late b

dividual objects during writes, and (i) late bi g during individus reads.

‘wherein obtsining any k out of (k + r) splits of an ob-

joct are sufficient, during reads. As compared to selective

— seplication, EC-Cache improves load balancing by more i [12,
than 3x and reduces the median and tai read latencies.

' 52] and compression [15, 2 are
popula approsches employed 10 incease the
by more than 2, while using the same amount of MEM- cffecive memory capacity. (i) Ensuring good 1O per-
ory. EC-Cache docs 50 using 10% additional bandWicth formance for the cached data i the presence of skewed
and a small increase in the amount of stored metadata. popularisy, background load imbalance, and filures.
he beaatits offered by EC-Cache are furhes amplified ™ Typicaly, the populari of objocts in cluster caches
in the presence of background network load imbalance are eavily skewod, [20, 47

47), and this creates signifi-

b

37

everage Redundancy for Performance

An old, effective idea

Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs

Trimming the Tail for Deterministic Read
Performance in SSDs

Latency Reduction and Load Balancing in Coded
Storage Systems

RAIL: Predictable, Low Tail Latency for NVMe
Flash

MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface

EC-Cache: Load-balanced, Low-latency Cluster Caching
with Online Erasure Coding

K. V. Rashmi', Mosharaf Chowdhury*, Jack Kosaian’, Ion Stoica', Kannan Ramchandran*
*UC Berkeley *University of Michigan

Abstract
Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the IO
performance demands. These systems routinely face the
challenges of populariy skew, background load imbal-
ance, and server faluses, which result in severe load im-
balance across servers and degraded LO performance.
Selective replication is a commonly used technique o
these challenges, where the number of cached
replicas of an object s proportional 1o ts popularity. In

ostng
Solutions

Object A of sizeA.

| his paper, we explore an altemative approsch using cra- P
sure coding ot sze Al
EC-Cache is a load-balanced, low liency cluser o

cache that uses online erasure coding 1o overcome the

limitations of selective replication. EC-Cache employs Figure 1 EC Cache spitsindividualobjects snd encodes them

erusure coding by: (i) splitting and erasure coding 10 ung aneraarecode o cnableresd parallls s e bind.

dividual objects during writes, and (i) late binding, ing durin indvidualrads,

‘wherein obiaining any out of (k + r) splits of an ob-

Joct are suficieat, during reads. As compared to selective

S seplication, EC-Cache improves load balancing by more pling [12, 16, 52) and compression [15, 27, 5.
than 3x and reduces the median and tail read IAeDCIES Some of the popular spprosches employed t increase |

by more than 2, while using the same amount of MEM- effetive memory capsei

ocy. EC-Cache does 50 using 107 additional bandWidth formance for the cached

and a smallincrease in the amount of stored metadata. popalasity, background load imbalance, and failurs.

The bencfits offered by EC-Cache are further amplified * Typically. the popularty of objects n cluster caches

in the presence of background network load imbalance yre heavily skewed [20, 47), and this creates signifi-

(i) Ex

b

Yet, challenging for PLM

When to issue the parity reads?

38

everage Redundancy for Performance

An old, effective idea

Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs

| this paper, we explore an altemative approach using cra-

Trimming the Tail for Deterministic Read
Performance in SSDs

Latency Reduction and Load Balancing in Coded
Storage Systems

RAIL: Predictable, Low Tail Latency for NVMe
Flash

MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface

EC-Cache: Load-balanced, Low-latency Cluster Caching
with Online Erasure Coding

K. V. Rashmi', Mosharaf Chowdhury*, Jack Kosaian’, Ion Stoica', Kannan Ramchandran*
*UC Berkeley *University of Michigan

Abstract
Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the IO
performance demands. These systems routinely face the
challenges of populariy skew, background load imbal-
ance, and server faluses, which result in severe load im-
balance across servers and degraded LO performance.
Selective replication is a commonly used technique o
these challenges, where the number of cached
replicas of an object s proportional 1o ts popularity. In

Ry ksplis from Ay ... Auer
sure coding. each of size Alk
EC-Cache is & load-balanced, low lstency cluster

cache that uses online erasure coding 10 overcome the.
limitations of selective replication. EC-Cache employs
erasure coding by: (i) splitting and erasure coding in
dividual objects during writes, and (i) lste binding,
‘wherein obtsining any k out of (k + r) splits of an ob-
joct are sufficient, during reads. As compared to selective
seplication, EC-Cache improves load balancing by more
than 3x and reduces the median and tai read latencies.
by more than 2, while using the same amount of mem-
ocy. EC-Cache does so using 107 additional bandwidih,
and a small increase in the amount of stored metadata
‘The benefits offered by EC-Cache are funther amplified
in the presence of background network load imbalance

w

Figure 1: EC. Cache splts ndividual objects snd encodes them
sing an erasare code 1o ensbie read paalelsm and lte bind:
g during individus reads.

pling [12. 16, 52] and compression [are
some of the popular approaches employed to ncrease the
effective memory capacity. (i) Ensaring good VO per-
formance for the cached data in the presence of skewed
populariy, backeground load imbalance, and falures.

Typically. the populariy of objects in cluster caches
are heavily skewed -

b

Yet, challenging for PLM

When to issue the parity reads?

(1) Wait for timeout

39

everage Redundancy for Performance
An old, effective idea; || Yet, challenging for PLM

Tiny-Tail Flash: Near-Perfect Elimination of

Garbage Collection Tail Latencies in NAND SSDs W h e n to i SS u e th e P arity read S?

Trimming the Tail for Deterministic Read
Performance in SSDs

(1) Wait for timeout
@ Best threshold? Tricky

RAIL: Predictable, Low Tail Latency for NVMe
Flash

MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface

EC-Cache: Load-balanced, Low-latency Cluster Caching
with Online Erasure Coding

K. V. Rashmi', Mosharaf Chowdhury*, Jack Kosaian’, Ion Stoica', Kannan Ramchandran*
*UC Berkeley *University of Michigan

Abstract
Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the IO
performance demands. These systems routinely face the
challenges of populariy skew, background load imbal-
ance, and server faluses, which result in severe load im-
balance across servers and degraded LO performance.
Selective replication is a commonly used technique o
these challenges, where the number of cached
replicas of an object s proportional 1o ts popularity. In
| this paper, we explore an altemative approach using cra-

sure coding.

EC-Cache is & load-balanced, low lstency cluster
cache that uses online erasure coding 10 overcome the.
limitations of selective replication. EC-Cache employs Figure 1: EC-Cache split individuslobjects snd encoes them
erasure coding by: (i) splitting and erasure coding it wing an erasure code to ensbl resd parllelim s late b
dividual objects during writes, and (i) lste binding, ing during individuslreas.

‘wherein obtsining any k out of (k + r) splits of an ob-

joct are sufficient, during reads. As compared to selective

— seplication, EC-Cache improves load balancing by more g [12,
than 3x and reduces the median and tai read latencies.

' 52] and compression [15, 2 are
popula approsches employed 10 incease the
by more than 2, while using the same amount of MEM- cffecive memory capacity. (i) Ensuring good 1O per-
ory. EC-Cache docs 50 using 10% additional bandWicth formance for the cached data i the presence of skewed
and a small increase in the amount of stored metadata. popularisy, background load imbalance, and filures.
The benefis offred by EC-Cache are furber amplified

in the presence of background network load imbalance

41

everage Redundancy for Performance

Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs

| this paper, we explore an altemative approach using cra-

Trimming the Tail for Deterministic Read
Performance in SSDs

Latency Reduction and Load Balancing in Coded
Storage Systems

RAIL: Predictable, Low Tail Latency for NVMe
Flash

An old, effective idea; || Yet, challenging for PLM

MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface

EC-Cache: Load-balanced, Low-latency Cluster Caching
with Online Erasure Coding

K. V. Rashmi', Mosharaf Chowdhury*, Jack Kosaian’, Ion Stoica', Kannan Ramchandran*
*UC Berkeley *University of Michigan

Abstract reot A
= ostng
& Solutions
Object A of sizeA.
m

Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the IO
performance demands. These systems routinely face the
challenges of populariy skew, background load imbal-
ance, and server faluses, which result in severe load im-
balance across servers and degraded LO performance.
Selective replication is a commonly used technique o

tackle these challenges, where the number of cached
seplicas of an object s proportional to ts popalaity. In .
Ry ksplis from ... Ager
s coding, f bl vy
EC-Cache is & load-balanced, low lstency cluster

cache that uses online erasure coding 10 overcome the.
limitations of selective replication. EC-Cache employs Figure 1: EC-Cache split individuslobjects snd encoes them

w

erasure coding by: (i) splitting and erasure coding it wing an erasure code to ensbl resd parllelim s late b
dividual objects during writes, and (i) lste binding, ing during individuslreas.

L] seplcation, EC-Cache improves load balancing by more
than 3 and reduces the median and tail read latencics
by more than 2, while using the same amount of mem- y capaciy. (i) Ensuring ood 10
ocy. EC-Cache does 50 using 107 additional bandwidth formance for the cached data in the presence of skewed
and a small increase in the amount of stored metadata. popularisy, background load imbalance, and filures.
The benefits offred by EC-Cache are futhes amplified Typically. the populariy of objets in cluster caches
in the presence of background network load imbalance yre heavily skewes

. and this creates signisi-

When to issue the parity reads?

(1) Wait for timeout
Q Best threshold? Tricky

(2) AIWGyS Proactive (always send full-stripe)

42

everage Redundancy for Performance

Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs

| this paper, we explore an altemative approach using cra-

Trimming the Tail for Deterministic Read
Performance in SSDs

Latency Reduction and Load Balancing in Coded
Storage Systems

RAIL: Predictable, Low Tail Latency for NVMe
Flash

An old, effective idea; || Yet, challenging for PLM

MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface

EC-Cache: Load-balanced, Low-latency Cluster Caching
with Online Erasure Coding

K. V. Rashmi', Mosharaf Chowdhury*, Jack Kosaian’, Ion Stoica', Kannan Ramchandran*
*UC Berkeley *University of Michigan

Abstract reot A
= ostng
& Solutions
Object A of sizeA.
m

Data-intensive clusters and object stores are increasingly
relying on in-memory object caching to meet the IO
performance demands. These systems routinely face the
challenges of populariy skew, background load imbal-
ance, and server faluses, which result in severe load im-
balance across servers and degraded LO performance.
Selective replication is a commonly used technique o

tackle these challenges, where the number of cached
seplicas of an object s proportional to ts popalaity. In .
Ry ksplis from ... Ager
s coding, f bl vy
EC-Cache is & load-balanced, low lstency cluster

cache that uses online erasure coding 10 overcome the.
limitations of selective replication. EC-Cache employs Figure 1: EC-Cache split individuslobjects snd encoes them

w

erasure coding by: (i) splitting and erasure coding it wing an erasure code to ensbl resd parllelim s late b
dividual objects during writes, and (i) lste binding, ing during individuslreas.

L] seplcation, EC-Cache improves load balancing by more
than 3 and reduces the median and tail read latencics
by more than 2, while using the same amount of mem- y capaciy. (i) Ensuring ood 10
ocy. EC-Cache does 50 using 107 additional bandwidth formance for the cached data in the presence of skewed
and a small increase in the amount of stored metadata. popularisy, background load imbalance, and filures.
The benefits offred by EC-Cache are futhes amplified Typically. the populariy of objets in cluster caches
in the presence of background network load imbalance yre heavily skewes

. and this creates signisi-

When to issue the parity reads?

(1) Wait for timeout
Q Best threshold? Tricky

(2) AIWGyS Proactive (always send full-stripe)
@ Increased load=>Inefficient

Leverage Redundancy for Performance N

An old, effective idea; || Yet, challenging for PLM

Tiny-Tail Flash: Near-Perfect Elimination of

Garbage Collection Tail Latencies in NAND SSDs W h e n to i SS u e th e P arity read S?

Trimming the Tail for Deterministic Read
Performance in SSDs

(1) Wait for timeout
s 108 Coded Q Best threshold? Tricky

RAL: Prcitable Low Tal Latncy for Ve I (2) AIWGyS Proactive (always send full-stripe)
@ Increased load=> Inefficient

MittOS: Supporting Millisecond Tail Tolerance with
act Reiacting S| O-Aware OS Interface

Semantic gap between the Host and SSD to communicate the “busyness™

|OD;,: Predictable Latency Flagged |/Os

“@° “Fail-if-Slow” the SSD should fast-fail an l/O if it contends with GC

44

|OD;,: Predictable Latency Flagged |/Os

“@° “Fail-if-Slow” the SSD should fast-fail an l/O if it contends with GC

e

45

|OD;,: Predictable Latency Flagged |/Os

L

@< “Fail-if-Slow”: the SSD should fast-fail an 1/O if it contends with GC

e

flag=true

46

47

|OD;,: Predictable Latency Flagged |/Os

L

@< “Fail-if-Slow”: the SSD should fast-fail an 1/O if it contends with GC

e

flag=true

SSD #2

“Seems your submission
targets a crowded area,
»

48

|OD;,: Predictable Latency Flagged |/Os

L

@< “Fail-if-Slow”: the SSD should fast-fail an 1/O if it contends with GC

e

flag=true

SSD #2

“Seems your submission

targets a crowded areaq,
early-rejection !

49

|OD;,: Predictable Latency Flagged |/Os

L

@< “Fail-if-Slow”: the SSD should fast-fail an 1/O if it contends with GC

.

Fast-Fail

flag=true

SSD #2

“Seems your submission

targets a crowded areaq,
early-rejection !

|OD;,: Predictable Latency Flagged |/Os

L

@< “Fail-if-Slow”: the SSD should fast-fail an 1/O if it contends with GC

o)

flag=true Fast-Fail

SSD #2

“Seems your submission

targets a crowded areaq,
early-rejection !

50

51

|OD;,: Predictable Latency Flagged |/Os

L

@< “Fail-if-Slow”: the SSD should fast-fail an 1/O if it contends with GC

Host
[Lightweight
flag=true Fast-Fail

SSD #2

“Seems your submission

targets a crowded areaq,
early-rejection !

Host

RAID5

52

Host

RAID5

53

Host
é RAIDS
®
\\\\\ /g\
cg,,%
&

RO R| \R3
%

54

Host
é RAIDS
®
\\\\\ /g\
cg,,%
&

R, R, R, R,
%

55

Host

RAID5
¥

\
N
N
N
\
N
N
.
N
\
N
N
N\, N
\
N
N

I
.

Ro R Ry

g
QY 100us %

56

Host

RAID5
%
xor()

RO R| R2 _— >

NG
N \’}c
\, \
\\

g
QY 100us %

S7

Host

RAID5
¥

NG
N \’}c
\, \
\\

g
QY 100us %

58

59

Host

I * “///
R ~ 1 OOU S “‘§§f
RAID5S V

.
\\
NG
\\ \.p(c
. .
e
s\ /
.

e
QY 100us %

~10ms

The Effectiveness of “Fail-if-Slow” Interface

TPCC Read Latency CDF

95

.90

0 10 20 30
Latency (ms)

60

The Effectiveness of “Fail-if-Slow” Interface

TPCC Read Latency CDF

95

.90

0 10 20 30
Latency (ms)

61

The Effectiveness of “Fail-if-Slow” Interface

TPCC Read Latency CDF

95 | _—

90 '

0 10 20 30
Latency (ms)

62

The Effectiveness of “Fail-if-Slow” Interface

TPCC Read Latency CDF

@p99 ~5X

95 | _—

90 '

0 10 20 30
Latency (ms)

63

The Effectiveness of “Fail-if-Slow” Interface

TPCC Read Latency CDF

@p99 ~5X%

95 | _—

90 '

0 10 20 30
Latency (ms)

64

The Effectiveness of “Fail-if-Slow”’ Interface "

TPCC Read Latency CDF 8

@p99 ~5X%

95 | /

@po95 ~7X
/ 1 |
.90 ' ' |

0 10 20 30 1 2 3 4
Latency (ms) # of busy sub-10s

Percentage (%)
N

The Effectiveness of “Fail-if-Slow” Interface

TPCC Read Latency CDF 8

@p99 ~5X%

95 | /

@p%/N?X
.90 ' ' 51

Percentage (%)
N

—h

0 10 20 30 1 2 3 4
Latency (ms) # of busy sub-10s

The Effectiveness of “Fail-if-Slow” Interface

TPCC Read Latency CDF 8

@p99 ~5X%

95 | /

@p95 ~7X :
/ 1!
.90 ' ' L5y B

Percentage (%)
N

0 10 20 30 1 2 3 4
Latency (ms) # of busy sub-10s

The Effectiveness of “Fail-if-Slow”’ Interface -

Q TPCC Read Latency CDF 8
: |

99 Nﬁ @p99'|'~'5X
95 | /

@p95 ~7X :
/ 1!
.90 ' L5y B

0 10 20 30 1 2 3 4
Latency (ms) # of busy sub-10s

Percentage (%)
N

The Effectiveness of “Fail-if-Slow”’ Interface v

Q TPCC Read Latency CDF 8
: |

99 Nﬁ @p99'|'-'5X
95 | /

Percentage (%)
N

0 10 20 30 1 2 3 4
Latency (ms) # of busy sub-10s

A Case Against Proactive Reconstruction

T
o

70

A Case Against Proactive Reconstruction

[Host }
RAID5

or()

\\\\\/O\
Ro R R T
N

R, R3
wenepgs

71

A Case Against Proactive Reconstruction

Host
Semantic Gaps the host

doesn’t know how long

SSD “busyness” will last
RAID5
>

or()

\\\\\ /\O
&

R, R3
wenepgs

72

A Case Against Proactive Reconstruction

{ Host }
RAID5

Ro

or()

\ss\\ /\
R| R \\ \.pe\c
\\\ //

R, R3
wenepgs

Semantic Gaps the host
doesn’t know how long
SSD “busyness” will last

End up waiting for
the busiest SSD

73

Busy Remaining Time (BRT) Exposure

the SSD should fast-fail an |/O if it contends with GC

vy

~@- Piggybacking BRT to reconstruct data from less busy SSDs

74

Busy Remaining Time (BRT) Exposure

the SSD should fast-fail an |/O if it contends with GC

vy

~@- Piggybacking BRT to reconstruct data from less busy SSDs

Host

flag=true Fast-Fail

75

Busy Remaining Time (BRT) Exposure

the SSD should fast-fail an |/O if it contends with GC

vy

~@- Piggybacking BRT to reconstruct data from less busy SSDs

Host

flag=true Fast-Fail% “BRT: 60ms™

76

The Effectiveness of “BRT”’ Interface

77

The Effectiveness of “BRT”’ Interface

TPCC Read Latency CDF

99 r

.98 ‘ ‘
0 10 20
Latency (ms)

The Effectiveness of “BRT”’ Interface

TPCC Read Latency CDF

-

99 r /

 J
98 / 1 1
0 10 20
Latency (ms)

The Effectiveness of “BRT”’ Interface

99 r

.98

TPCC Read Latency CDF

}

[

-~

x

-

-

—

A

BRT helps a little

—

10

20

Latency (ms)

30

The Effectiveness of “BRT”’ Interface

TPCC Read Latency CDF

99 ¢ BRT helps a little

R
RN
§§

.98

0 10 20
Latency (ms)

The Effectiveness of “BRT”’ Interface

TPCC Read Latency CDF

N
99 | N
§

BRT helps a little

.98

0 10 20
Latency (ms)

@@ Can we do better?

IODA Busy Latency Windows

the SSD should fast-fail an |/O if it contends with GC

vy

“©- TW Coordination: SSDs take turns to perform GCs

83

IODA Busy Latency Windows

the SSD should fast-fail an 1/O if it contends with GC

:\Q,:- TW Coordination: SSDs take turns to perform GCs

(550}
(530%2);
(53081}

Predictable

Predictable

Predictable m Predictable
SSD#0 Predictable i Predictable

Predictable i Predictable
Predictable Predictable

Predictable

Predictable

N

5

+TW

H2XTW — 143xTW t+4xTW

84

IODA Busy Latency Windows

the SSD should fast-fail an 1/O if it contends with GC

:\Q,:- TW Coordination: SSDs take turns to perform GCs

[IODA: Always Predictable Latencies!] @

/

(530}
(530%2);
(53081}

Predictable

Predictable

Predictable m Predictable
SSD#0 Predictable i Predictable

Predictable i Predictable
Predictable Predictable

Predictable

Predictable

N

5

+TW

H2XTW 143xXTW 1+4xTW

85

86

IODA Busy Latency Windows

the SSD should fast-fail an 1/O if it contends with GC

vy

\Q/

P d ~
—

TW Coordination: SSDs take turns to perform GCs

[IODA: Always Predictable Latencies!]

(SSD#3)+ Predictable
(SSD#2) ! Predictable
: Predictable

/

Predictable i Predictable
Predictable Predictable

m Predictable
SSD#0 Predictable i Predictable

How long should TW be?

Predictable

Predictable

N

5

+TW

H2XTW 143xXTW 1+4xTW

|IODA Time Window (TW) Formulation

87

|IODA Time Window (TW) Formulation

88

89

|IODA Time Window (TW) Formulation

SSD I I
tO t1 t2 13

90

|IODA Time Window (TW) Formulation

S e e Bpurs: : User load

SSD I I
tO t1 t2 13

91

|IODA Time Window (TW) Formulation

S e e Bpurst : User load

| SSD free space >= User load_ | $348 33

SSD I I
tO t1 t2 13

Bgc : GC reclamation speed

SP : Over-provisioning space

92

|IODA Time Window (TW) Formulation

S e e Bpurst : User load

| SSD free space >= User load_ | $348 33

SSD I |
TW < Sp / ((Nssqg X Bpurst) _Bgc) t0 t1 t2 t3

Bgc : GC reclamation speed

SP : Over-provisioning space

93

|IODA Time Window (TW) Formulation

______________________ - Bpurs: : User load

| SSD free space >= User load_ | 43 33

SSD I |
TW < Sp / ((Nssqg X Bpurst) _Bgc) t0 t1 t2 t3

Bgc : GC reclamation speed

SP : Over-provisioning space

Rpxst
W < Nawsa X (1—R,) XS (1= Ry) X Nep X Spg X N,
' dwpd X (1 = Rp) X ¢ s i ' il
Nss XM B cie;M B
(Nssa X Min(Bpeie, Max(8hours/day % ((tr+tw+2><tcpt)XRUXNPQHE)

TW Upper Bound

99
.98

95

TPCC Read Latency CDF

"—a | — J
- - [—
-

7

10 20 30
Latency (ms)

@ TPCC Read Latency CDF
.

99
.98

95

——— : - ——
\ _ - —
-

7

10 20 30
Latency (ms)

95

@ TPCC Read Latency CDF
T

99 | / CECCEL]

~

I0DA ck >ses the gap between

98 |

—-J

WGC

95
0

Latency (ms)

30

96

More in the paper!

Q IODA TW analysis

= 6 SSD models
= Relaxed TW
= TW vs. WAF tradeoffs

O Implementation
* Platforms: FEMU + OpenChannel-SSD
= Kernel: Linux Software-RAID + NVMe

Q More evaluation results

IODA: A Host/Device Co-Design for Strong
Predictability Contract on Modern Flash Storage

Huaicheng Li Martin L. Putra Ronald Shi

University of Chicago and University of Chicago University of Chicago

Camegie Mellon University

Xing Lin Gregory R. Ganger Haryadi S. Gunawi
NetApp Carnegic Mellon University University of Chicago

Abstract Keywords
Predictabe atency on ash storage s long-pursui goal, SofvwareHasdware Co-Desgn, Predicable Latacy, NVMe
et npredictabic siays due o he navoidabe distsbance /O Determinisn, S, Flash Sorage

advocates host-level controls 10 SSID iniernal management
tasks. While promising, challenges remain on how 1o exploit
it for truly predictable performance.

We present 10DA, an /0 deterministc flash array design
bl on 10p of small but powerful extensions 1o the I0D inier
Jace for easy deploymens. I0DA exploits data redundancy in
the contexs of 10D for a strong latency predictability contract.
In10DA, SSDs are expected to quickly fail an U0 on purpose
10 allow predictable VOs through prodctive data reconsiruc-
tion. In the case of concurrent internal operations, I0DA
introduces busy remaining time exposure and prediciable:
latency-window formulation 1o guarantee predictable data
reconstructions. Overail, ODA only adds 5 new fields 1o
the NVMe interface and a small modification in the flash
Jirmware, while keeping most o the complexiry in the hoss OS.
Our evaluation shows that IODA improves the 95-99.99°%
latencies by up to 75. 10DA is also the nearest 10 the ideal,
o disturbance case compared 10 7 state-of-the-art preemp-
tion, suspension, GC coordination, paritioning, tiny-tail lash
controller, prediction, and proaciive approaches

ACM Reference Format.

InACH SIGOPS 28k Syposion on Operaing Swtems Princpls
(SOSP 21), October Vi vems. Germany: ACY
New York, NY, USA. 17 pages. hspsjdo s

1 Introduction
Flash arrays are popular storage choices in data centers nd
they mast address users’craving for low and predictable laten
cies [1-3]. Thus, many recent SSD products
evaluated notjust on the average speed bat the percenile a-
tencies as well [4-7]. These all paint the reality thatcustomers
would ke SSD wi deieminisic cocics.

tic latency, however, is

hard o aciews bocuus SSD perios. £,
e i hereny on-detcrmistic £
dueto the 1

ties such as the garbage coll 5
process, wear leveling, and intemal buffer & 0

« many background /Os and disturb user re-
o Mo GO is a necessary path to overcome NAND
Flash's inability for in-place overwrites. It involves time-

CCS Concepts

+ Computer systems organization — Firmware; Embed-

ded ardware, Embodded soVnar; nformation sytems
N y. + Hardware - terfy

Permion o make diginl o ll o part of i wek for
Pl od tht copies e

o e

s i e Fullcistion on the s e Copi e cmpents
by thr e

vl Eve,

Copyrigh e by the renetts)

ACMISEN 9750000521710, S1510
i

and contend with
user requests, thereby causing sev
lustruton,he gt on e bt shows s gat oy g2p
‘Base” (with GC) and the “Ideal” (a0 GC) cases.
D ofen resort o large e provisioniog space
it w NAND capacity) [11] to

latency hiccups. As

our profiling experiments on recent caterprise
SSDs showed that GCs can still cause up to 60 latency in-
crease (details omitted). This is unfortunately sil an ongoing

“To tame the SSD performance challenges, there have been
‘many efforts to evolve the device interfaces (15-17). The Stor

" 9 datacenter block traces + 21 real applications
= |ODA vs. 7 State-of-the-art approaches

= |ODA on OpenChannel-SSD

= |ODA throughput and write latency

97

IODA Stack and Evaluation Setup

Kernel

SSDs [Opeg(é[h)annel- J [FEMU }

20

IODA Stack and Evaluation Setup

[Software-RAID }

Kernel
[NVMe Driver }
\~'l \Q'l
OpenChannel-
SSD P
S [SSD J[FEMU}

20

IODA Stack and Evaluation Setup

9 datacenter| | 6 FileBench 15 Data Intensive
/O traces Workloads Applications
NV
User | Storage Workloads |
Z Software-RAID
Kernel - i
NVMe Driver)
___________ :ﬂé‘)
\~'l \Q'l
OpenChannel-
SSDs P
[ch J[FEMU}

20

IODA Stack and Evaluation Setup

9 datacenter| | 6 FileBench | | 15 Data Intensive
/O traces Workloads Applications
NV
User | Storage Workloads |
| Software-RAID |
Kernel) . r - -~ vs. State-of-the-art
NVMe Driver |)
/" Preemption Coordination
___________ :ﬁé‘ t@\]
‘qp’ ‘Qp’ / Speculation Suspension
/
/
- 1 Partitionin SLO-aware Tiny-Talil
SSDs [Opensg[h)annel J [FEMU } g Y

20

IODA Stack and Evaluation Setup

9 datacenter| | 6 FileBench 15 Data Intensive
/O traces Workloads Applications
N v
T Metic Read il latences
Z Software-RAID
Kernel - N r - -~ vs. State-of-the-art
K NVMe Driver] ,’
/" Preemption Coordination
___________ :ﬁé‘ t@\)
‘qp’ ‘qp’ / Speculation Suspension
!
/
, / Partitionin SLO-aware Tiny-Tail
SSDs { Oper;%lgannel J [FEMU J g Y

20

103

IODA Evaluation

TPCC Read Latency

Latency (ms)

0- | | | | |
75 90 95 99 99.9 99.99

Percentiles

104

IODA Evaluation

TPCC Read Latency

40 -

20

Latency (ms)

T [
99 99.9 99.99

T [
90 95
Gercentiles >

75

IODA Evaluation

TPCC Read Latency

(Latency (msD

0- | | | | |
75 90 95 99 99.9 99.99

Percentiles

105

106

IODA Evaluation

TPCC Read Latency

Latency (ms)

0- | | | | |
75 90 95 99 99.9 99.99

Percentiles

107

IODA Evaluation

TPCC Read Latency

Latency (ms)

0- | | | | |
75 90 95 99 99.9 99.99

Percentiles

108
IODA Evaluation
Predictable Latency Flag

+ Reconstruction
TPCC Read Latency /

[[
75 90 95 99 99.9 99.99

Percentiles

109
IODA Evaluation
Predictable Latency Flag

+ Reconstruction
TPCC Read Latency /

Predictable Latency Flag

[[
75 90 95 99 99.9 99.99

Percentiles

110
IODA Evaluation
Predictable Latency Flag

+ Reconstruction
TPCC Read Latency /

Predictable Latency Flag
40 - —
£ Predictable Latency Flag
> + Time Window
& 20-
g [I ODA is close to Ideal! }
0- - |

[[
75 90 95 99 99.9 99.99

Percentiles

Base mm 10D, mm 10D,

|IOD; mm IODA W= Ideal

1 e e 1w 4 - —— s ™
L BT [
', =] ’
98 {f
[a] Azure , '[bfBingldx ' BingSel
[]
96 : |

0O 10 20 30 40 O

10 20 30 O 10 20 30 40

g = 1174 ,,/
- = i ’ /
98 1 |
[d] Cosmos [e] DTRS
.96 —— ,
0 10 20 30 40 O 5

[h] MSNFS

10 20 30 40 O

10 20 30 O 10 20 30 40
Latency (ms)

111

Base mm |IOD; mm 10D, IOD; mm IODA = |deal

1 e — o~ T — e
. _ sz [
s
.98*
[a] Azure | BingSel
.96 5 , [——
0 10 20 30 40 0 10 20 30 0 10 20 30 40
1 ——
7N
.98 1
[e] DTRS [f] Exch
.96 : —
5 10 0 10 20 30 40

0

[h] MSNFS

————a

| ‘“ il TPCC;
‘l

1

10 20 30 O 10 20 30 40
Latency (ms)

10 20 30 40 O

112

Base mm |IOD; mm 10D, IOD; mm IODA = |deal

1 —— i e
o _ s [
L]
.98*
[a] Azure | BingSel
.96 [

010203040010 20 30 0 10 20 30 40

rr/
7
[e] DTRS [f] Exch
5 10 0 10 20 30 40
[h] MSNFS 7 [“ [i] TPCC;
!

0O 10 20 30 40 O 10 20 30 O 10203040
Latency (ms)

|ODA Results:

Up to 75X improvement over Base

113

Base mm |IOD; mm 10D, IOD; mm IODA == Ideal 114

1 : — — -

cweaz-- | || IODA Results:

/ _ Ll to Ideal \(
’ Up to 75X improvement over Base

.98*

[a] Azure / [BingSel
.96 —t , ——
0 10 20 30 40 0 10 20 30 O 10 20 30 40 NS' \

T] _— Preemption Coordination
]| A
98| Speculation Suspension
[d] Cos [¢] DTRS [f] Exch
96 | I Partitioning SLO-aware Tiny-Tail
0 5 10 0 10 20 30 40 _
IODA is more deterministic and

\efﬁcient in cutting tail Iatencies!/

[h] MSNFS

0O 10 20 30 40 O 10 20 30 O 10203040
Latency (ms)

115

|IODA Throughput

Throughput
400 Base mm
@ 300 1
al
O 200/
X
~ 1001
| .

Write Only

116

|IODA Throughput

Throughput

400 Base ==
— IODA
¢H 300+
(a
O 200
X
~ 100

EN

Write Only

|IODA Throughput

400

K IOPS)

~ 100-

Throughput

300+

200+

Base ==
IODA

-__

RW 80/20 Write Only

117

118

|IODA Throughput

Throughput

400

300-

200+

K I0PS)

~ 100-

Read Only RW 80/20 Write Only

IODA doesn’t sacrifice the array’s aggregate bandwidth

|IODA Takeaways

QO A Co-Design Approach for Performance Predictability

Proactive reconstruction via fast-fail interface
BRT for improved latencies

I'W formulation to program the window length
Cross-device synchronization

I’m on the job market.

|ODA: https://github.com/huaicheng/IODA

119

|IODA Takeaways

QO A Co-Design Approach for Performance Predictability

- Proactive reconstruction via fast-fail interface

- BRT for improved latencies

- TW formulation to program the window length
- Cross-device synchronization

Thank you!

I’m on the job market.

|ODA: https://github.com/huaicheng/IODA

120

