MittOS

Supporting Millisecond Tail Tolerance with Fast
Rejecting SLO-Aware OS Interface

Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi

o
s THE UNIVERSITY OF e ®

CHICAGO o

Center for Unstoppable Computing

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Millisecond Matters!

AMAZON: “EVERY 100MS OF
LATENCY COSTS 1% IN SALES”

TABB GROUP: “BROKER COULD LOSE AS MUCH
AS $4 MILLION IN REVENUES PER MILLISECOND
IF ITS ELECTRONIC TRADING PLATFORM WAS
ONLY 5SMS BEHIND THE COMPETITION”

GOOGLE: “EXTRA SOOMS IN SEARCH PAGE
GENERATION TIME DROPPED TRAFFIC BY
20%”

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Millisecond Tail Latency

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation 2. Cloning

Most popular * Introduces 2x

workload

soler!
3. Snitching

e Does not work
when burstiness

Completion fluctuates in ms-level

Backup 20ms

E;: THE UNIVERSITY OF

. 7 CHICAGO MittOS @ SOSP’17

Must Wait!

20ms

No Wait?

App
N

Failover

Fast reject

My disk is busy!

Try elsewhere

Disk Queue

IOms +

(no=-wait)

Completion

network-hop

THE UNIVERSITY OF

CHICAGO MittOS @ SOSP’17

OS can see

Use-=-Case | want < 20ms “everything”’ and tell

latency app when it is busy

[]
@ 5.0 = 20ms
9 Disk Queue
@ ret = read(.., SLO) —>
3 =
' —
Fast Re,l ect 9 if (ret == Reject) 4/ -
(no-wait) aReject fast

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittOS

* MittOS Principles
e SLO-aware interface

ret = read(., < 20ms) N, * Reject fast
| * Transparent of busyness
% . PC era:is best effort
if (ret == Reject) - (cannot reject 10s)
/I failover Reject . DC era: Less-busy replicas

\ available

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

l

Should |
‘) reject this [O?

What is the
device type!

What is the OS

queue
policy?

FIFO, elevator, CFQ, etc. . l

000D

Prediction depends on queue policy and device type

ﬁ THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Contribution +50 LOC

MittOS-
powered

vs. state of the art:
hedged requests, cloning,
application timeout, etc.

MongoDB

Fast Reject Interface

MittOS Latency Prediction

: Open-Channel
Disk
is SSD OS Cache

-— N OE

MittOS principle: Support fast
rejecting SLO-aware interface

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Outline

J

d Design

= Challenges
= Solutions

3 Evaluation

3 Conclusion

g: THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

Prediction

ret = read(.., < 20ms) How to predict
latency before
l submitting to the

device!?

Tail
Latency < SLO — Accept

OO0

Latency > SLO — Reject

or

OCO0000

© | How many IOs in front?
O

Head How long?

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

SLO < 20ms

> 20ms

Outstanding IOs

Reject / Accept

depends on . - 20
.queue poIiC); RejeT:
O

\8 High Priority
O OO0
© Elevator

Elevator + CFQ

CHICAGO MittOS @ SOSP’ 17

Challenge #2: Device Type

Reject / Accept
depends on
device type

Reject Single
spindle

Parallel

channels
& chips

ga THE UNIVERSITY OF

® CHICAGO

MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed End of queue!
10 Offset Reject!
= R
OS O prediction I R OS
Too many! O : | (O ~0 N
Reject! incorrect! ! O “ N,
O I \\ \\ \
I \ \ \
1 v
I Vo
O I vy
O | ‘o
Re-sort, O 200 Remap to |
Scheduling tAhcl:Jcs:efE;::! O fast chip,

algorithm

Accept!

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Outline

J

d Design

= Solutions

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Get from i’ .
source-code. ——= Simple type

e.g. CFQ, noop

Complicated type

Profiling is White-box knowledge

enough required

MittCFQ MittSSD

E;;: THE UNIVERSITY OF

o CHICAGO MittOS @ SOSP’17

MittCFQ Pt vonme o nengament

Reverse engineer bs
Which tree/queue each IO belongs to? o
orities

How many IOs in front?
contains ~4suu LUC

Open-
sourced

Disk Scheduling?

Seek latency?

(depends on seek distance)
Black box

Transfer time!?
(depends on IO size)

ga THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read
o Collect latency

1 ;
Jesio 2 disk models + concurrent 1O
v ?\6%" - - ~
Line? 11-hour profiling profiling %
-5

>
o Seek Distance SSTF
O scheduling

gi THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

Which channel/chip?
MittSSD Fast? Busy?

Too complex
to model!

FTL invisible
to OS!

FTL

?

%
-

-~

a Invisible

T

dynamic GC

Write lat.
variability

\

2ms

2ms
Upper
2ms MLC bits

THE UNIVERSITY OF

CHICAGO MittOS @ SOSP’17

MittSSD
O OS knows where

Software-defined flash |Os are mapped

FTL
LightNVM

OS can see
#outstanding 1Os to

Accurate
prediction

every chip/channel

GC OS knows
page-level
latencies

Open-Channel OS can track 4 =)
SSD every single 1O %’ Ims
OS can capture o
all GCs _ Y,

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Reverse
engineering based . ——
——= Simple type

Complicated type

Profiling is White-box knowledge
enough required
MiteCFQ ~1800 LOC vieessD ~1400 LOC

LightNVM +
Open-Channel SSD

on source code

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

* Prediction overhead optimizations
* Avoids going through every |O in the queue
* Reduces overhead from O(n) to roughly O(1)
* Shows < 5us overhead for MittCFQ prediction
* < 300ns for MittSSD prediction

 MittCache
e Prediction for OS Cache

Please
refer

to the
paper!

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Outline

J

J

d Evaluation

* Tail reduction
= Latency prediction accuracy

J

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ-powered MongoDB

Metric:
CDF of all get()
requests latencies

Remote YCSB Client #2 oo Client #20 (total 6 million

. N
client #l N

data points)

~_ Noisy neighbors
based on EC2 data

Physical node #1 Node #2 Node #20

ga THE UNIVERSITY OF

MittOS @ SOSP’17

® CHICAGO

Baseline CDF of YCSB get() Latencies on 20-node MongoDB

| | |

&

| 3ms

at p95

Q
&
I‘...;?,

NeXxt slides: use
| 3ms deadline SLO
for Hedged & MittCFQ

™~

MongoDB on EC2 (Baseline) ——

> 40ms
I above

p98

10 13 30

40

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Clone CDF of YCSB get() Latencies on 20-node MongoDB

P99 1 Tail reduction

P95 -
> Worse performance < p95
Clone
"Baseline" ——
p90 i . , ,
0 10 13 20 30 40

Latency (ms)

E_—;;i THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’ 17

Hedged Requests (b) Waits for Cg

13ms timeout .

DO0I:10.1145/2408776.2408794

(a) Sends
first request

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

TheTaill .
at Scale

\ (d) Picks faster
\ response

ga THE UNIVERSITY OF

® CHICAGO

MittOS @ SOSP’17

CDF of YCSB get() Latencies on 20-node MongoDB

P95 - 7 i
}1 Little extra workload
;
i Hedged - - -
‘ "Baseling”" ——
P90 . l ,
0 10 13 20 30 40

Latency (ms)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ CDF of YCSB get() Latencies on 20-node MongoDB

MittCFQ e
Hedged - - - -

20 30 40
Latency (ms)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Tail amplified at Scale

e Scale Factor: 5

= |

5,

Up to 2x
speedup
above p75

Tail amplified & more l
improvement space i

0 1320 30 40
Latency (ms)

E—_;i THE UNIVERSITY OF
MittOS @ SOSP’ 17

® CHICAGO

Accuracy Evaluation

MittCFQ MittSSD

.
i S

Disk Open-Channel
SSD

5 real-world block-level traces

DAPPS
DTRS TPCC

EXCH LMBE

Metrics:

False positive: 1O rejected, but
deadline is met

False negative: Deadline violated,
but 1O is not rejected

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Accuracy Evaluation Among incorrect cases:

MittCFQ: MittSSD:

<3ms diff < 1ms diff
False negative "7

Only <1% inaccuracy!

False positive """

g >

=3 H

s :

®.C . .

ax . | | |

7 _

E T o]

=805 ; i
DAPPS DTRS EXCH LMBE I B =

E;;i THE UNIVERSITY OF

u CHICAGO MittOS @ SOSP’17
MittSSD MittCache

(a) Scale Factor: 1 (b) % Latency Reduction of (a) Scale Factor: 1 (b) % Latency Reduction of
MittSSD vs. Hedged MittCache vs. Hedged
p99 | r——i '80% SF=1 mm SF=5 == P99 | 80% SF=1 == SF=5 ==
SF=2 =3 SF=10 =3 SF=2 =1 SF=10 =
60% 60%
i L 95 N L
P 40% | { ~ 1 P 40% | 7
MittSSD —— i 5 B N
Hedged 20% | [{ ‘ WH ! H m 20% | {7 | W H m
p90 Base o w7 AV p90 o LA KL 1 % .
3 2 4 6 .95 2 3 " : ‘
Latency (ms) Avg p75 p90 p95 p99 Latency (ms) vg p75 p90 p95 p99
MongoDB + Filebench + Hadoop All in one Riak
(a) Latency CDF of MongoDB SLO SLO SLO (a) Latency CDF of Riak
p99 ' I3ms 20ms 5ms

p80 + h p98
p60 |] p96 |
MIttCFQ e
p20 - Hledged . MlttCache p92 | MItCFQ e |
Base Base
MittCFQ MittSSD

po I I I I pgo ! I I
0 20 40 60 80 100 0 10 20 30 40 50

Latency (ms) Latency (ms)

ga THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

ga THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

Conclusion
MittOS-
powered
apps MongoDB

Fast Reject (No-wait) Interface

MittOS Latency Predictions

S poy
= = [sso
Latency

. °
® CERES
@ T h an k yau ! Qu esti o n sr Caiita for Uietappable Computing

http://ucare.cs.uchicago.edu

0000

| ! !

