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Millisecond Matters!

AMAZON: “EVERY 100MS OF
LATENCY COSTS 1% IN SALES”

TABB GROUP: “BROKER COULD LOSE AS MUCH
AS $4 MILLION IN REVENUES PER MILLISECOND
IF ITS ELECTRONIC TRADING PLATFORM WAS
ONLY 5SMS BEHIND THE COMPETITION”

GOOGLE: “EXTRA SOOMS IN SEARCH PAGE
GENERATION TIME DROPPED TRAFFIC BY
20%”
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Current Tail-Tolerant Mechanisms

1. Speculation 2. Cloning

Most popular * Introduces 2x

workload

soler!
3. Snitching

e Does not work
when burstiness

Completion fluctuates in ms-level

Backup 20ms
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* MittOS Principles
e SLO-aware interface

ret = read(., < 20ms) N, * Reject fast
| * Transparent of busyness
% . PC era:is best effort
if ( ret == Reject) - (cannot reject 10s)
/I failover Reject . DC era: Less-busy replicas

\ available
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Should |
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What is the
device type!

What is the OS

queue
policy?

FIFO, elevator, CFQ, etc. . l
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MittCFQ

Reverse engineer
Open- Which tree/queue each IO belongs to?

How many IOs in front?
sourced

Disk Scheduling?

Seek latency?

(depends on seek distance)
Black box

Transfer time!?
(depends on IO size)
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* Prediction overhead optimizations
* Avoids going through every |O in the queue
* Reduces overhead from O(n) to roughly O(1)
* Shows < 5us overhead for MittCFQ prediction
* < 300ns for MittSSD prediction

 MittCache
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