MittOS

Supporting Millisecond Tail Tolerance with Fast
Rejecting SLO-Aware OS Interface

Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi

o
s THE UNIVERSITY OF e ®

CHICAGO o

Center for Unstoppable Computing

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Millisecond Matters!

AMAZON: “EVERY 100MS OF
LATENCY COSTS 1% IN SALES”

TABB GROUP: “BROKER COULD LOSE AS MUCH
AS $4 MILLION IN REVENUES PER MILLISECOND
IF ITS ELECTRONIC TRADING PLATFORM WAS
ONLY 5SMS BEHIND THE COMPETITION”

GOOGLE: “EXTRA SOOMS IN SEARCH PAGE
GENERATION TIME DROPPED TRAFFIC BY
20%”

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Millisecond Tail Latency

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Millisecond Tail Latency

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Millisecond Tail Latency

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Millisecond Tail Latency

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Millisecond Tail Latency

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Millisecond Tail Latency

Completion
30ms

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation

[|:|

T

Il

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation

[

]
=l |

[
Wait

—

Il

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation

[|:|

=
Wait

Il

Straggler!

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation
=
-

=1l 7 Straggler!
e

Wait
=

Backup

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation

soler!

. Stra
=l
E—
Wiait

Completion

B Soms

Backup

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation

soler!

Completion

Backup 20ms

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation 2. Cloning
* Introduces 2x
workload

soler!

Completion

Backup 20ms

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation 2. Cloning
= * |Introduces 2x
l | workload

Straggler!

3. Snitching
 Does not work
when burstiness
fluctuates in ms-level

I

Completion
20ms

Backup

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation 2. Cloning

Most popular * Introduces 2x

workload

soler!
3. Snitching

e Does not work
when burstiness

Completion fluctuates in ms-level

Backup 20ms

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Must Wait!

20ms

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Must Wait! No Wait?

20ms

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Must Wait! No Wait?

i

App oS

20ms

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Must Wait! No Wait?

=N
=
i

Disk Queue

20ms

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Must Wait! No Wait?

Disk Queue

20ms

g: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

Must Wait! No Wait?

Disk Queue

20ms

g: THE UNIVERSITY OF

B CHICAGO MittOS @ SOSP’17

Must Wait!

20ms

No Wait?

My disk is busy!

Try elsewhere

Disk Queue

g: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

Must Wait! No Wait?

My disk is busy!
Try elsewhere

Disk Queue

20ms

g: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

Must Wait! No Wait?

My disk is busy!

Try elsewhere

Disk Queue

Fast reject

20ms

g: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

Must Wait!

20ms

No Wait?

My disk is busy!

Try elsewhere

Disk Queue

Failover (no=-wait)

ga THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

Must Wait!

20ms

No Wait?

My disk is busy!

Try elsewhere

Disk Queue

Failover|(no=-wait)

E;: THE UNIVERSITY OF

. 7 CHICAGO MittOS @ SOSP’17

Must Wait!

20ms

No Wait?

App
N

Failover

Fast reject

My disk is busy!

Try elsewhere

Disk Queue

IOms +

(no=-wait)

Completion

network-hop

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Use-Case

OS
Fast Reject

(no-wait)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Use-Case | want < 20ms
latency

OS
Fast Reject

(no-wait)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Use-Case | want < 20ms
latency

=
- @ sLo-=20ms

OS
Fast Reject

(no-wait)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Use-Case | want < 20ms
latency

=
@ 5.0 = 20ms

= mnmx
- OS
Fast Reject

g ret = read(.., SLO)

(no-wait)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Use-Case | want < 20ms
latency

=
@ 5.0 = 20ms

=S
i OS
Fast Reject

©

@ ret = read(.., SLO) —>

(no-wait)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Use-Case | want < 20ms

latency

mum
]
gg 0 2O = 20ms Disk Queue

o8 @ ret = read(.., SLO) —> OC@)-

Fast Reject
(no-wait)

g: THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

OS can see

Use-=-Case | want < 20ms “everything”’ and tell

latency app when it is busy

@ 5.0 = 20ms
Disk Queue

oS @ ret = read(.., SLO) —* OC@)-

Fast Reject
(no-wait)

g: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

OS can see

Use-=-Case | want < 20ms “everything”’ and tell

latency app when it is busy

]

@ 5.0 = 20ms

9 Disk Queue

@ ret = read(.., SLO) —>
oS -

Fast Reject e =

(no-wait) 9 Reject fast

THE UNIVERSITY OF

CHICAGO MittOS @ SOSP’17

OS can see

Use-=-Case | want < 20ms “everything”’ and tell

latency app when it is busy

[]
@ 5.0 = 20ms
9 Disk Queue
@ ret = read(.., SLO) —>
3 =
' —
Fast Re,l ect 9 if (ret == Reject) 4/ -
(no-wait) aReject fast

E;i THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’ 17

MittOS

* MittOS Principles

Disk Queue
ret = read(.., < 20ms)

S
| | =
if (ret == Reject) .

I/ failover Reject

N~

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittOS

* MittOS Principles
e SLO-aware interface

Disk Queue .
* Reject fast
ret = read(.., < 20ms) J
S
if (ret == Reject)
Reject

/] failover

N

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittOS

* MittOS Principles
e SLO-aware interface

ret = read(.., < 20ms) e ¢ Reject fast
| * Transparent of busyness
S
if (ret == Reject)
Reject

/] failover

N

E_—;;i THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’ 17

MittOS

* MittOS Principles
e SLO-aware interface

ret = read(., < 20ms) N, * Reject fast
| * Transparent of busyness
% . PC era:is best effort
if == Rei - (cannot reject 10s)
if (ret == Reject)
Reject

/] failover

N

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittOS

* MittOS Principles
e SLO-aware interface

ret = read(., < 20ms) N, * Reject fast
| * Transparent of busyness
% . PC era:is best effort
if (ret == Reject) - (cannot reject 10s)
/I failover Reject . DC era: Less-busy replicas

\ available

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

l
9

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

l Should |

‘) reject this [O?

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

Should |
reject this [O?

What is the OS

queue
policy?

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

Should |
reject this [O?

What is the OS

queue
policy?

FIFO, elevator, CFQ, etc.

ga THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

l

Should |
‘) reject this [O?
[

What is the OS

queue
policy?

FIFO, elevator, CFQ, etc.

What is the
device type!

ga THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

l

Should |
‘) reject this [O?

What is the
device type!

What is the OS

queue
policy?

FIFO, elevator, CFQ, etc. . l

000D

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms)

l

Should |
‘) reject this [O?

What is the
device type!

What is the OS

queue
policy?

FIFO, elevator, CFQ, etc. . l

000D

Prediction depends on queue policy and device type

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Contribution

MittOS principle: Support fast
rejecting SLO-aware interface

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Contribution

0000

- @
-— N

MittOS principle: Support fast
rejecting SLO-aware interface

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Contribution

MittOS Latency Prediction

: Open-Channel
Disk h
is SSD OS Cache

-— N OE

MittOS principle: Support fast
rejecting SLO-aware interface

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Contribution

Fast Reject Interface

MittOS Latency Prediction

: Open-Channel
Disk h
is SSD OS Cache

- N OE

MittOS principle: Support fast
rejecting SLO-aware interface

gi THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Contribution

MittOS-
powered

MongoDB

Fast Reject Interface

MittOS Latency Prediction

: Open-Channel
Disk h
is SSD OS Cache

- N OE

MittOS principle: Support fast
rejecting SLO-aware interface

gi THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Contribution +50 LOC

MittOS-
powered

MongoDB

Fast Reject Interface

MittOS Latency Prediction

: Open-Channel
Disk h
is SSD OS Cache

- N OE

MittOS principle: Support fast
rejecting SLO-aware interface

gi THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Contribution +50 LOC

MittOS-
powered

vs. state of the art:
hedged requests, cloning,
application timeout, etc.

MongoDB

Fast Reject Interface

MittOS Latency Prediction

: Open-Channel
Disk
is SSD OS Cache

- N OE

MittOS principle: Support fast
rejecting SLO-aware interface

ﬁ THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Contribution +50 LOC

MittOS-
powered

vs. state of the art:
hedged requests, cloning,
application timeout, etc.

MongoDB

Fast Reject Interface

MittOS Latency Prediction

: Open-Channel
Disk
is SSD OS Cache

-— N OE

MittOS principle: Support fast
rejecting SLO-aware interface

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Outline

J

d Design

= Challenges
= Solutions

3 Evaluation

3 Conclusion

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

O

g: THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

Prediction

ret = read(.., < 20ms) How to predict
latency before

submitting to the
device!?

O

ga THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms) How to predict
latency before
submitting to the
device!

ga THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms) How to predict
latency before
submitting to the
device!
Tail

or

OCO0000
OCO0000

Head

ga THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms) How to predict
latency before
submitting to the
device!?
Tail O
O O
8 or O
O O | How many IOs in front?
Head) O

ga THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms) How to predict
latency before
submitting to the
device!?
Tail O
O O
8 or O
O Q]_ How many IOs in front?
Head O OJ How long!?

g: THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

Prediction

ret = read(.., < 20ms) How to predict
latency before
l submitting to the

device!?

Tail
Latency < SLO — Accept

OO0

Latency > SLO — Reject

or

OCO0000

© | How many IOs in front?
O

Head How long?

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

SLO < 20ms

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

SLO < 20ms

Outstanding IOs

O0000 O——=0O

FIFO

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

SLO < 20ms

> 20ms
Reject

Outstanding IOs

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

SLO < 20ms (Q

> 20ms

Reject O
" O — 50ms O
% O — 40ms O
-§ O — 30ms \8
g O — 20ms
3 O—> |Oms O

FIFO Elevator

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

SLO < 20ms (@
;Zoer:lts O Low Priority | > 20ms
) O () | Reject
” O — 50ms O
% O — 40ms O
;§ O - 30ms \8 High Priority
g O — 20ms O O O
5 ()— 10ms O
Elevator

FIFO Elevator + CFQ

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge #1: Modeling Queue Policy

SLO < 20ms

> 20ms

Outstanding IOs

Reject / Accept

depends on . - 20
.queue poIiC); RejeT:
O

\8 High Priority
O OO0
© Elevator

Elevator + CFQ

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type

FIFO
O00O0

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type
S

FIFO

C00O0

\> 20ms”/
Reject Single
® spindle

CHICAGO MittOS @ SOSP’ 17

Challenge #2: Device Type

Reject

Single
spindle

Parallel

channels
& chips

CHICAGO MittOS @ SOSP’ 17

Challenge #2: Device Type

Reject

Single
spindle

Parallel

channels
& chips

CHICAGO MittOS @ SOSP’ 17

Challenge #2: Device Type

Reject / Accept Parallel
depends on chanr\els
device type & chips
Reject Single
® spindle o
-
Disk {

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed

m 10 Offset

() 200

OS Too many! {8
Reject!
O

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed

m 10 Offset

() 200

OS Too many! {8
Reject!
O

Scheduling
algorithm

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed

=

OS Too many! {8
Reject!
O

O
Re-sort, O

10 Offset
() 200

SCheduling thus fast, O 200

algorithm Accept: O

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed
10 Offset

() 200

=

OS Too many! {8
Reject!
O

O
Re-sort, O

SCheduling thus fast, O 200

algorithm Accept! O

OS
prediction

incorrect!

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed
10 Offset

() 200

=

OS Too many! {8
Reject!
O

O
Re-sort, O

SCheduling thus fast, O 200

algorithm Accept! O

OS
prediction
incorrect!

0000

End of queue!
Reject!

OS

ga THE UNIVERSITY OF

® CHICAGO

MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed End of queue!
10 Offset Reject!
T3 o eyam -
OS O prediction X RN . OS
T:;O.marg! O incorrect! ,'Q-‘\\ .
eject! o NN
O ,' O_ AN \\ \
I \ \ \
I s
I Vo
O | vt
O | ‘o
Re-sort, O 200 Remap to |
Scheduling tAhcl:Jcs:efE;::! O fast chip,

algorithm

Accept!

ga THE UNIVERSITY OF

® CHICAGO

MittOS @ SOSP’17

Challenge #2: Device Type

|diosyncrasies of devices are mostly unrevealed End of queue!
10 Offset Reject!
= R
OS O prediction I R OS
Too many! O : | (O ~0 N
Reject! incorrect! ! O “ N,
O I \\ \\ \
I \ \ \
1 v
I Vo
O I vy
O | ‘o
Re-sort, O 200 Remap to |
Scheduling tAhcl:Jcs:efE;::! O fast chip,

algorithm

Accept!

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Outline

J

d Design

= Solutions

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f()

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO,)

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy,)

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Get from

source-code.
e.g. CFQ, noop

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Get from i’ .
source-code. ——= Simple type

e.g. CFQ, noop

Profiling is

enough

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Get from i’ .
source-code. ——= Simple type

e.g. CFQ, noop

Complicated type

Profiling is White-box knowledge

enough required

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Get from i’ .
source-code. ——= Simple type

e.g. CFQ, noop

Complicated type

Profiling is White-box knowledge

enough required

MittCFQ MittSSD

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ

CFQ

E;;a THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

MittC FQ Contains user group management

E;a THE UNIVERSITY OF

o CHICAGO MittOS @ SOSP’17

MittC FQ Contains user group management
Contains 3 service trees

E;a THE UNIVERSITY OF

o CHICAGO MittOS @ SOSP’17

MittC FQ Contains user group management
Contains 3 service trees
Contains 7 different IO priorities

E;a THE UNIVERSITY OF

o CHICAGO MittOS @ SOSP’17

MittC FQ Contains user group management
Contains 3 service trees

Contains 7 different IO priorities
Contains ~4500 LOC

E;a THE UNIVERSITY OF

o CHICAGO MittOS @ SOSP’17

MittC FQ Contains user group management
Contains 3 service trees
Open- Contains 7 different |O priorities
sourced Contains ~4500 LOC

E;: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

MittCFQ

Reverse engineer
Open- Which tree/queue each IO belongs to?

How many IOs in front?
sourced

E;: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

MittCFQ

Reverse engineer
Open- Which tree/queue each IO belongs to?

How many IOs in front?
sourced

—
-
Black box

g: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

MittCFQ

Reverse engineer
Open- Which tree/queue each IO belongs to?

How many IOs in front?
sourced

Disk Scheduling?
t /

E

Black box

g: THE UNIVERSITY OF

) CHICAGO MittOS @ SOSP’17

MittCFQ

Reverse engineer
Open- Which tree/queue each IO belongs to?

How many IOs in front?
sourced

Disk Scheduling?

Seek latency?

(depends on seek distance)
Black box

g: THE UNIVERSITY OF

& CHICAGO MittOS @ SOSP’17

MittCFQ

Reverse engineer
Open- Which tree/queue each IO belongs to?

How many IOs in front?
sourced

Disk Scheduling?

Seek latency?

(depends on seek distance)
Black box

Transfer time!?
(depends on IO size)

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

O Random seek

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read

o Collect latency

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read
o Collect latency

2 disk models

11-hour profiling

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read
o Collect latency

egs'\O“ 2 disk models
Rregf e
Lineal 11-hour profiling

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read

o Collect latency

>t)
§ e ?\eg“esé\o“ 2 disk modc.alos
ks Line 11-hour profiling
g ™.
s Seek Distance

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read

o Collect latency

> 4 A
(@)
S ossion 2 disk models + concurrent 1O
et . ~el ?‘e%" 1 - /
9 Line 11-hour profiling profiling %
P
A% >
[\ Seek Distance

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read

o Collect latency

P A
£ oss\0" 2 disk models + concurrent 1O
8 . a(Re%" 11 o o o | o /
ks Line -hour profiling profiling ’;&\
-5
o >
v Seek Distance SSTF

\& scheduling

ga THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

MittCFQ Profiling

Random seek
Random read
o Collect latency

1 ;
Jesio 2 disk models + concurrent 1O
v ?\6%" - - ~
Line? 11-hour profiling profiling %
-5

>
o Seek Distance SSTF
O scheduling

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17
Which channel/chip?
MittSSD Fast? Busy?

gi THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

MittSSD

FTL invisible
to OS!

E;: THE UNIVERSITY OF

. 7 CHICAGO MittOS @ SOSP’17

MittSSD

FTL invisible
to OS!

Invisible
dynamic GC

ga THE UNIVERSITY OF

@ CHICAGO

MittSSD

MittOS @ SOSP’ 17

FTL invisible
to OS!

Invisible
dynamic GC

Write lat.
variability

~

Tms

1ms Lower
1ms MLC bits

Tms

ga THE UNIVERSITY OF

® CHICAGO

MittSSD

MittOS @ SOSP’17

FTL invisible
to OS!

Invisible
dynamic GC

Write lat.
variability

~

Tms

2ms
1ms Lower

1ms MLC bits
2ms

Tms Upper
2ms MLC bits

E;a THE UNIVERSITY OF

. 7 CHICAGO MittOS @ SOSP’17

MittSSD

Too complex FTL invisible
to model! to OS!

Invisible
dynamic GC

Write lat.
variability

\

Tms

2ms
1ms Lower

1ms MLC bits
2ms

Tms Upper
2ms MLC bits

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittSSD

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittSSD
Software-defined flash

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittSSD
Software-defined flash Q

FTL
LightNVM

Open-Channel O g@
SSD

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittSSD
Software-defined flash Q

FTL
LightNVM

Open-Channel O g@
SSD

OS knows where
|Os are mapped

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittSSD
Software-defined flash

FTL
LightNVM

OS knows where
|Os are mapped

Open-Channel O @Q OS can track
SSD every single 1O

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittSSD
OS knows where

Software-defined flash IOs are mapped

FTL
LightNVM

GC

OS can track

Open-Channel
every single 1O

SSD

OS can capture
all GCs

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittSSD
OS knows where

Software-defined flash IOs are mapped

FTL
LightNVM

GC

OS can track

Open-Channel
every single 1O

SSD

OS can capture
all GCs

OS knows
page-level
latencies

-
4]
00
o

\

~Ims
2ms

~

)

THE UNIVERSITY OF

CHICAGO MittOS @ SOSP’17

OS can see

MittSSD #Houtstanding |Os to
O OS knows where

Software-defined flash |Os are mapped

FTL
LightNVM

every chip/channel

GC OS knows
page-level
latencies

Open-Channel OS can track 4 — N
SSD every single 1O %’ Ims
OS can capture o
all GCs _ .

THE UNIVERSITY OF

CHICAGO MittOS @ SOSP’17

MittSSD
O OS knows where

Software-defined flash |Os are mapped

FTL
LightNVM

OS can see
#outstanding 1Os to

Accurate
prediction

every chip/channel

GC OS knows
page-level
latencies

Open-Channel OS can track 4 =)
SSD every single 1O %’ Ims
OS can capture o
all GCs _ Y,

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Reverse
engineering based . ——
——= Simple type

Complicated type

Profiling is White-box knowledge
enough required

on source code

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Reverse
engineering based . ——
——= Simple type

Complicated type

Profiling is White-box knowledge
enough required

MittCFQ ~1800 LOC

on source code

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Reject/Latency Prediction

Reject? = f(SLO, queue policy, device type)

Reverse
engineering based . ——
——= Simple type

Complicated type

Profiling is White-box knowledge
enough required
MiteCFQ ~1800 LOC vieessD ~1400 LOC

LightNVM +
Open-Channel SSD

on source code

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

* Prediction overhead optimizations

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

* Prediction overhead optimizations
* Avoids going through every |O in the queue

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

* Prediction overhead optimizations

* Avoids going through every |O in the queue
* Reduces overhead from O(n) to roughly O(1)

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

* Prediction overhead optimizations
* Avoids going through every |O in the queue
* Reduces overhead from O(n) to roughly O(1)

* Shows < 5us overhead for MittCFQ prediction
* < 300ns for MittSSD prediction

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

* Prediction overhead optimizations
* Avoids going through every |O in the queue
* Reduces overhead from O(n) to roughly O(1)
* Shows < 5us overhead for MittCFQ prediction
* < 300ns for MittSSD prediction

 MittCache
e Prediction for OS Cache

E;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Other Solved Challenges

* Prediction overhead optimizations
* Avoids going through every |O in the queue
* Reduces overhead from O(n) to roughly O(1)
* Shows < 5us overhead for MittCFQ prediction
* < 300ns for MittSSD prediction

 MittCache
e Prediction for OS Cache

Please
refer

to the
paper!

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Outline

J

J

d Evaluation

* Tail reduction
= Latency prediction accuracy

J

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ-powered MongoDB

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ-powered MongoDB

Physical node #1 Node #2 Node #20

E’_;;i THE UNIVERSITY OF

® CHICAGO

MittOS @ SOSP’17

MittCFQ-powered MongoDB

Remote YCSB
client #l1

get()

i

Physical node #1

8

Client #2

|

Node #2

get()

8

Client #20

Node #20

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ-powered MongoDB

8 8

Remote YCSB Client #2 oo Client #20
client #I l
= g
bo

J'“
I &

Physical node #1 Node #2 Node #20

~_ Noisy neighbors
based on EC2 data

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ-powered MongoDB

8 8

Remote YCSB . Client #2 oo Client #20
client #I

~_ Noisy neighbors
based on EC2 data

Physical node #1 Node #2 Node #20

E’_;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MittCFQ-powered MongoDB

Metric:
CDF of all get()
requests latencies

Remote YCSB Client #2 oo Client #20 (total 6 million

. N
client #l N

data points)

~_ Noisy neighbors
based on EC2 data

Physical node #1 Node #2 Node #20

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Baseline CDF of YCSB get() Latencies on 20-node MongoDB

p99 - i
P95 -
55 MongoDB on EC2 (Baseline) ———
p I i I I
90t percentile 0 10 13 20 30 40

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Baseline CDF of YCSB get() Latencies on 20-node MongoDB

p99 - _

p95 -

P90 MongoDB on EC2 (Baseline) ——
90t percentile 0O 10 13 20 0 20

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Baseline CDF of YCSB get() Latencies on 20-node MongoDB

| |

MongoDB on EC2 (Baseline) ———

I

10 13 20 30 40
Latency (ms)

ﬁ THE UNIVERSITY OF

® CHICAGO

Baseline

p99

p95

p90

90t percentile

MittOS @ SOSP’17

CDF of YCSB get() Latencies on 20-node MongoDB

| |

&

Q
&
\@/:,

MongoDB on EC2 (Baseline) ———

0

T

10 13 20 30

Latency (ms)

40

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Baseline CDF of YCSB get() Latencies on 20-node MongoDB

p99 -

p95 -

P90 MongoDB on EC2 (Baseline) ——
90t percentile 0O 10 13 20 a0 20

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Baseline CDF of YCSB get() Latencies on 20-node MongoDB

p99 -

p95 -

P90 MongoDB on EC2 (Baseline) ——
90t percentile 0O 10 13 20 0 20

Latency (ms)

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Baseline CDF of YCSB get() Latencies on 20-node MongoDB

p99 -
> 40ms
above
P95 - \ Next slides: use - p98
I 3ms deadline SLO
for Hedged & MittCFQ
55 MongoDB on EC2 (Baseline) ———
p I i T)
90t percentile 0 10 13 20 30 40

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Clone CDF of YCSB get() Latencies on 20-node MongoDB

P95 -
Clone
"Baselineg" ——
p90 i . , ,
0 10 13 20 30 40

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Clone CDF of YCSB get() Latencies on 20-node MongoDB

P99 1 Tail reduction

P95 -
Clone
"Baselineg" ——
p90 i . , ,
0 10 13 20 30 40

Latency (ms)

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Clone CDF of YCSB get() Latencies on 20-node MongoDB

P99 1 Tail reduction

P95 -
> Worse performance < p95
Clone
"Baseline" ——
p90 i . , ,
0 10 13 20 30 40

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Hedged Requests

DOI:10.1145/2408776.2408794

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tall
at Scale

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Hedged Requests

DO0I:10.1145/2408776.2408794

Software techniques that tolerate latency (a) Send S
variability are vital to building responsive ﬁ rst request
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tall
at Scale

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Hedged Requests

DO0I:10.1145/2408776.2408794

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tall
at Scale

(b) Waits for

13ms timeout@‘

(a) Sends
first request

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Hedged Requests (b) Waits for Cg

13ms timeout .

DO0I:10.1145/2408776.2408794

(a) Sends
first request

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tall
at Scale

E_—;;i THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’ 17

Hedged Requests (b) Waits for Cg

13ms timeout .

DO0I:10.1145/2408776.2408794

(a) Sends
first request

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

TheTaill .
at Scale

\ (d) Picks faster
\ response

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

CDF of YCSB get() Latencies on 20-node MongoDB

P99 - =
P95 -
Hedged
590 "Baseline" ——
0 10 13 20 30 40

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

CDF of YCSB get() Latencies on 20-node MongoDB

P99 - i
095 | :
‘| Little extra workload
Hedged
090 "Baseline" ——
0 10 13 20 30 40

Latency (ms)

gi THE UNIVERSITY OF

® CHICAGO

MittOS @ SOSP’17

CDF of YCSB get() Latencies on 20-node MongoDB

P99 -
P95 - 2 i
H Little extra workload
;
i Hedged - - -
590 ’ "Baseline" ——
0 10 13 20 30 40

Latency (ms)

ga THE UNIVERSITY OF

® CHICAGO

MittOS @ SOSP’17

CDF of YCSB get() Latencies on 20-node MongoDB

P95 - 7 i
}1 Little extra workload
;
i Hedged - - -
‘ "Baseling”" ——
P90 . l ,
0 10 13 20 30 40

Latency (ms)

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MlttCFQ CDF of YCSB get() Latencies on 20-node MongoDB

P99 -
P95 -
MittCFQ s
43 Hedged
p ‘ T T T
0 10 13 20 30 40

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MlttCFQ CDF of YCSB get() Latencies on 20-node MongoDB

P99 -
Cut ms tail!
P95 - i
MittCFQ s
590 Hedged
0 10 13 20 30 40

Latency (ms)

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

MlttCFQ CDF of YCSB get() Latencies on 20-node MongoDB

P99 -
Cut ms tail!
p95 | _
MittCFQ m———
P90 | Hedged - - -
0 10 13 20 30 40

Latency (ms)

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MlttCFQ CDF of YCSB get() Latencies on 20-node MongoDB

MittCFQ e

p90 Hedged - - -
0 10 13 20 30 40

Latency (ms)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

MittCFQ CDF of YCSB get() Latencies on 20-node MongoDB

MittCFQ e
Hedged - - - -

20 30 40
Latency (ms)

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Tail amplified at Scale

CHICAGO MittOS @ SOSP’17

Tail amplified at Scale

CHICAGO MittOS @ SOSP’17

Tail amplified at Scale

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Tail amplified at Scale

== |}

=l

=

Tail amplified & more
improvement space

éﬁi

= (il

¢

gi THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Tail amplified at Scale

Tail amplified & more
improvement space

1320 30 40
Latency (ms)

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Tail amplified at Scale

e Scale Factor: 5

= |

5,

Up to 2x
speedup
above p75

Tail amplified & more l
improvement space i

0 1320 30 40
Latency (ms)

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

E_’;;i THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

MittCFQ MittSSD

D|sk Open- Channel
SSD

E’_;;i THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

MittCFQ MittSSD

D|sk Open- Channel
SSD

5 real-world block-level traces

DAPPS
DTRS TPCC

EXCH LMBE

E—_;i THE UNIVERSITY OF
MittOS @ SOSP’ 17

® CHICAGO

Accuracy Evaluation

MittCFQ MittSSD

.
i S

Disk Open-Channel
SSD

5 real-world block-level traces

DAPPS
DTRS TPCC

EXCH LMBE

Metrics:

False positive: 1O rejected, but
deadline is met

E—_;i THE UNIVERSITY OF
MittOS @ SOSP’ 17

® CHICAGO

Accuracy Evaluation

MittCFQ MittSSD

.
i S

Disk Open-Channel
SSD

5 real-world block-level traces

DAPPS
DTRS TPCC

EXCH LMBE

Metrics:

False positive: 1O rejected, but
deadline is met

False negative: Deadline violated,
but 1O is not rejected

E_’;;i THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

False positive T False negative "7
g2 1
Le_ 08 .
= 352 0.6 | }
S S~ 04 ¢ :
—® 0.2 |]
©.S == =
o > 1 T T T
Ng 087 :
L5% 06| :
s3~— 04 -
&€ 027 =77 — e

DAPPS DTRS EXCH LMBE TPCC

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

False positive T False negative -7

g 1
Le_ 08 .
= 352 0.6 + a
sg— 04 :
~ @ 0.2 .
©.=] -
D > 1 I T T
Ng 087 1
L5< 06| :
=8~ 04 .

© 0.2]
o.c 773

APPS DTRS EXCH LMBE TPC

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

False positive T False negative "7

Q>
58 -
£33]
=g]
©.E — 771
A > . , .
Ng_ 08¢ .
= 5 e 0.6 i
s 8% 0_421 : e

m | -
.t < N~ —)

DAPPS DTRS EXCH LMBE TPCC

ﬁ THE UNIVERSITY OF

. CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

False positive T False negative "7
g > 1
s\ 08} .
229 85| —
=5 Qoz2} |
©.E — L~ 7]
a > 1 T T T
DR 0.8 -
=3 N o2} —

DAPPS DTRS EXCH LMBE TPCC

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Accuracy Evaluation

Only <1% inaccuracy!

False positive T False negative "7
g2 1
Le_ 08 .
= 352 0.6 | .
S S~ 04 ¢ 1
—® 0.2 |]
© .= e e
a > 1 T T T T
Ng 087 :
L5% 06| .
=8~ 04 H
£ 027 s, 7 |

DAPPS DTRS EXCH LMB TPCC

ga THE UNIVERSITY OF

@ CHICAGO MittOS @ SOSP’17

Accuracy Evaluation Among incorrect cases:

MittCFQ: MittSSD:
< 3ms diff < 1ms diff

Only <1% inaccuracy!

False positive T False negative "7
g2 1
Le_ 08 .
= 352 0.6 | .
S S~ 04 ¢ 1
—® 0.2 |]
© .= e e
a > 1 T T T T
Ng 087 :
L5% 06| .
=8~ 04 H
£ 027 s, 7 |

DAPPS DTRS EXCH LMB TPCC

E;i THE UNIVERSITY OF

CHICAGO MittOS @ SOSP’17
MittSSD MittCache

(a) Scale Factor: 1 (b) % Latency Reduction of (a) Scale Factor: 1 (b) % Latency Reduction of
MittSSD vs. Hedged MittCache vs. Hedged
p99 | : 80% SF=1 mm SF=5 Lok | 80% SF=1 mm SF=5 zz
: SF=2 I SF=10 =3 SF=2 =1 SF=10 =
60% 60%
95 - P95 | I
P ‘ 40% | 40% [7
MittSSD = :
e W L L = willl LI
p90 Base o |m H 7l p90 o AT ML I /
3 9 4 6 .95 2 3 :

Latency (ms) Avg p75 p90 p95 p99 Latency (ms) Avg p75 p90 p95 p99

E_’;;i THE UNIVERSITY OF
v 5)

CHICAGO MittOS @ SOSP’17
MittSSD MittCache

(a) Scale Factor: 1 (b) % Latency Reduction of (a) Scale Factor: 1 (b) % Latency Reduction of
MittSSD vs. Hedged MittCache vs. Hedged
p99 r' '80% SF=1 == SF=5 = P99 | 80% SF=1 == SF=5 ==
SF=2 =3 SF=10 =3 SF=2 =1 SF=10 =
60% 60%
i L 95 N L
p95 = | P 40% [7
MittSSD = o,
Hedged 20% | I { | H H m 20%) W H H m
p90 Base o WA 7] . p90 o LA KL i _ .
3 2 4 6 .95 2 3 , ‘
Latency (ms) Avg p75 p90 p95 p99 Latency (ms) Avg p75 p90 p95 p99

MongoDB + Filebench + Hadoop
(a) Latency CDF of MongoDB

p99 T

p80 + 8

p60 .

4 - N

§ MittCFQ ——

p20 Hedged 1
Base

po | | 1 l

0 20 40 60 80 100
Latency (ms)

E;;i THE UNIVERSITY OF

u CHICAGO MittOS @ SOSP’17
MittSSD MittCache

(a) Scale Factor: 1 (b) % Latency Reduction of (a) Scale Factor: 1 (b) % Latency Reduction of
MittSSD vs. Hedged MittCache vs. Hedged
p99 | r— '80% SF=1 mm SF=5 == P99 | 80% SF=1 == SF=5 ==
SF=2 I SF=10 \ SF=2 =1 SF=10 =
60% 60%
i L 95 N L
P 40% | { ~ 1 P 40% | 7
MittSSD —— i 5 B N
Hedged 20% [1 { ‘ WH ! H m 20% | 7 | W H m
P90 Base o M 7 W1 p90 o AT ML i % :
= < : . o ’ A 75 p90 és 59
Latency (ms) Avg p75 p90 p95 p99 Latency (ms) vg p p p p
MongoDB + Filebench + Hadoop All in one
(a) Latency CDF of MongoDB SLO SLO SLO
p99 ; I3ms 20ms 5ms

p80 + .
| 8 &8 8
o e |

MittCFQ MittSSD

po I I ! I
0 20 40 60 80 100

Latency (ms)

E;;i THE UNIVERSITY OF

u CHICAGO MittOS @ SOSP’17
MittSSD MittCache

(a) Scale Factor: 1 (b) % Latency Reduction of (a) Scale Factor: 1 (b) % Latency Reduction of
MittSSD vs. Hedged MittCache vs. Hedged
p99 | r——i '80% SF=1 mm SF=5 == P99 | 80% SF=1 == SF=5 ==
SF=2 =3 SF=10 =3 SF=2 =1 SF=10 =
60% 60%
i L 95 N L
P 40% | { ~ 1 P 40% | 7
MittSSD —— i 5 B N
Hedged 20% | [{ ‘ WH ! H m 20% | {7 | W H m
p90 Base o w7 AV p90 o LA KL 1 % .
3 2 4 6 .95 2 3 " : ‘
Latency (ms) Avg p75 p90 p95 p99 Latency (ms) vg p75 p90 p95 p99
MongoDB + Filebench + Hadoop All in one Riak
(a) Latency CDF of MongoDB SLO SLO SLO (a) Latency CDF of Riak
p99 ' I3ms 20ms 5ms

p80 + h p98
p60 |] p96 |
MIttCFQ e
p20 - Hledged . MlttCache p92 | MItCFQ e |
Base Base
MittCFQ MittSSD

po I I I I pgo ! I I
0 20 40 60 80 100 0 10 20 30 40 50

Latency (ms) Latency (ms)

ga THE UNIVERSITY OF

& CHICAGO MittOS @ SOSP’ 17
Conclusion

ga THE UNIVERSITY OF

& CHICAGO MittOS @ SOSP’ 17
Conclusion

Do X

Y
“@_ ®wh 'm busy!

ga THE UNIVERSITY OF

& CHICAGO MittOS @ SOSP’ 17
Conclusion

Do Xl I Reject!

Q’ " I’'m busy!

EIEHUI\IHSXIES MittOS @ SOSP’I7
Conclusion

Try other students!

Do Xl I Reject!

/

.G’ ®w I'm busy!

ga THE UNIVERSITY OF

e CHICAGO MittOS @ SOSP’17

ga THE UNIVERSITY OF

& CHICAGO MittOS @ SOSP’ 17
Conclusion

Fast Reject (No-wait) Interface

MittOS

ga THE UNIVERSITY OF

& CHICAGO MittOS @ SOSP’ 17
Conclusion

Fast Reject (No-wait) Interface

MittOS Latency Predictions

.
-— .

0000

ga THE UNIVERSITY OF

< CHICAGO MittOS @ SOSP’17

Conclusion
MittOS-
powered
apps MongoDB

Fast Reject (No-wait) Interface

MittOS Latency Predictions

.
-— .

0000

ga THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

Conclusion
MittOS-
powered
apps MongoDB

Fast Reject (No-wait) Interface

MittOS Latency Predictions

.
-— .

0000

ga THE UNIVERSITY OF
CHICAGO MittOS @ SOSP’17

Conclusion
MittOS-
powered
apps MongoDB

Fast Reject (No-wait) Interface

MittOS Latency Predictions

S poy
= = [sso
Latency

. °
® CERES
@ T h an k yau ! Qu esti o n sr Caiita for Uietappable Computing

http://ucare.cs.uchicago.edu

0000

| ! !

