
Mingzhe Hao, Huaicheng Li, Michael Hao Tong,

Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,

Andrew A. Chien, and Haryadi S. Gunawi

2MittOS @ SOSP’17

Millisecond Matters!

Amazon: “every 100ms of
latency costs 1% in sales”

Tabb Group: “broker could lose as much
as $4 million in revenues per millisecond
if its electronic trading platform was
only 5ms behind the competition”

Google: “extra 500ms in search page
generation time dropped traffic by
20%”

3MittOS @ SOSP’17

Millisecond Tail Latency

3MittOS @ SOSP’17

Millisecond Tail Latency

Para
llel

tas
k #

1

Paralleltask #2

…

3MittOS @ SOSP’17

Millisecond Tail Latency

10msPara
llel

tas
k #

1

Paralleltask #2

…

3MittOS @ SOSP’17

Millisecond Tail Latency

10ms

IO
contention

Para
llel

tas
k #

1

Paralleltask #2

…

3MittOS @ SOSP’17

Millisecond Tail Latency

10ms

30ms

IO
contention

Para
llel

tas
k #

1

Paralleltask #2

…

3MittOS @ SOSP’17

Millisecond Tail Latency

10msPara
llel

tas
k #

1

Paralleltask #2
Completion

30ms

…

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Wait

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Straggler!

Wait

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Straggler!

Wait

Backup

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Straggler!

Wait

Completion
20msBackup

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Straggler!

Wait

Completion
20msBackup

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Straggler!

2. Cloning
• Introduces 2x

workload

Wait

Completion
20msBackup

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Straggler!

2. Cloning
• Introduces 2x

workload

Wait

3. Snitching
• Does not work

when burstiness
fluctuates in ms-levelCompletion

20msBackup

1. Speculation

4MittOS @ SOSP’17

Current Tail-Tolerant Mechanisms

Straggler!

2. Cloning
• Introduces 2x

workload

Wait

3. Snitching
• Does not work

when burstiness
fluctuates in ms-levelCompletion

20msBackup

1. Speculation
Most popular

5MittOS @ SOSP’17

Must Wait!

Completion
20ms

Backup

Wait

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

Wait

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS
Wait

App

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS
Wait

Disk Queue

App

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS
Wait

Disk Queue

App

My disk is busy!

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS
Wait

Disk Queue

App

My disk is busy!
Try elsewhere

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS
Wait

Disk Queue

App

My disk is busy!
Try elsewhere

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS
Wait

Disk Queue

App

Fast reject

My disk is busy!
Try elsewhere

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS
Wait

Disk Queue

App

ok Fast reject

My disk is busy!
Try elsewhere

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS

Failover (no-wait)

Wait

Disk Queue

App

ok Fast reject

My disk is busy!
Try elsewhere

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS

Completion
10ms + network-hop

Failover (no-wait)

Wait

Disk Queue

App

ok Fast reject

My disk is busy!
Try elsewhere

5MittOS @ SOSP’17

Must Wait! No Wait ?

Completion
20ms

Backup

OS

Completion
10ms + network-hop

Failover (no-wait)

Wait

Disk Queue

App

ok Fast reject

6MittOS @ SOSP’17

Use-Case

App OS

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

6MittOS @ SOSP’17

Use-Case

App OS

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

6MittOS @ SOSP’17

Use-Case

SLO = 20ms

App OS

1

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

6MittOS @ SOSP’17

Use-Case

SLO = 20ms

ret = read(.., SLO)

App OS

1

2
OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

6MittOS @ SOSP’17

Use-Case

SLO = 20ms

ret = read(.., SLO)

App OS

1

2
3

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

6MittOS @ SOSP’17

Use-Case

SLO = 20ms

ret = read(.., SLO)

App OS

Disk Queue
1

2
3

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

6MittOS @ SOSP’17

Use-Case

SLO = 20ms

ret = read(.., SLO)

App OS

Disk Queue
1

2
3

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

OS can see
“everything” and tell

app when it is busy

6MittOS @ SOSP’17

Use-Case

SLO = 20ms

ret = read(.., SLO)

App OS

Disk Queue
1

2
3

4 Reject fast

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

OS can see
“everything” and tell

app when it is busy

6MittOS @ SOSP’17

Use-Case

SLO = 20ms

ret = read(.., SLO)

if (ret == Reject)
// failover

App OS

Disk Queue
1

2

5

3

4 Reject fast

OS

Latency
= 10ms +
network-hop

Fast Reject
(no-wait)

I want < 20ms
latency

OS can see
“everything” and tell

app when it is busy

7MittOS @ SOSP’17

MittOS

ret = read(.., < 20ms)

if (ret == Reject)
// failover

App OS
Disk Queue

Reject

• MittOS Principles

7MittOS @ SOSP’17

MittOS

ret = read(.., < 20ms)

if (ret == Reject)
// failover

App OS
Disk Queue

Reject

• MittOS Principles
• SLO-aware interface
• Reject fast

7MittOS @ SOSP’17

MittOS

ret = read(.., < 20ms)

if (ret == Reject)
// failover

App OS
Disk Queue

Reject

• MittOS Principles
• SLO-aware interface
• Reject fast
• Transparent of busyness

7MittOS @ SOSP’17

MittOS

ret = read(.., < 20ms)

if (ret == Reject)
// failover

App OS
Disk Queue

Reject

• MittOS Principles
• SLO-aware interface
• Reject fast
• Transparent of busyness

• PC era: is best effort
(cannot reject IOs)

7MittOS @ SOSP’17

MittOS

ret = read(.., < 20ms)

if (ret == Reject)
// failover

App OS
Disk Queue

Reject

• MittOS Principles
• SLO-aware interface
• Reject fast
• Transparent of busyness

• PC era: is best effort
(cannot reject IOs)

• DC era: Less-busy replicas
available

8MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms) App

OS

8MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms) App

OS Should I
reject this IO?

8MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms) App

OS Should I
reject this IO?

What is the OS
queue
policy?

8MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms) App

OS

FIFO, elevator, CFQ, etc.

Should I
reject this IO?

What is the OS
queue
policy?

8MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms) App

OS

FIFO, elevator, CFQ, etc.

Should I
reject this IO?

What is the OS
queue
policy?

What is the
device type?

8MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms) App

OS

FIFO, elevator, CFQ, etc.

Should I
reject this IO?

What is the OS
queue
policy?

What is the
device type?

8MittOS @ SOSP’17

Challenge
ret = read(.., < 20ms) App

OS

FIFO, elevator, CFQ, etc.

Prediction depends on queue policy and device type

Should I
reject this IO?

What is the OS
queue
policy?

What is the
device type?

9MittOS @ SOSP’17

Contribution

MittOS principle: Support fast
rejecting SLO-aware interface

9MittOS @ SOSP’17

Contribution

MittOS principle: Support fast
rejecting SLO-aware interface

9MittOS @ SOSP’17

Contribution

MittOS Latency Prediction
Open-Channel

SSD
OS CacheDisk

MittOS principle: Support fast
rejecting SLO-aware interface

9MittOS @ SOSP’17

Contribution

MittOS Latency Prediction
Open-Channel

SSD
OS CacheDisk

MittOS principle: Support fast
rejecting SLO-aware interface

Fast Reject Interface

9MittOS @ SOSP’17

Contribution

MittOS Latency Prediction
Open-Channel

SSD
OS CacheDisk

MittOS-
powered

MittOS principle: Support fast
rejecting SLO-aware interface

Fast Reject Interface

9MittOS @ SOSP’17

Contribution

MittOS Latency Prediction

+50 LOC

Open-Channel
SSD

OS CacheDisk

MittOS-
powered

MittOS principle: Support fast
rejecting SLO-aware interface

Fast Reject Interface

9MittOS @ SOSP’17

Contribution

MittOS Latency Prediction

+50 LOC

Open-Channel
SSD

OS CacheDisk

MittOS-
powered

MittOS principle: Support fast
rejecting SLO-aware interface

Fast Reject Interface

vs. state of the art:
hedged requests, cloning,
application timeout, etc.

9MittOS @ SOSP’17

Contribution

MittOS Latency Prediction

+50 LOC

Open-Channel
SSD

OS CacheDisk

MittOS-
powered

MittOS principle: Support fast
rejecting SLO-aware interface

Fast Reject Interface

vs. state of the art:
hedged requests, cloning,
application timeout, etc.

Cut tail:
50% latency reduction

above 75 percentile

10

q Introduction

qDesign
§ Challenges
§ Solutions

q Evaluation

qConclusion

MittOS @ SOSP’17

11MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

App

OS

11MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

App

OS

How to predict
latency before

submitting to the
device?

11MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

App

OS

Tail

Head

How to predict
latency before

submitting to the
device?

11MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

App

OS

Tail

Head

or

How to predict
latency before

submitting to the
device?

11MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

App

OS

Tail

Head

or

How to predict
latency before

submitting to the
device?

How many IOs in front?

11MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

App

OS

Tail

Head

or

How to predict
latency before

submitting to the
device?

How many IOs in front?
How long?

11MittOS @ SOSP’17

Prediction
ret = read(.., < 20ms)

App

OS

Tail

Head

or

How to predict
latency before

submitting to the
device?

How many IOs in front?
How long?

Latency < SLO → Accept
Latency > SLO → Reject

App

12MittOS @ SOSP’17

OS

Challenge #1: Modeling Queue Policy

App

12MittOS @ SOSP’17

OS

SLO < 20ms

Challenge #1: Modeling Queue Policy

App

12MittOS @ SOSP’17

OS

FIFO

SLO < 20ms

Challenge #1: Modeling Queue Policy
O

ut
st

an
di

ng
 IO

s

App

12MittOS @ SOSP’17

OS

FIFO

10ms
20ms
30ms

SLO < 20ms

40ms
50ms

> 20ms
Reject

Challenge #1: Modeling Queue Policy
O

ut
st

an
di

ng
 IO

s

App

12MittOS @ SOSP’17

OS

FIFO

10ms
20ms
30ms

SLO < 20ms

40ms
50ms

> 20ms
Reject

Elevator

< 20ms
Accept

Challenge #1: Modeling Queue Policy
O

ut
st

an
di

ng
 IO

s

App

12MittOS @ SOSP’17

OS

FIFO

10ms
20ms
30ms

SLO < 20ms

40ms
50ms

> 20ms
Reject

Elevator

< 20ms
Accept

Elevator
+ CFQ

Low Priority

High Priority

Challenge #1: Modeling Queue Policy

> 20ms
Reject

O
ut

st
an

di
ng

 IO
s

App

12MittOS @ SOSP’17

OS

FIFO

10ms
20ms
30ms

SLO < 20ms

40ms
50ms

> 20ms
Reject

Elevator

< 20ms
Accept

Elevator
+ CFQ

Low Priority

High Priority

Challenge #1: Modeling Queue Policy

> 20ms
Reject

Reject / Accept
depends on

queue policy

O
ut

st
an

di
ng

 IO
s

13MittOS @ SOSP’17

Challenge #2: Device Type

FI
FO

13MittOS @ SOSP’17

Challenge #2: Device Type

FI
FO

Single
spindle

> 20ms
Reject

Disk

13MittOS @ SOSP’17

Challenge #2: Device Type

FI
FO

…

FI
FO

Single
spindle

Parallel
channels
& chips

> 20ms
Reject

Disk

13MittOS @ SOSP’17

Challenge #2: Device Type

FI
FO

…

FI
FO

Single
spindle

Parallel
channels
& chips

> 20ms
Reject

< 20ms
Accept

Disk

13MittOS @ SOSP’17

Challenge #2: Device Type

FI
FO

…

FI
FO

Reject / Accept
depends on

device type

Single
spindle

Parallel
channels
& chips

> 20ms
Reject

< 20ms
Accept

Disk

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

OS

Elevator
IO Offset

200
700
600
250

Too many!
Reject!

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

Scheduling
algorithm

OS

Elevator

SSTF

IO Offset
200
700
600
250

Too many!
Reject!

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

Scheduling
algorithm

OS

Elevator

SSTF

IO Offset
200
700
600
250

700
600
200
250

Too many!
Reject!

Re-sort,
thus fast,
Accept!

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

Scheduling
algorithm

OS

Elevator

SSTF

IO Offset
200
700
600
250

700
600
200
250

OS
prediction
incorrect!Too many!

Reject!

Re-sort,
thus fast,
Accept!

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

Scheduling
algorithm

OS

Elevator

SSTF

IO Offset
200
700
600
250

700
600
200
250

OS
prediction
incorrect!

OS

End of queue!
Reject?

…

Too many!
Reject!

Re-sort,
thus fast,
Accept!

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

Scheduling
algorithm

OS

Elevator

SSTF

IO Offset
200
700
600
250

700
600
200
250

OS
prediction
incorrect!

OS

End of queue!
Reject?

…

Too many!
Reject!

Re-sort,
thus fast,
Accept!

Remap to
fast chip,
Accept!

14MittOS @ SOSP’17

Challenge #2: Device Type
Idiosyncrasies of devices are mostly unrevealed

Scheduling
algorithm

OS

Elevator

SSTF

IO Offset
200
700
600
250

700
600
200
250

OS
prediction
incorrect!

OS

End of queue!
Reject?

…

Too many!
Reject!

Re-sort,
thus fast,
Accept!

Remap to
fast chip,
Accept!

OS
prediction
incorrect!

15

q Introduction

qDesign
§ Challenges
§ Solutions

q Evaluation

qConclusion

MittOS @ SOSP’17

16MittOS @ SOSP’17

Reject? = f ()

Reject/Latency Prediction

16MittOS @ SOSP’17

Reject? = f ()SLO,

Reject/Latency Prediction

16MittOS @ SOSP’17

Reject? = f ()SLO, queue policy,

Reject/Latency Prediction

16MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Reject/Latency Prediction

16MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Get from
source-code.

e.g. CFQ, noop

Reject/Latency Prediction

16MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Get from
source-code.

e.g. CFQ, noop

Reject/Latency Prediction

Simple type

Profiling is
enough

16MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Get from
source-code.

e.g. CFQ, noop

White-box knowledge
required

Reject/Latency Prediction

Simple type

Profiling is
enough

Complicated type

16MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Get from
source-code.

e.g. CFQ, noop

White-box knowledge
required

Reject/Latency Prediction

Simple type

Profiling is
enough

Complicated type

MittCFQ MittSSD

17MittOS @ SOSP’17

MittCFQ

OSCFQ

17MittOS @ SOSP’17

MittCFQ

OS

Contains user group management

CFQ

17MittOS @ SOSP’17

MittCFQ

OS

Contains user group management
Contains 3 service trees

CFQ

17MittOS @ SOSP’17

MittCFQ

OS

Contains user group management
Contains 3 service trees

Contains 7 different IO priorities

CFQ

17MittOS @ SOSP’17

MittCFQ

OS

Contains user group management
Contains 3 service trees

Contains 7 different IO priorities
Contains ~4500 LOC

CFQ

17MittOS @ SOSP’17

MittCFQ

OS

Contains user group management
Contains 3 service trees

Contains 7 different IO priorities
Contains ~4500 LOC

CFQ

Open-
sourced

17MittOS @ SOSP’17

MittCFQ

OSCFQ

Open-
sourced

Reverse engineer
Which tree/queue each IO belongs to?
How many IOs in front?

17MittOS @ SOSP’17

MittCFQ

OSCFQ

Open-
sourced

Black box

Reverse engineer
Which tree/queue each IO belongs to?
How many IOs in front?

17MittOS @ SOSP’17

MittCFQ

OSCFQ

Open-
sourced

Black box

Disk Scheduling?

Reverse engineer
Which tree/queue each IO belongs to?
How many IOs in front?

17MittOS @ SOSP’17

MittCFQ

OSCFQ

Open-
sourced

Black box

Disk Scheduling?

Reverse engineer
Which tree/queue each IO belongs to?
How many IOs in front?

Seek latency?
(depends on seek distance)

17MittOS @ SOSP’17

MittCFQ

OSCFQ

Open-
sourced

Black box

Disk Scheduling?

Reverse engineer
Which tree/queue each IO belongs to?
How many IOs in front?

Seek latency?
(depends on seek distance)

Transfer time?
(depends on IO size)

18MittOS @ SOSP’17

MittCFQ ProfilingFor each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

18MittOS @ SOSP’17

MittCFQ ProfilingFor each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

Random seek

18MittOS @ SOSP’17

MittCFQ ProfilingFor each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

Random seek
Random read

18MittOS @ SOSP’17

MittCFQ ProfilingFor each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

Random seek
Random read

Collect latency

18MittOS @ SOSP’17

MittCFQ ProfilingFor each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

Random seek
Random read

Collect latency

2 disk models
11-hour profiling

18MittOS @ SOSP’17

MittCFQ ProfilingFor each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

Random seek
Random read

Collect latency

2 disk models
11-hour profilingLinear Regression

scikit-learn

18MittOS @ SOSP’17

MittCFQ Profiling

Seek Distance

For each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

IO
 Si

ze
La

te
nc

y

Random seek
Random read

Collect latency

2 disk models
11-hour profiling

1 million entries
(30MB memory overhead)

For 1TB drive

Linear Regression
scikit-learn

18MittOS @ SOSP’17

MittCFQ Profiling

Seek Distance

For each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

IO
 Si

ze
La

te
nc

y

Random seek
Random read

Collect latency

2 disk models
11-hour profiling

1 million entries
(30MB memory overhead)

For 1TB drive

Linear Regression + concurrent IO
profiling

Infer

scikit-learn

18MittOS @ SOSP’17

MittCFQ Profiling

Seek Distance

For each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

IO
 Si

ze
La

te
nc

y

Random seek
Random read

Collect latency

2 disk models
11-hour profiling

SSTF
scheduling1 million entries

(30MB memory overhead)
For 1TB drive

Linear Regression + concurrent IO
profiling

Infer

scikit-learn

18MittOS @ SOSP’17

MittCFQ Profiling

Seek Distance

For each interval in [100MB, 200MB, ..., 1GB] do:
for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

IO
 Si

ze
La

te
nc

y

Random seek
Random read

Collect latency

2 disk models
11-hour profiling

SSTF
scheduling

Accurate prediction
1 million entries

(30MB memory overhead)
For 1TB drive

Linear Regression + concurrent IO
profiling

Infer

scikit-learn

19MittOS @ SOSP’17

MittSSD
OS

Which channel/chip?
Fast? Busy?

Fa
st

? Busy?

19MittOS @ SOSP’17

MittSSD

FTL

FTL invisible
to OS!

OS

Fa
st

? Busy?

19MittOS @ SOSP’17

MittSSD

FTL

FTL invisible
to OS!

OS

Fa
st

? Busy?

Invisible
dynamic GC

19MittOS @ SOSP’17

MittSSD

FTL

FTL invisible
to OS!

Pa
ge

s

OS

Fa
st

? Busy?

Invisible
dynamic GC

1ms

1ms
1ms

1ms

Write lat.
variability

Lower
MLC bits

19MittOS @ SOSP’17

MittSSD

FTL

FTL invisible
to OS!

Pa
ge

s

OS

Fa
st

? Busy?

Invisible
dynamic GC

1ms

2ms

1ms
2ms

1ms

1ms
2ms

Write lat.
variability

Lower
MLC bits

Upper
MLC bits

19MittOS @ SOSP’17

MittSSD

FTL

FTL invisible
to OS!

Pa
ge

s

OS

Fa
st

? Busy?

Invisible
dynamic GC

Too complex
to model!

1ms

2ms

1ms
2ms

1ms

1ms
2ms

Write lat.
variability

Lower
MLC bits

Upper
MLC bits

20MittOS @ SOSP’17

MittSSD

OS

20MittOS @ SOSP’17

Software-defined flash
MittSSD

OS

20MittOS @ SOSP’17

Software-defined flash

LightNVM

MittSSD

OS

Open-Channel
SSD

FTL
at host

20MittOS @ SOSP’17

Software-defined flash

LightNVM

MittSSD

OS

Open-Channel
SSD

FTL
at host

OS knows where
IOs are mapped

20MittOS @ SOSP’17

Software-defined flash

LightNVM

MittSSD

OS

Open-Channel
SSD

FTL
at host

OS knows where
IOs are mapped

OS can track
every single IO

20MittOS @ SOSP’17

Software-defined flash

LightNVM

MittSSD

OS

Open-Channel
SSD

FTL
at host

GC

OS knows where
IOs are mapped

OS can track
every single IO

OS can capture
all GCs

20MittOS @ SOSP’17

Software-defined flash

LightNVM

MittSSD

OS

Open-Channel
SSD

FTL
at host

GC

OS knows where
IOs are mapped

OS can track
every single IO

OS can capture
all GCs

1ms
2ms
1ms
1ms

Pa
ge

s

OS knows
page-level
latencies

20MittOS @ SOSP’17

Software-defined flash

LightNVM

MittSSD

OS

Open-Channel
SSD

FTL
at host

GC

OS can see
#outstanding IOs to
every chip/channel

OS knows where
IOs are mapped

OS can track
every single IO

OS can capture
all GCs

1ms
2ms
1ms
1ms

Pa
ge

s

OS knows
page-level
latencies

20MittOS @ SOSP’17

Software-defined flash

LightNVM

MittSSD

OS

Open-Channel
SSD

FTL
at host

GC

OS can see
#outstanding IOs to
every chip/channel

OS knows where
IOs are mapped

OS can track
every single IO

OS can capture
all GCs

1ms
2ms
1ms
1ms

Pa
ge

s

OS knows
page-level
latencies

Accurate
prediction

21MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Reverse
engineering based
on source code

White-box knowledge
required

Reject/Latency Prediction

Simple type

Profiling is
enough

Complicated type

21MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Reverse
engineering based
on source code

White-box knowledge
required

Reject/Latency Prediction

Simple type

Profiling is
enough

Complicated type

MittCFQ ~1800 LOC

21MittOS @ SOSP’17

Reject? = f ()SLO, queue policy, device type

Reverse
engineering based
on source code

White-box knowledge
required

Reject/Latency Prediction

Simple type

Profiling is
enough

Complicated type

MittCFQ ~1800 LOC MittSSD ~1400 LOC
LightNVM +

Open-Channel SSD

22MittOS @ SOSP’17

Other Solved Challenges

22MittOS @ SOSP’17

Other Solved Challenges

• Prediction overhead optimizations

22MittOS @ SOSP’17

Other Solved Challenges

• Prediction overhead optimizations
• Avoids going through every IO in the queue

22MittOS @ SOSP’17

Other Solved Challenges

• Prediction overhead optimizations
• Avoids going through every IO in the queue
• Reduces overhead from O(n) to roughly O(1)

22MittOS @ SOSP’17

Other Solved Challenges

• Prediction overhead optimizations
• Avoids going through every IO in the queue
• Reduces overhead from O(n) to roughly O(1)
• Shows < 5μs overhead for MittCFQ prediction
• < 300ns for MittSSD prediction

22MittOS @ SOSP’17

Other Solved Challenges

• Prediction overhead optimizations
• Avoids going through every IO in the queue
• Reduces overhead from O(n) to roughly O(1)
• Shows < 5μs overhead for MittCFQ prediction
• < 300ns for MittSSD prediction

• MittCache
• Prediction for OS Cache

22MittOS @ SOSP’17

Other Solved Challenges

• Prediction overhead optimizations
• Avoids going through every IO in the queue
• Reduces overhead from O(n) to roughly O(1)
• Shows < 5μs overhead for MittCFQ prediction
• < 300ns for MittSSD prediction

• MittCache
• Prediction for OS Cache

Please
refer
to the
paper!

23

q Introduction

qDesign

qEvaluation
§ Tail reduction
§ Latency prediction accuracy

qConclusion

MittOS @ SOSP’17

24MittOS @ SOSP’17

MittCFQ-powered MongoDB

24MittOS @ SOSP’17

MittCFQ-powered MongoDB

…

Physical node #1 Node #2 Node #20

24MittOS @ SOSP’17

MittCFQ-powered MongoDB

…

Remote YCSB
client #1

Physical node #1 Node #2 Node #20

Client #2 Client #20…

ge
t(

)

ge
t(

)

ge
t(

)

24MittOS @ SOSP’17

MittCFQ-powered MongoDB

…

Remote YCSB
client #1

Physical node #1 Node #2 Node #20

Client #2 Client #20…

ge
t(

)

ge
t(

)

ge
t(

)

Noisy neighbors
based on EC2 data

24MittOS @ SOSP’17

MittCFQ-powered MongoDB

…

Remote YCSB
client #1

Physical node #1 Node #2 Node #20

Client #2 Client #20…

ge
t(

)

ge
t(

)

ge
t(

)

Noisy neighbors
based on EC2 data

Can failover

3 replicas

24MittOS @ SOSP’17

MittCFQ-powered MongoDB

…

Remote YCSB
client #1

Physical node #1 Node #2 Node #20

Client #2 Client #20…

ge
t(

)

ge
t(

)

Metric:
CDF of all get()
requests latencies
(total 6 million
data points)

ge
t(

)

Noisy neighbors
based on EC2 data

Can failover

3 replicas

25MittOS @ SOSP’17

Baseline

90th percentile

25MittOS @ SOSP’17

Baseline

90th percentile

25MittOS @ SOSP’17

Baseline
C

D
F

(p
er

ce
nt

ile
)

90th percentile

25MittOS @ SOSP’17

Baseline

90th percentile

Better!

25MittOS @ SOSP’17

Baseline

> 40ms
above

p98

90th percentile

25MittOS @ SOSP’17

Baseline

> 40ms
above

p98

13ms
at p95

90th percentile

25MittOS @ SOSP’17

Baseline

> 40ms
above

p98

13ms
at p95

Next slides: use
13ms deadline SLO
for Hedged & MittCFQ

90th percentile

26MittOS @ SOSP’17

Clone

26MittOS @ SOSP’17

Clone

Tail reduction

26MittOS @ SOSP’17

Clone

Tail reduction

Worse performance < p95

27MittOS @ SOSP’17

Hedged Requests

Communications of the ACM,
vol. 56 (2013), pp. 74-80

27MittOS @ SOSP’17

Hedged Requests

Communications of the ACM,
vol. 56 (2013), pp. 74-80

(a) Sends
first request

27MittOS @ SOSP’17

Hedged Requests

Communications of the ACM,
vol. 56 (2013), pp. 74-80

(a) Sends
first request

(b)Waits for
13ms timeout

27MittOS @ SOSP’17

Hedged Requests

Communications of the ACM,
vol. 56 (2013), pp. 74-80

(a) Sends
first request

(b)Waits for
13ms timeout

(c) Sends

secondary

request

27MittOS @ SOSP’17

Hedged Requests

Communications of the ACM,
vol. 56 (2013), pp. 74-80

(a) Sends
first request

(b)Waits for
13ms timeout

(c) Sends

secondary

request

(d) Picks faster
response

28MittOS @ SOSP’17

28MittOS @ SOSP’17

Little extra workload

28MittOS @ SOSP’17

Little extra workload

Tail reduction

28MittOS @ SOSP’17

Little extra workload

Wait Secondary Tail reduction

29MittOS @ SOSP’17

MittCFQ

29MittOS @ SOSP’17

MittCFQ

Cut ms tail!

29MittOS @ SOSP’17

MittCFQ

Wait

Cut ms tail!

Secondary

29MittOS @ SOSP’17

MittCFQ

Wait

Fast
reject

Failover Cut ms tail!

Secondary

29MittOS @ SOSP’17

MittCFQ

Wait

Fast
reject

Failover Cut ms tail!

Secondary

No-wait
wins!

30MittOS @ SOSP’17

Tail amplified at Scale

30MittOS @ SOSP’17

Tail amplified at Scale

Parallel

get
() #

1
get() #2

get()

…

#S

30MittOS @ SOSP’17

Tail amplified at Scale

Parallel

get
() #

1
get() #2

get()

…

#S

30MittOS @ SOSP’17

Tail amplified at Scale

Parallel

get
() #

1
get() #2

get()

Tail amplified & more
improvement space

…

#S

30MittOS @ SOSP’17

Tail amplified at Scale

Parallel

get
() #

1
get() #2

get()

Tail amplified & more
improvement space

… Base
HedgedMittC

FQ
S

#S

30MittOS @ SOSP’17

Tail amplified at Scale

Parallel

get
() #

1
get() #2

get()

Tail amplified & more
improvement space

… Base
HedgedMittC

FQ

Up to 2x
speedup

above p75

S

#S

31MittOS @ SOSP’17

Accuracy Evaluation

31MittOS @ SOSP’17

Accuracy Evaluation

Open-Channel
SSD

Disk

MittCFQ MittSSD

31MittOS @ SOSP’17

Accuracy Evaluation

5 real-world block-level traces

DTRS
DAPPS

EXCH LMBE

TPCC

Open-Channel
SSD

Disk

MittCFQ MittSSD

31MittOS @ SOSP’17

Accuracy Evaluation

5 real-world block-level traces

DTRS
DAPPS

EXCH LMBE

TPCC

Open-Channel
SSD

Disk

MittCFQ MittSSD

Metrics:
• False positive: IO rejected, but

deadline is met

31MittOS @ SOSP’17

Accuracy Evaluation

5 real-world block-level traces

DTRS
DAPPS

EXCH LMBE

TPCC

Open-Channel
SSD

Disk

MittCFQ MittSSD

Metrics:
• False positive: IO rejected, but

deadline is met
• False negative: Deadline violated,

but IO is not rejected

32MittOS @ SOSP’17

Accuracy Evaluation

32MittOS @ SOSP’17

Accuracy Evaluation

32MittOS @ SOSP’17

Accuracy Evaluation

32MittOS @ SOSP’17

Accuracy Evaluation

32MittOS @ SOSP’17

Accuracy Evaluation
Only <1% inaccuracy!

32MittOS @ SOSP’17

Accuracy Evaluation
Only <1% inaccuracy! MittCFQ:

< 3ms diff
MittSSD:
< 1ms diff

Among incorrect cases:

33MittOS @ SOSP’17

MittSSD MittCache

33MittOS @ SOSP’17

MittSSD MittCache

MongoDB + Filebench + Hadoop

33MittOS @ SOSP’17

MittSSD MittCache

MongoDB + Filebench + Hadoop
SLO
13ms

All in one
SLO
20ms

SLO
5ms

MittCache

MittCFQ MittSSD

33MittOS @ SOSP’17

MittSSD MittCache

MongoDB + Filebench + Hadoop Riak
SLO
13ms

All in one
SLO
20ms

SLO
5ms

MittCache

MittCFQ MittSSD

34MittOS @ SOSP’17

Conclusion

Do X

34MittOS @ SOSP’17

Conclusion

Do X

I’m busy!

34MittOS @ SOSP’17

Conclusion

Reject!Do X

I’m busy!

34MittOS @ SOSP’17

Conclusion

Reject! Try other students!Do X

I’m busy!

34MittOS @ SOSP’17

Conclusion

Reject!

No wait!

Try other students!Do X

I’m busy!

35MittOS @ SOSP’17

Conclusion

Fast Reject (No-wait) Interface

MittOS

35MittOS @ SOSP’17

Conclusion

Latency Predictions

Fast Reject (No-wait) Interface

MittOS

35MittOS @ SOSP’17

Conclusion

Latency Predictions

MittOS-
powered
apps

Fast Reject (No-wait) Interface

MittOS

35MittOS @ SOSP’17

Conclusion

MittO
S

Stat
e of a

rt

Latency

C
D

F

Latency Predictions

MittOS-
powered
apps

Fast Reject (No-wait) Interface

Cuts ms tail!

MittOS

35MittOS @ SOSP’17

Conclusion

MittO
S

Stat
e of a

rt

Latency

C
D

F

Latency Predictions

MittOS-
powered
apps

Fast Reject (No-wait) Interface

Cuts ms tail!

http://ucare.cs.uchicago.edu https://ceres.uchicago.edu

MittOS

