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Millisecond Matters! 

Amazon: “every 100ms of 
latency costs 1% in sales”

Tabb Group: “broker could lose as much 
as $4 million in revenues per millisecond 
if its electronic trading platform was 
only 5ms behind the competition”

Google: “extra 500ms in search page 
generation time dropped traffic by 
20%”
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Current Tail-Tolerant Mechanisms

Straggler!

2. Cloning
• Introduces 2x 

workload

Wait

3. Snitching
• Does not work 

when burstiness 
fluctuates in ms-levelCompletion

20msBackup

1. Speculation
Most popular
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Use-Case

SLO = 20ms

ret = read(.., SLO)

if ( ret == Reject)
// failover

App OS

Disk Queue
1

2

5

3

4 Reject fast

OS

Latency
= 10ms +
network-hop

Fast Reject 
(no-wait)

I want < 20ms 
latency

OS can see 
“everything” and tell 

app when it is busy
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MittOS

ret = read(.., < 20ms)

if ( ret == Reject)
// failover

App OS
Disk Queue

Reject

• MittOS Principles
• SLO-aware interface 
• Reject fast
• Transparent of busyness

• PC era: is best effort        
(cannot reject IOs)

• DC era: Less-busy replicas 
available
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Challenge
ret = read(.., < 20ms) App

OS

FIFO, elevator, CFQ, etc.

Prediction depends on queue policy and device type

Should I 
reject this IO?

What is the OS 
queue 
policy?

What is the 
device type?
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Contribution

MittOS Latency Prediction

+50 LOC

Open-Channel
SSD

OS CacheDisk

MittOS-
powered

MittOS principle: Support fast 
rejecting SLO-aware interface

Fast Reject Interface

vs. state of the art:    
hedged requests, cloning,  
application timeout, etc.

Cut tail:
50% latency reduction 

above 75 percentile
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q Introduction

qDesign
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qConclusion
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Prediction
ret = read(.., < 20ms)

App

OS

Tail

Head

or

How to predict
latency before 

submitting to the 
device?

How many IOs in front? 
How long?

Latency < SLO → Accept
Latency > SLO → Reject
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OS

FIFO

10ms
20ms
30ms

SLO < 20ms

40ms
50ms

> 20ms
Reject

Elevator

< 20ms
Accept

Elevator 
+ CFQ

Low Priority

High Priority

Challenge #1: Modeling Queue Policy  

> 20ms
Reject

Reject / Accept 
depends on 

queue policy 

O
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an

di
ng

 IO
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Reject? = f (                                                                    )SLO, queue policy, device type

Get from 
source-code.

e.g. CFQ, noop

White-box knowledge 
required

Reject/Latency Prediction

Simple type

Profiling is 
enough

Complicated type

MittCFQ MittSSD
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MittCFQ

OSCFQ

Open-
sourced

Black box

Disk Scheduling?

Reverse engineer
Which tree/queue each IO belongs to? 
How many IOs in front?

Seek latency? 
(depends on seek distance)

Transfer time? 
(depends on IO size)
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for (startOffset = 0; startOffset < maxOffset; startOffset += interval) {

for (endOffset = 0; endOffset < maxOffset; endOffset += interval) {
for (size = 0; size < maxSize; size += sizeInterval){

start_ts = gettimeofday();
seek (startOffset);
read (endOffset, size);
end_ts = gettimeofday();
latency = start_ts - end_ts;
print (endOffset - endOffset, size, latency);

}
}

}

Random seek
Random read

Collect latency

2 disk models
11-hour profilingLinear Regression

scikit-learn
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MittCFQ Profiling

Seek Distance

For each interval in [ 100MB, 200MB, ..., 1GB ] do:
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}
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White-box knowledge 
required

Reject/Latency Prediction

Simple type
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Complicated type

MittCFQ ~1800 LOC MittSSD ~1400 LOC
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Open-Channel SSD
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Other Solved Challenges

• Prediction overhead optimizations
• Avoids going through every IO in the queue
• Reduces overhead from O(n) to roughly O(1)
• Shows < 5μs overhead for MittCFQ prediction 
• < 300ns for MittSSD prediction 

• MittCache
• Prediction for OS Cache

Please 
refer 
to the 
paper!
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qEvaluation
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§ Latency prediction accuracy

qConclusion
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MittCFQ-powered MongoDB
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Remote YCSB 
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data points)

ge
t(

)

Noisy neighbors 
based on EC2 data

Can failover
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Hedged Requests

Communications of the ACM, 
vol. 56 (2013), pp. 74-80

(a) Sends 
first request

(b)Waits for 
13ms timeout

(c) Sends 

secondary 

request

(d) Picks faster 
response
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5 real-world block-level traces

DTRS
DAPPS

EXCH LMBE

TPCC

Open-Channel
SSD

Disk

MittCFQ MittSSD

Metrics:
• False positive: IO rejected, but 

deadline is met
• False negative: Deadline violated,  

but IO is not rejected
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Accuracy Evaluation
Only <1% inaccuracy! MittCFQ: 

< 3ms diff
MittSSD:
< 1ms diff

Among incorrect cases:



33MittOS @ SOSP’17

MittSSD MittCache



33MittOS @ SOSP’17

MittSSD MittCache

MongoDB + Filebench + Hadoop



33MittOS @ SOSP’17

MittSSD MittCache

MongoDB + Filebench + Hadoop
SLO
13ms

All in one
SLO
20ms

SLO
5ms

MittCache

MittCFQ MittSSD



33MittOS @ SOSP’17
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All in one
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