
Jinshu Liu, Hamid Hadian, Hanchen Xu, Huaicheng Li



Tired Memory Architecture is a New Norm

Growing demand from memory-intensive applications

2

DRAM
DRAM

DRAM

DRAMDRAM
DRAM

DRAM
DRAM

Limited size
Low memory access latency (~100ns)

Memory expansion
High memory access latency (200~300ns)

Fast-tier memory Slow-tier memory

CXL



Decades of Memory Tiering Research 3

DRAM
DRAM

DRAM

DRAMDRAM
DRAM

DRAM
DRAM

I. First-touch allocation

II. Hotness based data placement

Fast-tier memory Slow-tier memory

Maximize the usage of fast-tier memory

A simple assumption to generalize the affect of memory access

III. Page migration
Migrate hot pages to fast-tier memory

Promote hot data

Demote cold data



Common Assumptions of State-of-the-Art 4

HeMem [SOSP’21], TPP [ASPLOS’23], MEMTIS [SOSP’23], Nomad [OSDI’24], Memstrata [OSDI’24]
Colloid [SOSP’24], NeoMem [Micro’24], Chrono [EuroSys’25], M5 [ASPLOS’25], …

Hotness = Performance

High frequency memory
access on the slow-tier

High performance slowdown

Is hot data always performance-critical?



5

Hot but non-performance-critical pages can be promoted with no gains
I. Page migration

II. First-touch allocation
Overlook the varying performance contribution from various objects

Hotness = Performance

High frequency memory
access on the slow-tier

High performance slowdown



Our Goal 6

Three key research questions:

Which metrics should be used to guide tiering?

Why cannot hotness represent performance?

2

1

How to apply the new metrics on memory allocation and migration?3



Overview 7

Memory allocation/migration for tiered memory beyond hotness

AOL: Amortized Offcore Latency

SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Key factor for accurate performance prediction

Near-optimal object placement after profiling based on AOL

Quantifies the actual impact of memory accesses on performance slowdown

Regulate page migration for hot but less performance-critical pages



Outline

Overview

AOL: Amortized Offcore Latency

SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

8



Hotness != Performance 9

One thread pointer-chasing + one thread sequential read

� �� 
� ��
��������

�

�

�

	




��
���
��
��
��
��
��
���


�

�����������

�

���


��

0

.2

.4

.6

.8

1

N
or
m
.P
er
fo
rm
an
ce

Sequential + Pointer-Chasing

Al
l-o
n-
Fa
st
-T
ie
r

Al
l-o
n-
Sl
ow

-T
ie
r

H
ot
-o
n-
Fa
st
-T
ie
r

C
ol
d-
on
-F
as
t-T
ie
r

N
oT
ie
r

C
ol
lo
id

N
om

ad

TP
P

Pointer-Chasing (cold)

Sequential-read (hot)

Hot-on-fast-tier gives worse (34%) performance
than Cold-on-fast-tier !

Hotness (or access frequency) itself is not enough for guiding memory tiering

Norm. Performance = TimeX/TimeAll-On-Fast-Tier

State-of-the-art underperforms NoTier by 12-14%

13x



Tiered Memory Performance Modeling 10

I. LLC-stalls for performance prediction

0

20

40

0 .25 .50 .75 1.0

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles

0

20

40

0 .25 .50 .75 1.0

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles

The slowdown for some workloads can be modeled by LLC-stalls

Slowdown = TimeAll-on-Slow-Tier / TimeAll-on-Fast-Tier

LLC-stalls/Cycles is measured under all-on-fast-tier

56 workloads

Stalled cycles caused by LLC misses



Tiered Memory Performance Modeling 11

II. Memory-Level-Parallelism (MLP)

0

20

40

0 .25 .50 .75 1.0

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles

0

20

40

0 .25 .50 .75 1.0

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles

MLP can mask the latency penalty

0

20

40

0.0 0.2 0.4 0.6

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles × f(AOL)

0

20

40

0.0 0.2 0.4 0.6

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles × f(AOL)

Why and how can f(AOL) work?

P

S
K = S / P
= f(MLP-metric)

= f(AOL)
0

.25

.50

.75

1.0

0 50 100 150

K

AOL (cycles)

0

.25

.50

.75

1.0

0 50 100 150

K

AOL (cycles)

f(AOL)
= 1/(a+b/AOL)

I. LLC-stalls for performance prediction

AOL =
!"#$%&'
(!)

AOL can be used to predict tiered memory performance with high accuracy

AOL quantifies 
how increased 
LLC stalls on 
slow-tier are 
amortized by MLP



12

0

20

40

0 .25 .50 .75 1.0

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles

0

20

40

0 .25 .50 .75 1.0

Sl
ow

do
w
n
(%
)

LLC-Stall/Cycles

0

.25

.50

.75

1.0

0 50 100 150

K

AOL (cycles)

0

.25

.50

.75

1.0

0 50 100 150

K

AOL (cycles)

Low AOL -> Performance slowdown is amortized by high MLP

High AOL -> Minimal MLP impact

AOL =
!"#$%&'
(!)



Outline

Overview

AOL: Amortized Offcore Latency

SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

13



Memory Allocation for Tiering 14

SOAR: Static Object Allocation based on Ranking
Assign predicted performance to each object per time period

Use AOL to determine when the MLP-impact is effective and the degree of its impact

First-touch allocation
The allocation order is based on the timing requested by runtime

No awareness of the various performance slowdown from different objects

Adjust slowdown attribution for objects based on AOL (MLP effect)



Offline Analysis Workflow 15

Object tracking
Object allocation/deallocation

Memory access tracking
PEBS sampling

Performance monitoring
LLC-stalls and AOL

Object flow

Memory access flow
[time, address]

Predicted performance flow
[time, performance, AOL]

For each time period, how to attribute the performance to each
object with the predicted performance, access counts and AOL?



0

.25

.50

.75

1.0

0 50 100 150

K

AOL (cycles)

16SOAR: How to Rank Objects?
For each time period ti, ti+1 :

MLP impact ?

AOL > Thres.: No AOL < Thres.: Yes

Evenly distribute
performance ∝
access counts

object access probability?

HighLow

Under-attribution
∝ access counts

Over-attribution
∝ access counts

Thres.

SOAR ranks the objects based on attributed scores. It allocates top ranking objects
on the fast-tier, the rest will be on the slow-tier.



Outline

Overview

AOL: Amortized Offcore Latency

SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

17



Page Migration for Tiering 18

Memory allocation: initial data placement

Page migration: online approach during runtime

SOAR: Offline profiling for deciding data allocation between tiers

Promote hot but non-performance-critical pages results in minimal or negative performance gain

Use AOL to determine when there is unnecessary page migration

Low AOL à less performance slowdown caused by high MLP



0

.25

.50

.75

1.0

0 50 100 150

K

AOL (cycles)

ALTO: AOL-based Layered Tiering Orchestration 19

For each time period ti, ti+1 :

Reduce unnecessary page migration

< AOLlow

> AOLhigh

Disable page promotion

Enable page promotion

Partial page promotion
Scale <- f(AOL)

[AOLlow, AOLhigh]

AOLhighAOLlow

e.g., AOL = 90 cycles
75% page promotion

e.g., AOL = 60 cycles
25% page promotion



Outline

Overview

AOL: Amortized Offcore Latency

SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

20



Evaluation 21

Workloads:
CPU SPEC
Graph (GAPBS)
Redis
GPT-2

Hardware:
SKX (slow-tier: coreless-NUMA, 96GB), SPR (slow-tier: CXL-DRAM, 128GB)

Comparison with:
NUMA Balancing Tiering (NBT)
TPP [ASPLOS’23]
Nomad [OSDI’24]
Colloid [SOSP’24]



Evaluation 22

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Sl
ow

do
w
n
to
D
R
AM

(%
)

Slow-tier Ratio (%)

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Sl
ow

do
w
n
to
D
R
AM

(%
)

Slow-tier Ratio (%)

Example: bc-urand

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Sl
ow

do
w
n
to
D
R
AM

(%
)

Slow-tier Ratio (%)

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Sl
ow

do
w
n
to
D
R
AM

(%
)

Slow-tier Ratio (%)

SOAR maintains <20% slowdown
with up to 90% slow-tier memory

SKX/NUMA

How does SOAR perform under different fast/slow tier ratio?

W
or
se

State-of-the-art is similar to or worse than NoTier

More in the paper: SPR/CXL



Evaluation 23
W
or
se

ALTO improves TPP, NBT, Nomad, and
Colloid by 85%, 20%, 21%, and 18%, by
reducing unnecessary page promotions

0

20

40

60

80

100

bc-urand

Sl
ow

do
w
n
to
D
R
AM

(%
)

More in the paper: other workloads under different setups

How does ALTO perform?



Summary 24

Hotness != Performance

SOAR: Profile-guided static allocation policy

ALTO: Page migration regulation policy
Reduce unnecessary page promotions

https://github.com/MoatLab/SoarAlto

Identify performance-critical objects

CodePaper

Thank you! Questions?

AOL for quantifying MLP impact on slowdown


