DI

Tiered Memory Management
Beyond Hotness

Jinshu Liu, Hamid Hadian, Hanchen Xu, Huaicheng Li

7

VIRGINIA TECH.

Tired Memory Architecture is a New Norm

Growing demand from memory-intensive applications

o s
® oty MM 64F spaik

Fast-tier memory Slow-tier memory

Limited size Memory expansion
Low memory access latency (~100ns) High memory access latency (200~300ns)

Decades of Memory Tiering Research

|. First-touch allocation

Maximize the usage of fast-tier memory

ll. Hotness based data placement

A simple assumption to generalize the affect of memory access

lll. Page migration

Migrate hot pages to fast-tier memory

Promote hot data

Fast-tier memory Slow-tier memory

Demote cold data

Common Assumptions of State-of-the-Art 4

Hothess = Performance
-\ Q AN

High performance slowdown

High frequency memory
access on the slow-tier

Is hot data always performance-critical?

HeMem [SOSP’2 1], TPP [ASPLOS’23], MEMTIS [SOSP’23], Nomad [OSDI’24], Memstrata [OSDI’24]
Colloid [SOSP’24], NeoMem [Micro’24], Chrono [EuroSys’25], M5 [ASPLOS’25], ...

Hotnhess
"\

High frequency memory
access on the slow-tier

2

Performance

/T

High performance slowdown

|. Page migration

Hot but non-performance-critical pages can be promoted with no gains

ll. First-touch allocation

Overlook the varying performance contribution from various objects

Three key research questions:

@ Why cannot hotness represent performance!?

@ Which metrics should be used to guide tiering?

@ How to apply the new metrics on memory allocation and migration?

Overview /

Memory allocation/migration for tiered memory beyond hotness

AOL: Amortized Offcore Latency

Key factor for accurate performance prediction

Quantifies the actual impact of memory accesses on performance slowdown

SOAR: Static Object Allocation based on Ranking

Near-optimal object placement after profiling based on AOL

ALTO: AOL-based Layered Tiering Orchestration

Regulate page migration for hot but less performance-critical pages

Outline 8

Overview
AOL: Amortized Offcore Latency
SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

Hotnhess != Performance

One thread + one thread

Hot-on-fast-tier gives worse (34%) performance
than Cold-on-fast-tier !

400 qQ | / /

A4

d (hot) | State-of-the-art underperforms NoTier by 12-14%
7 /

)
e

Cqg

w

200

N
!

(cold)

Virtual Address (GB
N

Norm. Perform

(V)
|

0 . . .
0 20 40 60
Time (s)

All-on-Fast-Tier
All-on-Slow-Tier

Norm. Performance = Timex/Timea).on-Fast-Tier Sequential + Pointer-Chasing

Hotness (or access frequency) itself is not enough for guiding memory tiering

Tiered Memory Performance Modeling

|. LLC-stalls for performance prediction

\l

Stalled cycles caused by LLC misses

N
o

LLC-stalls/Cycles is measured under all-on-fast-tier

N
o

Slowdown (%)

Slowdown = Timeaon-siow-Tier/ TIMEA|.on-Fast-Tier

0 25 50 .75 10
LLC-Stall/Cycles 56 workloads

The slowdown for some workloads can be modeled by LLC-stalls

Tiered Memory Performance Modeling

|. LLC-stalls for performance prediction

Z MLP can mask the latency penalty
ll. Memory-Level-Parallelism (MLP)

N
o

__Latency
AOL = VLD

w
Slowdown (%)
N
o

K=S/P
= f(MLP-metric)

0 .2I5 .5IO .7I5 1.0 =f(AOL)

0.0 0.2 0.4 0.6
LLC-Stall/Cycles AOL (cycles) LLC-Stall/Cycles x f(AOL)
P

AOL can be used to predict tiered memory performance with high accuracy

Low AOL -> Performance slowdown is amortized by high MLP

High AOL -> Minimal MLP impact

N
o

Slowdown (%)

N
o

25 50 .75
LLC-Stall/Cycles

1.0

AOL =———

__Latency
MLP

1.0 ¢

I5 1

50

25 1

50 100 150
AOL (cycles)

Outline

Overview
AOL: Amortized Offcore Latency
SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

Memory Allocation for Tiering

First-touch allocation

The allocation order is based on the timing requested by runtime

No awareness of the various performance slowdown from different objects

SOAR: Static Object Allocation based on Ranking

Assign predicted performance to each object per time period

Use AOL to determine when the MLP-impact is effective and the degree of its impact

Adjust slowdown attribution for objects based on AOL (MLP effect)

Offline Analysis Workflow

Object tracking
Object allocation/deallocation

-

Memory access tracking
PEBS sampling

Performance monitoring
LLC-stalls and AOL

Obiject flow

Memory access flow
[time, address]

Predicted performance flow
[time, performance, AOL]

For each time period, how to attribute the performance to each
object with the predicted performance, access counts and AOL!?

SOAR: How to Rank Objects?

For each time period t;, t;; :

5

1.0 1 |

________ 1

I5 1 |

:

<~ 50t I

i

i

25 ¢ :
0 . 4 Thres.
0 50 100 150

AOL (cycles)

MLP impact ?

AOL > : V VL < : Yes

Evenly distribute
performance
access counts

object access probability?

Over-attribution
< access counts

Lcy Wgh

Under-attribution
X access counts

SOAR ranks the objects based on attributed scores. It allocates top ranking objects
on the fast-tier, the rest will be on the slow-tier.

Outline

Overview
AOL: Amortized Offcore Latency
SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

Page Migration for Tiering

Memory allocation: initial data placement

SOAR: Offline profiling for deciding data allocation between tiers

Page migration: online approach during runtime

Promote hot but non-performance-critical pages results in minimal or negative performance gain

Low AOL - less performance slowdown caused by high MLP

Use AOL to determine when there is unnecessary page migration

ALTO: AOL-based Layered Tiering Orchestration

Reduce unnecessary page migration

AOL,.,

AOLg For each time period t;, t+) :

|
1.0 1

A5 |

50

25 |

]
]
]
]
1
]
]
]
]
]

4

b

oL
0
OL (

e.g., AOL = 60 cycles
25% page promotion

Q150
cycle

> AOLygh Enable page promotion

Partial page promotion

[AOLow: AOLigl ¢ e < fra01)

< AOL,,, Disable page promotion

e.g., AOL = 90 cycles
75% page promotion

Outline

Overview
AOL: Amortized Offcore Latency
SOAR: Static Object Allocation based on Ranking

ALTO: AOL-based Layered Tiering Orchestration

Evaluation

Evaluation

Workloads:

CPU SPEC
Graph (GAPBYS)
Redis

GPT-2

Hardware:
SKX (slow-tier: coreless-sNUMA, 96GB), SPR (slow-tier: CXL-DRAM, 128GB)

Comparison with:

NUMA Balancing Tiering (NBT)
TPP [ASPLOS’23]

Nomad [0SDI’24]

Colloid [SOSP’24]

Evaluation

How does SOAR perform under different fast/slow tier ratio!?

Example: bc-urand

o Nomad Colloid =&= NBT NoTier =+ Soar =@=
g 00
SKX/NUMA I
3 80 - $tate-of-the-art is similar to or worse than NoTier
= ;
% 601
o
S 40
1;3 20 | SOAR maintains <20% slowdown
3 . ~ with up to 90% slow-tier memory

10 20 30 40 50 60 70 80 90 100
Slow-tier Ratio (%)

More in the paper: SPR/CXL

Evaluation

How does ALTO perform!?

100
ASO ALTO improves TPP, NBT, Nomad, and

Colloid by 85%, 20%, 21%, and 18%, by
reducing unnecessary page promotions

Worse

Slowdown to DRAM (%
B 0))
o o

N
o

o

bc-urand

More in the paper: other workloads under different setups

Summary

Hotness !'= Performance

AOL for quantifying MLP impact on slowdown

SOAR: Profile-guided static allocation policy
|dentify performance-critical objects

ALTO: Page migration regulation policy
Reduce unnecessary page promotions

Thank you! Questions?

Tiered Memory Management Beyond Hotness

Jinshu Liu

Hamid Hadian Hanchen Xu Huaicheng Li

Virginia Tech

Abstract

Tiered memory systems often rely on access frequency (“hot-
ness”) to guide data placement. However, hot data is not
always performance-critical, limiting the effectiveness of
hotness-based policies. We introduce amortized offcore
latency (AOL), a novel metric that precisely captures the
true performance impact of memory accesses by accounting
Jfor memory access latency and memory-level parallelism
(MLP). Leveraging AOL, we present two powerful tiering

hanisms: SoAwr, a profile ided all policy that
places objects based on their performance contribution,
and Atro, a li; ight page mi i ion policy to
eliminate unnecessary migrations. Soar and ALto outperform
four state-of-the-art tiering designs across a diverse set of
workloads by up to 12.4x, while underperforming in a few
cases by no more than 3%.

1 Introduction

Driven by the growing demands of memory-intensive work-
loads, such as graph processing and machine learning, tiered
memory architectures that integrate a fast-tier (e.g., DRAM)
and slow-tier (e.g., CXL memory) are becoming standard in
cloud datacenters [1-5]. While this approach improves mem-
ory capacity scaling, it also introduces significant performance
challenges. Effective data tiering is critical to mitigating the
2-3x performance disparity between tiers [6—12].

Existing tiering designs are grounded in the assumption that
frequently-accessed (“hot”) data is more performance-critical
than cold data and should reside in the fast-tier. Thus, tiered
memory management primarily focuses on hotness tracking,
memory allocation, and migration policies to detect, allocate,
and relocate hot data across tiers efficiently [4, 13-29].

‘We argue that hot data is not always performance-critical
and can reside in the slow-tier without degrading performance
(§2.1). In modern out-of-order CPU designs, latency miti-
gation techniques, such as memory-level parallelism (MLP),
obscure the true cost of memory accesses [13, 30-32]. Not all
memory accesses contribute equally to performance (vary by
4x, §3); overlapping requests (high MLP) often mask slow-tier
latency penalties, leading to less pronounced slowdowns.

Although MLP is a well-established concept within the

i [30-32], its implications for tiered
memory management have been largely overlooked. Prior

classification efforts across objects, pages, and data structures
[13, 19, 33, 34] often implicitly reflect the effects of MLP
through coarse heuristics or indirect indicators of memory
access costs. However, they do not explicitly model or quantify
MLP impact. What remains missing is a principled, accurate,
and MLP-aware performance metric that enables more effec-
tive, performance-driven tiering policies across online and
offline scenarios, and generalizes to diverse workloads.

Existing tiering systems also suffer from heavyweight and
imp hotness ling and page i hani.
Two key limitations are prevalent [1, 4, 16, 17, 19, 21-24, 35]:
(a) Suboptimal data pl Existing ined
allocation policies prioritize fast-tier placement for newly
allocated data, but under fast-tier pressure, performance-
critical data is often displaced to the slow-tier, itating
costly migrations later to correct the placement errors; (b)
Excessive migration overhead. Existing systems often employ
aggressive migration policies, incurring substantial overhead
by frequently relocating non-critical pages. This overhead
can erode or negate the performance benefits of tiering (§2.1).

‘We propose Amortized Offcore Latency (AOL), a novel
performance metric that accurately quantifies the performance
impact of memory accesses by integrating memory latency
and MLP. While latency measures the impact of individual
memory requests, it does not capture the latency-masking
effects of MLP. By considering both factors, AOL, expressed
as “Latency/MLP” combined with CPU stalls, offers a more
precise representation of the true performance contribution of
memory accesses (validated across 56 workloads, §3).

We leverage AOL to redesign memory allocation and mi-
gration policies, introducing two novel tiering mechanisms: a
static memory allocation policy, SOAR, and a dynamic page
migration regulation policy, ALTo. Soar employs AOL-based
profiling to rank objects by assessing their accumulative contri-
butions to application performance. High-ranking objects are
placed in the fast-tier, achieving near-optimal placement while
eliminating runtime migration overhead. Avrro adaptively
regulates page migrations based on AOL, ensuring that only
performance-critical pages are promoted, regardless of their
hotness. ALto i with four rep i
tiering systems with minimal code changes, including TPP
[4], Nomad [22], Linux NUMA Balancing Tiering (NBT)
[36-38], and Colloid [23].

We evaluate Soar and ArLto across a range of realistic

