The CASE of FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator

Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminatahan Sundararaman*, Matias Bjørling†, Haryadi S. Gunawi

THE UNIVERSITY OF CHICAGO

Parallela

CNEXLABS
What SSD platforms are used?

Simulator
- DiskSim+SSD
- SSDSim
- FlashSim

Emulator

Hardware Platform

- Simple
- Time-saving
- Trace driven
- Internal-research only

- 57%

Trends
- Software-Defined Flash
- Split-Level Architecture
Simulator

- DiskSim+SSD
- SSDSim
- FlashSim

- Simple
- Time-saving
- Trace driven
- Internal-research only

Emulator

- 20%
 - 19% Single SSD
 - 1% Distributed SSDs

Hardware Platform

- OpenSSD
- OpenChannel-SSD

- Full-stack Research
- Accurate

- Expensive
- Complex to use
- Wear-out
Simulator
- DiskSim+SSD
- SSDSim
- FlashSim

Emulator
- LightNVM’s QEMU
- VSSIM
- FlashEm

Hardware Platform
- OpenSSD
- OpenChannel-SSD

Guest OS
- Fullstack Research
- Accurate

Simulator
- Simple
- Time-saving

Emulator
- Fullstack Research
- Cheap
- Trace driven
- Internal-research only

Hardware Platform
- Full-stack Research
- Accurate
- Expensive
- Complex to use
- Wear-out
The “CASE” of FEMU

FEMU: QEMU/Software based Flash Emulator

- **Cheap**: $0, https://github.com/ucare-uchicago/femu
- **Accurate**: 0.5-38% error rate in latency
 - 11% average at microsecond level
- **Scalable**: support 32 channels/chips
- **Extensible**
 - modifiable interface
 - modifiable FTL
What is FEMU?

Typical Fullstack Research

FEMU Fullstack Research

Supported research:
- Kernel changes
- Interface changes
- FTL changes
QEMU Scalability

Guest OS

QEMU

IO

IO

IO

IO

IO

Expected

of threads
QEMU IDE Scalability

1 IO thread

Guest OS

QEMU

IO Latency (us)

of threads

Expected

100 100 200 300 400

0
2 IO threads

Guest OS

QEMU

Expected

IO Latency (us)

of threads
Guest OS

QEMU

Represent VSSIM

IO Latency (us)

of threads

Expected
QEMU NVMe Scalability

Represent LightNVM’s QEMU

IO

Guest OS

QEMU

IO

IO

IDE

NVMe

Expected

of threads

IO Latency (us)
QEMU Scalability

QEMU and existing emulators are NOT Scalable!

FEMU is Scalable!
Scalability Root Causes & Solutions (I)

- QEMU NVMe Emulation
- Tail DoorBell
- Head DoorBell
- Submission Queue
- Completion Queue

- App
- Guest OS
- NVMe driver

- Thousands of cycles interrupt **overhead**

- ZERO VM-exit

- Shadow DoorBell

- POLLING

- Submission Queue
- Completion Queue

- VM-exit

- QEMU NVMe Emulation
Scalability Root Causes & Solutions (2)

- NVMe Emulation
- Block Driver
- DMA Emulation
- Image Format Driver
- Raw Device Driver
- AIO Queue
- Thread Pool
- Host File System
- Host Block IO Layer
- Host Device Driver

- FEMU Heap Storage
- DMA from/to heap storage

More than 20us latency reduction
FEMU Accuracy

\[\text{Error} = \left| \frac{L_{\text{femu}} - L_{\text{oc}}}{L_{\text{oc}}} \right| \]
Single-Register model (S-Reg)

Double-Register model (D-Reg)

OLTP

Error (%)
Latency Error: 11-57% ⇒ 0.5-38%

Single Register Model (S-Reg) Double Register Model (D-Reg)

X: # of channels Y: # of planes per channel
FEMU Limitations

- Further optimizations to support higher parallelism (more scalable)
- Accuracy can be improved
- Not able to emulate large-capacity SSD
- No persistence
Conclusion

Installing, and using FEMU can cause side effects including headache, nausea, agitation, and depression. If your research condition does not improve after using FEMU for a week, please talk to us, your advisor, or your doctor immediately.

- Cheap
- Accurate
- Scalable
- Extensible

https://github.com/ucare-uchicago/femu
Thank you!

Questions?

FEMU: https://github.com/ucare-uchicago/femu

Huaicheng Li, huaicheng@cs.uchicago.edu

http://ucare.cs.uchicago.edu