The CASE of FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator

Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminatahan Sundararaman*, Matias Bjørling⁺, Haryadi S. Gunawi

Simulator

Emulator

Simulator

Emulator

Emulator

Emulator

only

What SSD platforms are used?

Trends

- Software-Defined Flash

Hardware

Platform

- Split-Level Architecture

Emulator

DiskSim+SSD

SSDSim FlashSim

Trace driven

Internal-research only

DiskSim+SSD

SSDSim FlashSim

Simple

Time-saving

Trace driven

Internal-research only

DiskSim+SSD

SSDSim FlashSim

Time-saving

Trace driven

Internal-research only

DiskSim+SSD

SSDSim FlashSim

- Trace driven
- Internal-research only

DiskSim+SSD

SSDSim FlashSim

Trace driven

Internal-research only

DiskSim+SSD

SSDSim FlashSim

Time-saving

Trace driven

Internal-research only

Emulator

DiskSim+SSD

SSDSim FlashSim

Time-saving

Trace driven

Internal-research only

Emulator

Vear-out

DiskSim+SSD

SSDSim FlashSim

Trace driven

Internal-research only

Emulator

OpenSSD OpenChannel-SSD

Expensive

Complex to use

Wear-ou

DiskSim+SSD

SSDSim | FlashSim

Time-saving

Trace driven

Internal-research only

Emulator

LightNVM's QEMU VSSIM FlashEm

SSD

Full-stack Research

Accurate

Expensive

Complex to use

Wear-out

DiskSim+SSD

SSDSim FlashSim

Simple

Time-saving

Trace driven

Internal-research only

Full-stack Research

Accurate

Expensive

Complex to use

🔃 Wear-out

DiskSim+SSD

SSDSim FlashSim

Time-saving

Trace driven

Internal-research only

Emulator

LightNVM's QEMU VSSIM FlashEm

Cheap

Poor Scalability

Poor Accuracy

OpenSSD OpenChannel-SSD

Full-stack Research

Accurate

Expensive

Complex to use

🔃 Wear-out

FEMU: QEMU/Software based Flash Emulator

□ Cheap: \$0, https://github.com/ucare-uchicago/femu

- □ Cheap: \$0, https://github.com/ucare-uchicago/femu
- □ Accurate: 0.5-38% error rate in latency
 - ☐ 11% average at microsecond level

- □ Cheap: \$0, https://github.com/ucare-uchicago/femu
- □ Accurate: 0.5-38% error rate in latency
 - ☐ 11% average at microsecond level
- □ Scalable: support 32 channels/chips

- □ Cheap: \$0, https://github.com/ucare-uchicago/femu
- □ Accurate: 0.5-38% error rate in latency
 - ☐ 11% average at microsecond level
- □ Scalable: support 32 channels/chips
- □ Extensible
 - ☐ modifiable interface
 - ☐ modifiable FTL

Typical Fullstack Research

FEMU Fullstack Research

Typical Fullstack Research

App

Host OS

Hardware Platform **FEMU Fullstack Research**

Guest OS

Guest OS

Guest OS

Guest OS

Guest OS

QEMU IDE Scalability

Guest OS

Guest OS

Guest OS

QEMU NVMe Scalability

Guest OS

QEMU NVMe Scalability

Guest OS

QEMU

Represent LightNVM's QEMU

QEMU and existing emulators are NOT Scalable!

FEMU is Scalable!

NVMe Emulation

NVMe Emulation

NVMe Emulation

FEMU Heap Storage

FEMU Accuracy

OpenChannel-SSD

OpenChannel-SSD

$$Error = |L_{femu} - L_{oc}| / L_{oc}$$

time

time

time

Latency Error: 11-57%

Single Register Model (S-Reg)

Latency Error: 11-57%

Single Register Model (S-Reg)

Latency Error: 11-57% $\Rightarrow 0.5-38\%$

Single Register Double Register Model (S-Reg) Model (D-Reg)

Latency Error: 11-57% $\Rightarrow 0.5-38\%$

Single Register Double Register
Model (S-Reg) Model (D-Reg)

X: # of channels

Y: # of planes per channel

Latency Error: 11-57% $\Rightarrow 0.5-38\%$

Single Register Double Register Model (S-Reg) Model (D-Reg)

X: # of channels

Y: # of planes per channel

FEMU Limitations

- Further optimizations to support higher parallelism (more scalable)
- Accuracy can be improved
- Not able to emulate large-capacity SSD
- No persistence

Conclusion

Conclusion

Thank you! Questions?

FEMU: https://github.com/ucare-uchicago/femu

Huaicheng Li huaicheng@cs.uchicago.edu

