Fail-Slow at Scale

Evidence of Hardware Performance Faults in Large Production Systems

Haryadi S. Gunawi¹, Riza O. Suminto¹, Russell Sears², Casey Golliher², Swaminathan Sundararaman³, Xing Lin⁴, Tim Emami⁴, Weiguang Sheng⁵, Nematollah Bidokhti⁵, Caitie McCaffrey⁶, Gary Grider⁷, Parks M. Fields⁷, Kevin Harms⁸, Robert B. Ross⁸, Andree Jacobson⁹, Robert Ricci¹⁰, Kirk Webb¹⁰, Peter Alvaro¹¹, H. Birali Runesha¹², Mingzhe Hao¹, Huaicheng Li¹

Ist anecdote

"...a | Gb NIC card on a machine that suddenly only transmits at | kbps,

this slow machine caused a chain reaction upstream

in such a way that the **100 node cluster** began to crawl at a snail's pace."

Cascading impact!

More anecdotes? All hardware?

- □ **Disk** throughput dropped to 100 KB/s due to vibration
- □ **SSDs** stalled for seconds due to firmware bugs
- Memory cards degraded to 25% speed due to a loose NVDIMM connection
- □ CPUs ran in 50% speed due to lack of power

Fail-slow Hardware

- Hardware that is still running and functional but in a degraded mode, significantly slower than its expected performance
- ☐ In existing literature:
 - "fail-stutter" [Arpaci-Dusseau(s), HotOS 'II]
 - "gray failure" [Huang et al. @ HotOS '17]
 - "Imp mode" [Do et al. @ SoCC '13, Gunawi et al. @ SoCC '14, Kasick et al. @ FAST '10]
 - (But only 8 stories per paper on avg. and mixed with SW issues)

Believe it?

Evidences from ...

Institution	#Nodes		
Company 1	>10,000		
Company 2	150		
Company 3	100		
Company 4	>1,000		
Company 5	>10,000		

Institution	#Nodes	-
Univ. A	300	7.
Univ. B	>100	
Univ. C	>1,000	
Univ. D	500	Fail-slov
Nat'l Labs X	>1,000	at
Nat'l Labs Y	>10,000	scale
Nat'l Labs Z	>10,000	

Table 2: Operational scale.

Data and Methodology

□ 101 reports

- Unformatted text
- Written by engineers and operators (who still remember the incidents)
- 2000-2017 (mostly after 2010)
- Limitations and challenges:
 - No hardware-level performance logs [in formatted text]
 - No large-scale statistical analysis

Methodology

- An institution reports a unique set of root causes
 - "A corrupt buffer that slows down the networking card (causing packet loss and retransmission)"
 - Counted as 1 report from the institution (although might have happened many times)

Important Findings and Observations

- §3.1 Varying root causes: Fail-slow hardware can be induced by internal causes such as firmware bugs or device errors/wear-outs as well as external factors such as configuration, environment, temperature, and power issues.
- §3.2 Faults convert from one form to another: Fail-stop, -partial, and -transient faults can convert to fail-slow faults (e.g., the overhead of frequent error masking of corrupt data can lead to performance degradation).
- §3.3 **Varying symptoms:** Fail-slow behavior can exhibit a permanent slowdown, transient slowdown (up-and-down performance), partial slowdown (degradation of sub-components), and transient stop (*e.g.*, occasional reboots).
- §3.4 **A long chain of root causes:** Fail-slow hardware can be induced by a long chain of causes (*e.g.*, a fan stopped working, making other fans run at maximal speeds, causing heavy vibration that degraded the disk performance).
- §3.4 Cascading impacts: A fail-slow hardware can collapse the entire cluster performance; for example, a degraded NIC made many jobs lock task slots/containers in healthy machines, hence new jobs cannot find enough free slots.
- §3.5 Rare but deadly (long time to detect): It can take hours to months to pinpoint and isolate a fail-slow hardware due to many reasons (e.g., no full-stack visibility, environment conditions, cascading root causes and impacts).

Suggestions

- §6.1 **To vendors:** When error masking becomes more frequent (*e.g.*, due to increasing internal faults), more explicit signals should be thrown, rather than running with a high overhead. Device-level performance statistics should be collected and reported (*e.g.*, via S.M.A.R.T) to facilitate further studies.
- §6.2 **To operators:** 39% root causes are external factors, thus troubleshooting fail-slow hardware must be done online. Due to the cascading root causes and impacts, full-stack monitoring is needed. Fail-slow root causes and impacts exhibit some correlation, thus statistical correlation techniques may be useful (with full-stack monitoring).
- §6.3 **To systems designers:** While software systems are effective in handling fail-stop (binary) model, more research is needed to tolerate fail-slow (non-binary) behavior. System architects, designers and developers can fault-inject their systems with all the root causes reported in this paper to evaluate the robustness of their systems.

Table 1: Summary of our findings and suggestions.

Summary of findings

1 Varying root causes

- Internal causes: firmware bugs, device errors
- External causes: temperature, power, environment, and configuration

(2) Faults convert

Fail-stop, -partial, -transient → fail-slow

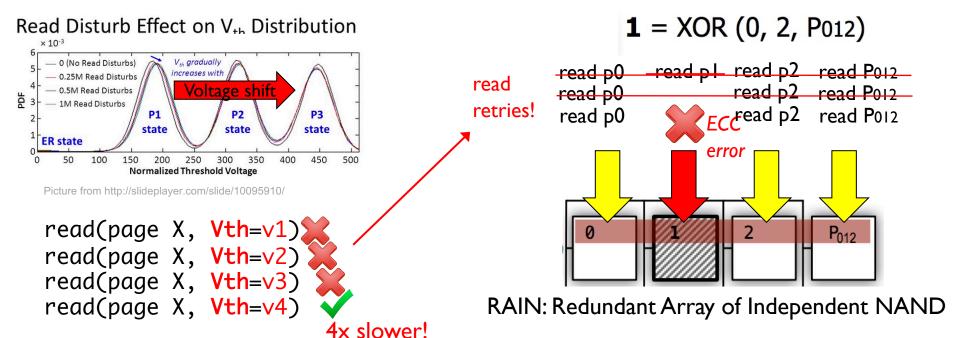
3 Varying symptoms

Permanent, transient, and partial slowdown, and transient stop

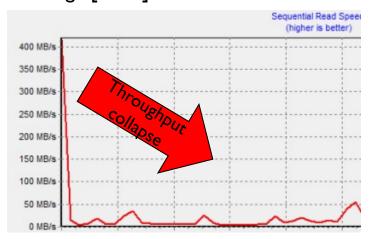
4 Cascading nature

- Cascading root causes
- Cascading impacts

(5) Rare but deadly


Long time to detect (hours to months)

		Hardware types					
Internal	Root	SSD	Disk	Mem	Net	CPU	Total
root	Device errors	10	8	9	10	3	40
causes	Firmware bugs	6	3	0	9	2	20
	Temperature	1	3	0	2	5	11
External	Power	1	0	1	0	6	8
root	Environment	3	5	2	4	4	18
causes	Configuration	1	1	0	2	3	7
	Unknown	0	3	1	2	2	8



- Internal
 - Device errors/wearouts
 - Ex: SSD read disturb/retry + page reconstruction → longer latency and more load

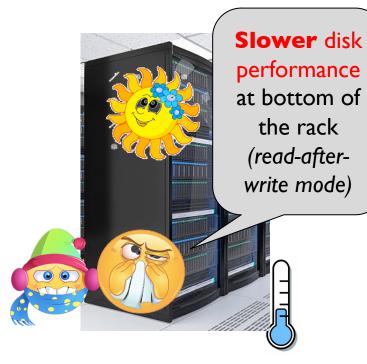
- Internal
 - Device errors
 - Firmware bugs
 - [No details, proprietary component]
 - SSD firmware bugs throttled us to ms read performance
 - Another example: 840 EVO firmware bugs [2014]

https://www.anandtech.com/show/8550/samsung-acknowledges-the-ssd-840-evo-read-performance-bug-fix-is-on-the-way

Internal Device errors and firmware bugs [More details in paper]

SSD	Disk	Memory	Network	Processors
Firmware bugs (us to ms read performance, internal metadata writes triggering assertion); Read retries with different voltages; RAIN/parity-based read reconstruction; Heavy GC in partially-failing SSD (not all chips are created equal); Broken parallelism by suboptimal wear-leveling; Hot temperature to wear-outs, repeated erases, and reduced space; Write amplification.	Firmware bugs (jitters, occasional timeouts, read retries, read-after-write mode); Device wearouts (disabling bad platters); Weak heads (gunk/dust accumulates between disk heads and platters); and other external factors such as temperature and vibration.	Address errors causing expensive ECC checks and repairs; Reduced space causing more cache hits; Loose NVDIMM connection; SRAM control-path errors causing recurrent reboots (transient stop).	Firmware bugs (buggy routing algorithm, multicast bad performance); NIC driver bugs; buggy switch-NIC auto-negotiation; Starving from electrons (bad design specification); bad VSCEL laser; Bitflips in device buffer; Loss packets cause TCP retries and collapse.	Buggy BIOS firmware down-clocking CPUs; Other external causes such as hot temperature and lack of power.

- Internal [Device errors, firmware bugs]
- External
 - Temperature



Hot temperature

- → Corrupt packets
- → Heavy TCP retransmission

Faster SSD wearouts, bad Vth → more read retries

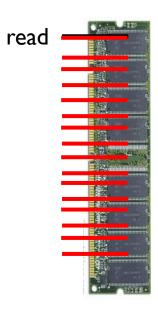
Cold-air-under-the-floor system

- Internal [Device errors, firmware bugs]
- External
 - Temperature
 - Power

4 machines, 2 power supplies

I dead power → 50% CPU speed

Power-hungry applications → throttling neighboring CPUs



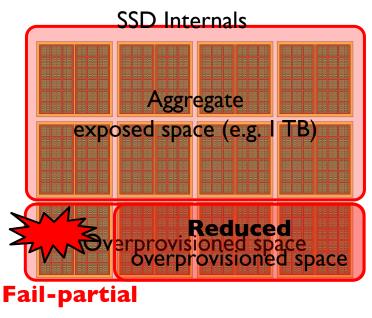
- Internal [Device errors, firmware bugs]
- External
 - Temperature
 - Power
 - **Environment**
 - Altitude, pinched cables, etc.
 - Configuration
 - A BIOS incorrectly downclocking CPUs of new machines
 - Initialization code disabled processor cache

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert
 - Fail-transient

 fail-slow

Bit flips → ECC repair (error masking)

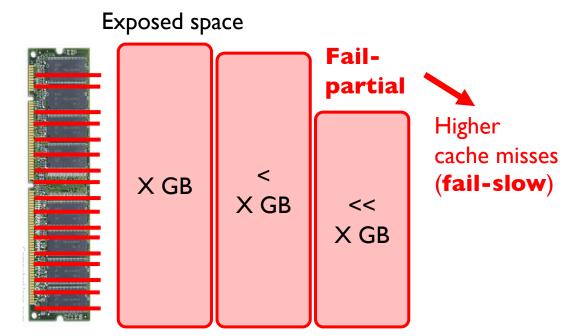
Okay if rare

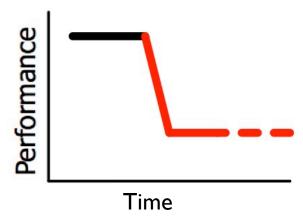

But, **frequent** errors

- → frequent error-masking/repair
- > repair latency becomes the common case

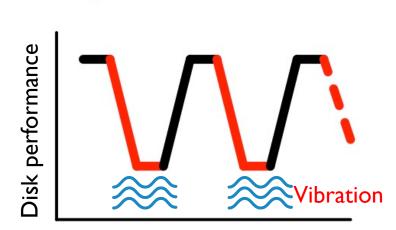
- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert
 - Fail-transient → fail-slow
 - Fail-partial → fail-slow

"Not all chips are created equal" (some chips die faster)


- → Reduced overprovisioned space
- → More frequent GCs → **Slow** SSD *

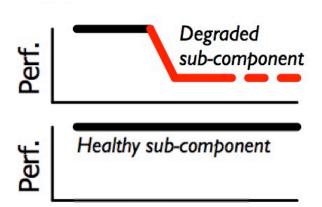

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert
 - Fail-transient → fail-slow
 - Fail-partial → fail-slow

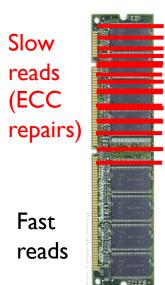
Custom memory chips that mask (hide) bad addresses


- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert Fail-stop, -transient, -partial -> fail-slow
- **3 Varying symptoms**
 - Permanent slowdown

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert Fail-stop, -transient, -partial → fail-slow
- **3 Varying symptoms**
 - − Permanent slowdown ___
 - Transient slowdown

CPU performance





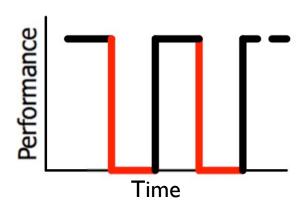
- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- (2) Faults convert Fail-stop, -transient, -partial \rightarrow fail-slow

3 Varying symptoms

- − Permanent slowdown ___
- Transient slowdown | W.
- Partial slowdown

Small packets (fast)

>1500-byte packets (very slow)


[Buggy firmware/config related to jumbo frames]

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert Fail-stop, -transient, -partial -> fail-slow

3 Varying symptoms

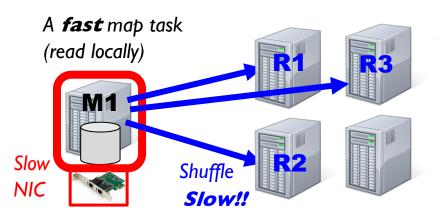
- Permanent slowdown _...
- Transient slowdown
- V
- Partial slowdown
- Degraded sub-composent Healthy sub-component
- Transient stop

A bad batch of SSDs "disappeared" and then reappeared

A firmware bug triggered hardware assertion failure

Uncorrectable bit flips in SRAM control paths

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- (2) Faults convert Fail-stop, -transient, -partial → fail-slow
- 3 Varying symptoms Permanent, transient, partial slowdown and transient stop
- **4** Cascading nature
 - Cascading root causes

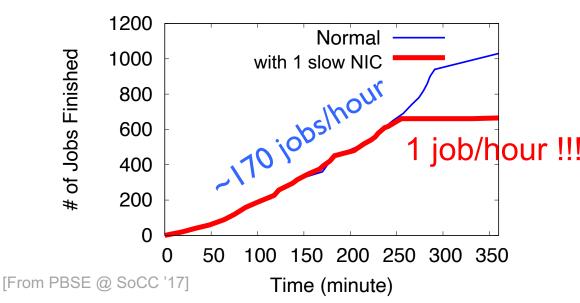

No!

Bad disks?

Disk throughput collapses to **KB/s**

- 1) Varying root causes Device errors, firmware, temperature, power, environment, configuration
- (2) Faults convert Fail-stop, -transient, -partial \rightarrow fail-slow
- 3 Varying symptoms Permanent, transient, partial slowdown and transient stop
- **4** Cascading nature
 - Cascading root causes
 - Cascading impacts e.g. in Hadoop MapReduce

All reducers are slow ("**no**" stragglers → no Speculative Execution)


Use (lock-up) task **slots** in healthy machines for a long time

- 1) Varying root causes Device errors, firmware, temperature, power, environment, configuration
- (2) Faults convert Fail-stop, -transient, -partial \rightarrow fail-slow
- 3 Varying symptoms Permanent, transient, partial slowdown and transient stop
- 4 Cascading nature
 - Cascading root causes
 - Cascading impacts

Facebook Hadoop Jobs, 30 nodes

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert Fail-stop, -transient, -partial \rightarrow fail-slow
- 3 Varying symptoms Permanent, transient, partial slowdown and transient stop
- 4 Cascading nature

5 Rare but deadly

- 13% detected in hours
- I3% in days
- II% in weeks
- 17% in months
- (50% unknown)

Why?

- External causes and cascading nature (vibration ->slow disk); offline testing passes
- No full-stack monitoring/correlation
 hot temperature → slow CPUs → slow Hadoop
 → debug Hadoop logs?
- Rare? Ignore?

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert Fail-stop, -transient, -partial → fail-slow
- 3 Varying symptoms Permanent, transient, partial slowdown and transient stop
- 4 Cascading nature
- 5 Rare but deadly

Suggestions

- §6.1 **To vendors:** When error masking becomes more frequent (*e.g.*, due to increasing internal faults), more explicit signals should be thrown, rather than running with a high overhead. Device-level performance statistics should be collected and reported (*e.g.*, via S.M.A.R.T) to facilitate further studies.
- §6.2 **To operators:** 39% root causes are external factors, thus troubleshooting fail-slow hardware must be done online. Due to the cascading root causes and impacts, full-stack monitoring is needed. Fail-slow root causes and impacts exhibit some correlation, thus statistical correlation techniques may be useful (with full-stack monitoring).
- §6.3 **To systems designers:** While software systems are effective in handling fail-stop (binary) model, more research is needed to tolerate fail-slow (non-binary) behavior. System architects, designers and developers can fault-inject their systems with all the root causes reported in this paper to evaluate the robustness of their systems.

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- 2 Faults convert Fail-stop, -transient, -partial → fail-slow
- 3 Varying symptoms Permanent, transient, partial slowdown and transient stop
- 4 Cascading nature
- 5 Rare but deadly

Thank you! Questions?

Conclusion:

Modern, advanced systems

+ Fail-slow hardware

EXTRA

Suggestions

□ To vendors:

- Make the implicits explicit
 - Frequent error masking → hard errors
- Record/expose device-level performance statistics

□ To operators:

- Online diagnosis
 - (39% root causes are external)
- Full-stack monitoring
- Full-stack statistical correlation

To systems designers:

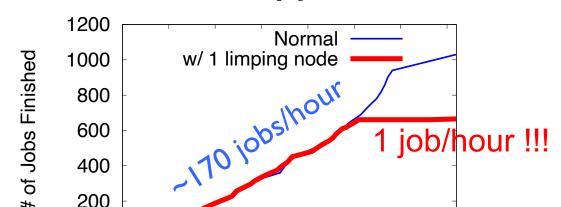
- Make the implicits explicit
 - Jobs retried "infinite" time
- Convert fail-slow to fail-stop? (challenging)
- Fail-slow fault injections

THE UNIVERSITY OF CHICAGO

	Symptoms				
HW Type	Perm.	Trans.	Partial	Tr. Stop	
SSD	6	7	3	3	
Disk	9	4	3	5	
Mem	7	1	0	4	
Net	21	0	5	2	
CPU	10	6	1	3	

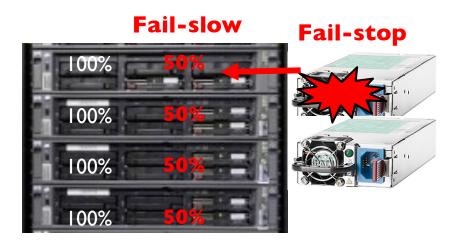
Table 4: Fail-slow symptoms across hardware types.

	Symptoms				
Root	Perm.	Trans.	Partial	Tr. Stop	
ERR	19	8	7	6	
FW	11	3	1	4	
TEMP	6	2	1	2	
PWR	3	2	1	2	
ENV	11	3	3	1	
CONF	6	1	0	0	
UNK	5	1	0	2	


Table 5: Fail-slow symptoms across root causes.

Operators

 Cannot use application bandwidth check (all are affected)


Facebook Hadoop Jobs, 30 nodes

Hadoop, not fully tail/limpware tolerant??

- 1 Varying root causes Device errors, firmware, temperature, power, environment, configuration
- **2** Faults convert
 - Fail-stop → fail-slow
 - Fail-stop power → fail-slow CPUs
 - Fail-stop disk → fail-slow RAID

