Tiny-Tail Flash

Near-Perfect Elimination of Garbage
Collection Tail Latencies in NAND SSDs

Shiqin Yan, Huaicheng Li, Mingzhe Hao,
Michael Hao Tong, Swaminathan Sundararaman®,
Andrew Chien, and Haryadi S. Gunawi

THE UNIVERSITY OF *

CHICAGO =

Center for Unstoppable Computing

ga THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Why SSDs don’t perform

From their earliest days, people have reported that SSDs were not providing the

performance they expected. As SSDs age, for instance, they get slower. Here's
why.

Google: Taming The Long Latency Tail -
When More Machines Equals
Worse Results

“if your read is stuck behind an erase you may have wait 10s of
milliseconds.That's a 100x increase in latency variance™

Why it’s hard to meet SLAs with SSDs

http:/lwww.zdnet.com/article/why-ssds-dont-perform/

The Tail at Scale [CACM’13]
https://storagemojo.com/20 [5/06/03 /why-its-hard-to-meet-slas-with-ssds/

ga THE UNIVERSITY OF

® CHICAGO

Reads + Writes

Clean/Empty
SSD

TTFlash @ FAST’ 17

Read Latency

o
w
3
(7]

Convert to CDF

Percentile

Time

0.3ms

Read Latency

ga THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

IOWNoGC Objective: cut tail
’ 3°o —_—
Reads + Writes 9 o 25 ms with GC
| & E Long tail !
- x
i « (]
P g ¢
Aged/Full 0-3ms oo
0.3ms 80ms

SSD Time Read Latency

gi THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

How GC delays read 1/Os?
- @

v delayed!
N

A GC moves tens of valid
;ﬂi 2 pages!

which makes channel/chips
busy for tens of ms !

E_’;;i THE UNIVERSITY OF

® CHICAGO

How to cut tail latencies?

TTFlash @ FAST’ 17

Tail-tolerant techniques in distributed/storage systems:
Leverage redundancy to cut tail!

RAID:

Full Stripe Read

A

B

C

T

+—— C = XOR
(A,B,P)
4

» tail!
\

5

Slow / busy

ﬁ THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

How to cut tails in SSD?

Error rate increases = RAIN (Redundant Array of Independent NAND)

Similarly, we leverage RAIN to cut “tails™!

Full Stripe Read

A|B|C| «—— € =XOR
t (B, C, P)

fast "\slow!

oo 1K 1O 18

GC

E_’;;i THE UNIVERSITY OF

® CHICAGO

Contribution

. Plane-Blocking GC

New . GC-Tolerant Read
techniques:

. Rotating GC
Iv. GC-Tolerant Flush

Current SSD RAIN
technology: (Parity-based Redundancy)

ga THE UNIVERSITY OF

® CHICAGO

Results

TTFlash @ FAST’ 17

100%

CDF (Percentile)

95%

NOGE/ +Rotating GC

+GC-Tolerant Read
Oc\('\\’\g

—\—P\a“e'B\

0.3ms Latency 80ms

E_’;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

CDF (Percentmé)

Overall results achieved:

Between 99 - 99.99% percentiles:
ttFlash 1-3x slower than NoGC
0.3ms Base 5-138x slower than NoGC

95%

E_’;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Outline

Jintroduction
JBackground
JTiny-Tail Flash Design

JEvaluation, limitations, conclusion

ﬁ THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

SSD Internals

C C
° 1 Chip \
Die [0] Die [I]
Plane[0]
Plane[N]

E_’;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

SSD Internals

Plane
/ Block[0] BIock[N]\

Valid Page

E_’;;i THE UNIVERSITY OF

< CHICAGO TTFlash @ FAST’ 17

SSD Controller

for (1 ... # of valid pages):

1. to controller
(check with ECC)

2. to another block \)

g
block th 7
channel h

4)

B blocked!

/ Old block ~ Empty block "\

\ 4

ga THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

SSD Controller

3. Erase the old block

Erase operation
block the plane

ga THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

1 blocked!

Channel blocking GC

“Base” approach

SIS
A,

GCing plane

(@ THE UNIVERSITY OF
CHICAGO TTFlash @ FAST’ 17

100%

CDF (Percentile)

95%

0.3ms Latency 80ms

ﬁ THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Outline

JIntroduction
JBackground

JTiny-Tail Flash Design

Plane-Blocking GC
GC-Tolerant Read
Rotating GC

GC-Tolerant Flush

JEvaluation, limitations, conclusion

gi THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

. Base: ; Plane
Channel .
T blocked! ; 4 Blocking

Blocking

Leverage

Unblock
the channel

support

GCing plane GCing plane

gi THE UNIVERSITY OF

o CHICAGO TTFlash @ FAST’ 17
Plane Blocking

SSD Controller

Plane Blocking

GC Logic:

for (every valid page)
flash read+write
(inside plane)

g serve other
user 1/Os 7

Overlap
@ intra-plane copyback with
@ channel usage for other non-GCing planes

“Intra-plane

a copyback”

ga THE UNIVERSITY OF

®CHICAGO
NoGC
100%_ |1 —
3% of 110s
are blocked
by GC

95%

0.3ms

Latency

80ms

gi THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

 Issue 1: No ECC check for garbage-collected pages

= (will discuss later)

d Issue 2:
‘ Read | X [«
‘ Read |Y
‘ Read | Z ——— GC-ing plane

delayed! still blocks

E’_;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Outline

JIntroduction
JBackground

JTiny-Tail Flash Design

= Plane-Blocking GC

= RAIN + GC-Tolerant Read
= Rotating GC

= GC-Tolerant Flush

JEvaluation, limitations, conclusion

B

& CHICAGO TTFlash @ FAST’ 17

RAIN

LPN (Logical Page #)
Co C G Cs

Static mapping:
LPNO = C[0]PGJ0]
LPN1 - C[1]PG[0]

Add parity:
LPN 0,1,2 > Po,,2

Rotating parity as RAID 5

E;_i THE UNIVERSITY OF

® CHICAGO

RAIN enables GC-Tolerant Read

Full Stripe Read

2 = XOR

0,1,P Read in parallel
(0’1’2) + XOR cost
~0.01 ms
fast \ tail
M m VS.
Wit for GC

2 to 10s of ms

gi THE UNIVERSITY OF

TTFlash @ FAST’ 17

GC-Tolerant Read

® CHICAGO

Issue: partial stripe read

Partial stripe read:
slow! »

<— 7 = XOR
(0,1,Pq,2)

Must generate extra
N-1 reads!

Add contention to other
N -1 channels and planes

Convert to full stripe if:

Textra-reads < TGC

ga THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

NoGC

0.5%

100%
+GC-Tolerant Read
— cking
= +plane-B°
c
O
&
L
@)
O
95%

0.3ms Latency 80ms

gi THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Issue: more than 1 GCs

’ ?
In a Plane group: One parity = cut one tail

Can’t cut two tails!

Full-stripe read |0 | 1| 2
2 tails!

DOES NOT HELP!

E’_;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Outline

JIntroduction
JBackground

JTiny-Tail Flash Design
= Plane-Blocking GC
= GC-Tolerant Read
= Rotating GC
= GC-Tolerant Flush

JEvaluation, limitations, conclusion

THE UNIVERSITY OF
v

< 5 CHICAGO TTFlash @ FAST’ 17

Postpone!

Rotating GC:

Anytime, at most 1 plane

per plane group can perform
GC

PG,

B THE UNIVERSITY OF
CHICAGO TTFlash @ FAST’ 17

Rotating!
Rotating GC:
PG,

Oy | @y @y g\) Anytime, at most 1 plane

PR PR PR __ per plane group can perform
GC

o o o o

Y Y (€) 4)

| Rotating GC:

Anytime, at most 1 plane
per plane group can perform
GC

Concurrent GCs in
different PGs are
permitted.

E_’;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

‘/+Rotating GC
100% ‘ E"

Why still tiny tails?

Small/partial-stripe read

—> Sometimes may be better
to wait for GC than
adding extra 95%
reads/contentions! 0.3ms Latency 80ms

CDF (Percentile)

E’_;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Outline

dTiny-Tail Flash Design

= Plane-Blocking GC

= GC-Tolerant Read

= Rotating GC

= GC-Tolerant Flush (in paper)

J1Evaluation
JLimitations
Jconclusion

E;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Implementation
0 SSDsim (~2500 LOC)

= Device simulator

0 VSSIM (~900 LOC)

= QEMU/KVM-based
" Run Linux and applications

0O OpenSSD

= Many limitations of the simple programming model

Q Future: ttFlash on OpenChannel SSD

E’_;;i THE UNIVERSITY OF

® CHICAGO

TTFlash @ FAST’ 17

Evaluation

Q Simulator: SSDsim (verified against hardware)
0 Workload: 6 real-world traces from Microsoft Windows

Q Settings and SSD parameters:
= SSD size: 256GB, plane group width = 8 planes (| parity, 7 data)

Sizes Latencies

SSD Capacity 256 GB | Page Read 40us
#Channels 8 | (flash-to-register)
#Planes/channel 8 | Page Write 800us
Plane size 4 GB | (register-to-flash)
#Planes/chip **% 1 | Page data transfer 100us
#Blocks/plane 4096 | (via channel)

#Pages/block 256 | Block erase 2 ms
Page size 4 KB

E_’;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Developer Tools Release Server Trace

— +R0tating GC — ttFlash 99 99¢h

100% o T

% | +P\ane—5\°d(mg |

O 99.99% percentile:

S ttFlash 3x slower than NoGC
a Base 138x slower than NoGC
O
95%

0.3ms Latency 80ms

ﬁ THE UNIVERSITY OF

® CHICAGO
Evaluated on 6 windows workload traces with various characteristics

.95

.99

.96

.95 4

TTFlash @ FAST’ 17

Display Ads Server (DAPPS)

0 20 40 60 80
Live Maps Server (LMBE)

0 20 40 60 80

- ‘ ‘ ‘ 1 o
| L .99

98 - \ L .98 1 |
97 97 A
,% L .96 A
} 95 |

1
.99
.98
.97
.96
.95

Dev. Tools Release (DTRS)

0 20
MSN File Server (MSNFS)

40

60

<

0

20

40

60

80

80

.99 +
.98
97 ~
.96
.95

Exchange Server (Exch)

80
TPC-C
i \
[
0 20 40 60 80

Reduced blocked 1/Os (total) from 2 — 7% to 0.003 — 0.05%

99 — 99.99%: 1.0 — 2.6x slower for ttFlash and 5.6 — |138.2x for Base

E_’;;i THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Other Evaluations

+GTR +RGC

O Filebench on VSSIM+ttFlash A Base Coool +PB

: AN ‘ ‘ ‘ ‘ ‘
" ttFlash achieves better average | x \ ‘
latency than base case g |2 g ~ %\ \g\
< File . Network OLTP Varmail Video Web
Server FS Server Proxy
O Vs. Preemptive GC 6 [tFiash
) Preempt ——
= ttFlash is more stable than .
semi-preemptive GC =
(O
- (If no idle time, preemptive GC 5 / ttflash
will create GC backlogs, creating g stable
latency spikes)
0 e

4386 Elapsed time (s) 4522

E_’;;i THE UNIVERSITY OF

® CHICAGO

Tradeoffs/Limitations

a ttFlash depends on RAIN

= | parity for N parallel pages/channels
= We set N = 8, so we lose one channel out of 8 channels.
= Average latencies are 1.09 — 1.33x slower than NoGC, No-RAIN case

Q RAID > more writes (P/E cycles)

= ttFlash increases P/E cycles by 15 — 18% for most of workloads
* Incur > 53% P/E cycles for TPCC, MSN (random write)

O ECC is not checked during GC

= Suggest background scrubbing (read is fast & not as urgent as GC)
= Important note: in ttFlash, foreground/user reads are still ECC checked

ﬁ THE UNIVERSITY OF

® CHICAGO

Tails under Write Bursts

ttFlash 55MB/s Latency CDF w/ Write Bursts

90% F

CDF (Percentile)

20%

0 Latency (ms) 80 ms

Under write burst and at high watermark, ttFlash must dynamitcally
disable Rotating GC to ensure there is always enough number of free pages.

E_’;;i THE UNIVERSITY OF

® CHICAGO

Conclusion ~ ttFlash

New techniques:

GC-induced

long tail
. Plane-Blocking GC

. GC-Tolerant Read

CDF (Percentile)

. Rotating GC

Overall results achieved:

Between 99 - 99.99 percentiles:
ttFlash 1-3x slower than NoGC
Base 5-138x slower than NoGC

Iv. GC-Tolerant Flush

technology: Powerful Controller
RAIN (parity-based redundancy)
Capacitor-backed RAM

ga THE UNIVERSITY OF

. CHICAGO TTFlash @ FAST’ 17

Thank you!
Questions?

Center for Unstoppable Computing

http://ucare.cs.uchicago.edu https://ceres.uchicago.edu

