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Why SSDs don’t perform

From their earliest days, people have reported that SSDs were not providing the

performance they expected. As SSDs age, for instance, they get slower. Here's
why.

Google: Taming The Long Latency Tail -
When More Machines Equals
Worse Results

“if your read is stuck behind an erase you may have wait 10s of
milliseconds.That's a 100x increase in latency variance™

Why it’s hard to meet SLAs with SSDs

http:/lwww.zdnet.com/article/why-ssds-dont-perform/

The Tail at Scale [CACM’13]
https://storagemojo.com/20 [ 5/06/03 /why-its-hard-to-meet-slas-with-ssds/
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Reads + Writes
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IOWNoGC Objective: cut tail
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How GC delays read 1/Os?
- @

v delayed!
N

A GC moves tens of valid
;ﬂi 2 pages!

which makes channel/chips
busy for tens of ms !
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How to cut tail latencies?

TTFlash @ FAST’ 17

Tail-tolerant techniques in distributed/storage systems:
Leverage redundancy to cut tail!

RAID:

Full Stripe Read
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How to cut tails in SSD?

Error rate increases = RAIN (Redundant Array of Independent NAND)

Similarly, we leverage RAIN to cut “tails™!

Full Stripe Read

A|B|C| «—— € =XOR
t (B, C, P)

fast "\slow!

oo 1K 1O 18

GC
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Contribution

. Plane-Blocking GC

New .  GC-Tolerant Read
techniques:

. Rotating GC
Iv. GC-Tolerant Flush

Current SSD RAIN
technology:  (Parity-based Redundancy)
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Results
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CDF (Percentmé)

Overall results achieved:

Between 99 - 99.99% percentiles:
ttFlash 1-3x slower than NoGC
0.3ms Base 5-138x slower than NoGC

95%
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Outline

Jintroduction
JBackground
JTiny-Tail Flash Design

JEvaluation, limitations, conclusion
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SSD Internals

C C
° 1 Chip \
Die [0] Die [I]
Plane[0]
Plane[N]
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SSD Internals

Plane
/ Block[0] BIock[N]\

Valid Page
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SSD Controller

for (1 ... # of valid pages):

1. to controller
(check with ECC)

2. to another block \ )

g
block th 7
channel h

4 )

B blocked!

/ Old block ~ Empty block "\

\ 4
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SSD Controller

3. Erase the old block

Erase operation
block the plane
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1 blocked!

Channel blocking GC

“Base” approach

SIS
A,

GCing plane
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100%

CDF (Percentile)

95%

0.3ms Latency 80ms
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Outline

JIntroduction
JBackground

JTiny-Tail Flash Design

Plane-Blocking GC
GC-Tolerant Read
Rotating GC

GC-Tolerant Flush

JEvaluation, limitations, conclusion
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. Base: ; Plane
Channel .
T blocked! ; 4 Blocking

Blocking

Leverage

Unblock
the channel

support

GCing plane GCing plane
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Plane Blocking

SSD Controller

Plane Blocking

GC Logic:

for (every valid page)
flash read+write
(inside plane)

g serve other
user 1/Os 7

Overlap
@ intra-plane copyback with
@ channel usage for other non-GCing planes

“Intra-plane

a copyback”
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3% of 110s
are blocked
by GC

95%
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 Issue 1: No ECC check for garbage-collected pages

= (will discuss later)

d Issue 2:
‘ Read | X [«
‘ Read |Y
‘ Read | Z ——— GC-ing plane

delayed! still blocks
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Outline

JIntroduction
JBackground

JTiny-Tail Flash Design

= Plane-Blocking GC

= RAIN + GC-Tolerant Read
= Rotating GC

= GC-Tolerant Flush

JEvaluation, limitations, conclusion
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RAIN

LPN (Logical Page #)
Co C G Cs

Static mapping:
LPNO = C[0]PGJ0]
LPN1 - C[1]PG[0]

Add parity:
LPN 0,1,2 > Po,,2

Rotating parity as RAID 5
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RAIN enables GC-Tolerant Read

Full Stripe Read

2 = XOR

0,1,P Read in parallel
( 0’1’2) + XOR cost
~0.01 ms
fast \ tail
M m VS.
Wit for GC

2 to 10s of ms
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GC-Tolerant Read
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Issue: partial stripe read

Partial stripe read:
slow! »

<— 7 = XOR
(0,1,Pq,2)

Must generate extra
N-1 reads!

Add contention to other
N -1 channels and planes

Convert to full stripe if:

Textra-reads < TGC
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NoGC

0.5%

100%
+GC-Tolerant Read
— cking
= +plane-B°
c
O
&
L
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95%
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Issue: more than 1 GCs

’ ?
In a Plane group: One parity = cut one tail

Can’t cut two tails!

Full-stripe read |0 | 1| 2
2 tails!

DOES NOT HELP!
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Outline

JIntroduction
JBackground

JTiny-Tail Flash Design
= Plane-Blocking GC
= GC-Tolerant Read
= Rotating GC
= GC-Tolerant Flush

JEvaluation, limitations, conclusion
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Postpone!

Rotating GC:

Anytime, at most 1 plane

per plane group can perform
GC

PG,
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Rotating!
Rotating GC:
PG,

Oy | @y @y g\ ) Anytime, at most 1 plane

PR PR PR __ per plane group can perform
GC

o o o o

Y Y (€ ) 4 )




| Rotating GC:

Anytime, at most 1 plane
per plane group can perform
GC

Concurrent GCs in
different PGs are
permitted.
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‘/+Rotating GC
100% ‘ E"

Why still tiny tails?

Small/partial-stripe read

—> Sometimes may be better
to wait for GC than
adding extra 95%
reads/contentions! 0.3ms Latency 80ms

CDF (Percentile)
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Outline

dTiny-Tail Flash Design

= Plane-Blocking GC

= GC-Tolerant Read

= Rotating GC

= GC-Tolerant Flush (in paper)

J1Evaluation
JLimitations
Jconclusion
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Implementation
0 SSDsim (~2500 LOC)

= Device simulator

0 VSSIM (~900 LOC)

= QEMU/KVM-based
" Run Linux and applications

0O OpenSSD

= Many limitations of the simple programming model

Q Future: ttFlash on OpenChannel SSD
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Evaluation

Q Simulator: SSDsim (verified against hardware)
0 Workload: 6 real-world traces from Microsoft Windows

Q Settings and SSD parameters:
= SSD size: 256GB, plane group width = 8 planes (| parity, 7 data)

Sizes Latencies

SSD Capacity 256 GB | Page Read 40us
#Channels 8 | (flash-to-register)
#Planes/channel 8 | Page Write 800us
Plane size 4 GB | (register-to-flash)
#Planes/chip **% 1 | Page data transfer  100us
#Blocks/plane 4096 | (via channel)

#Pages/block 256 | Block erase 2 ms
Page size 4 KB
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Developer Tools Release Server Trace

— +R0tating GC — ttFlash 99 99¢h

100% o T

% | +P\ane—5\°d(mg |

O 99.99% percentile:

S ttFlash 3x  slower than NoGC
a Base 138x slower than NoGC
O
95%

0.3ms Latency 80ms
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Evaluated on 6 windows workload traces with various characteristics
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Exchange Server (Exch)

80
TPC-C
i \
[
0 20 40 60 80

Reduced blocked 1/Os (total) from 2 — 7% to 0.003 — 0.05%

99 — 99.99%: 1.0 — 2.6x slower for ttFlash and 5.6 — |138.2x for Base
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Other Evaluations

+GTR +RGC

O Filebench on VSSIM+ttFlash A Base Coool +PB

: AN ‘ ‘ ‘ ‘ ‘
" ttFlash achieves better average | x \ ‘
latency than base case g |2 g ~ %\ \g\
< File . Network OLTP Varmail Video Web
Server FS Server  Proxy
O Vs. Preemptive GC 6 [ tFiash
) Preempt ——
= ttFlash is more stable than .
semi-preemptive GC =
(O
- (If no idle time, preemptive GC 5 / ttflash
will create GC backlogs, creating g stable
latency spikes)
0 e

4386  Elapsed time (s) 4522
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Tradeoffs/Limitations

a ttFlash depends on RAIN

= | parity for N parallel pages/channels
= We set N = 8, so we lose one channel out of 8 channels.
= Average latencies are 1.09 — 1.33x slower than NoGC, No-RAIN case

Q RAID > more writes (P/E cycles)

= ttFlash increases P/E cycles by 15 — 18% for most of workloads
* Incur > 53% P/E cycles for TPCC, MSN (random write)

O ECC is not checked during GC

= Suggest background scrubbing (read is fast & not as urgent as GC)
= Important note: in ttFlash, foreground/user reads are still ECC checked
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Tails under Write Bursts

ttFlash 55MB/s Latency CDF w/ Write Bursts

90% F

CDF (Percentile)

20%

0 Latency (ms) 80 ms

Under write burst and at high watermark, ttFlash must dynamitcally
disable Rotating GC to ensure there is always enough number of free pages.
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Conclusion ~ ttFlash

New techniques:

GC-induced

long tail
. Plane-Blocking GC

. GC-Tolerant Read

CDF (Percentile)

.  Rotating GC

Overall results achieved:

Between 99 - 99.99 percentiles:
ttFlash 1-3x slower than NoGC
Base 5-138x slower than NoGC

Iv. GC-Tolerant Flush

technology: Powerful Controller
RAIN (parity-based redundancy)
Capacitor-backed RAM
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Thank you!
Questions?

Center for Unstoppable Computing

http://ucare.cs.uchicago.edu https://ceres.uchicago.edu



