
ASPLOS’23

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko Novakovic, Monish 
Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, Ricardo Bianchini



2

q Cloud providers targets
§ Performance comparable to on-premise datacenters
§ Competitive hardware cost

q Memory allocation gold standard
§ VM memory is statically pinned to the same NUMA node

q DRAM is costly
§ ~50% of the server cost for Azure!



3

q Cloud providers targets
§ Performance comparable to on-premise datacenters
§ Competitive hardware cost

q Memory allocation gold standard
§ VM memory is statically pinned to the same NUMA node

q DRAM is costly
§ ~50% of the server cost for Azure!



4

q Cloud providers targets
§ Performance comparable to on-premise datacenters
§ Competitive hardware cost

q Memory allocation gold standard
§ VM memory is statically pinned to the same NUMA node

q DRAM is costly
§ ~50% of the server cost for Azure!



5

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs



6

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r



7

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented



8

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded



9

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded



10

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded



11

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded



12

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded

Median



13

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded

6% Median



14

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded

6% 10% Median



15

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded

6% 10% Median



16

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded

6% 10% Median



17

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded

Used Untouched

6% 10% Median



18

q Memory stranding
§ No free CPU cores but memory left
§ Up to 25% stranded memory at 95th percentile

q Untouched memory due to overprovisioning
§ 45% of untouched memory for half of the VMs

D
R

A
M

CPU

C
lo

ud
 S

er
ve

r Rented

Rented Stranded

Used Untouched

6% 10% Median



19

q CXL enables practical and performant pooling
§ Load/Store access over PCIe 5.0 (“CXL.mem” protocol)
§ More practical than RDMA-based disaggregation designs

q CXL has higher access latency than local DRAM
§ CPU-less node with additional 70~90ns (~2x)
§ CXL switches are slow and will add more latencies
§ Latency-sensitive workloads will suffer from CXL latencies

J



20

q CXL enables practical and performant pooling
§ Load/Store access over PCIe 5.0 (“CXL.mem” protocol)
§ More practical than RDMA-based disaggregation designs

q CXL has higher access latency than local DRAM
§ CPU-less node with additional 70~90ns (~2x)
§ CXL switches are slow and will add more latencies
§ Latency-sensitive workloads will suffer from CXL latencies

J

CXL
CPU DRAM

Ld/St



21

q CXL enables practical and performant pooling
§ Load/Store access over PCIe 5.0 (“CXL.mem” protocol)
§ More practical than RDMA-based disaggregation designs

q CXL has higher access latency than local DRAM
§ CPU-less node with additional 70~90ns (~2x)
§ CXL switches are slow and will add more latencies
§ Latency-sensitive workloads will suffer from CXL latencies

J

CXL
CPU DRAM

Ld/St



22

q CXL enables practical and performant pooling
§ Load/Store access over PCIe 5.0 (“CXL.mem” protocol)
§ More practical than RDMA-based disaggregation designs

q CXL has higher access latency than local DRAM
§ CPU-less node with additional 70~90ns (~2x)
§ CXL switches are slow and will add more latencies
§ Latency-sensitive workloads will suffer from CXL latencies

J

CXL
CPU DRAM

Ld/St
Local DRAM (~90ns) + CXL (70~90ns)



23

q CXL enables practical and performant pooling
§ Load/Store access over PCIe 5.0 (“CXL.mem” protocol)
§ More practical than RDMA-based disaggregation designs

q CXL has higher access latency than local DRAM
§ CPU-less node with additional 70~90ns (~2x)
§ CXL switches are slow and will add more latencies
§ Latency-sensitive workloads will suffer from CXL latencies

J

CXL
CPU DRAM

Ld/St

CXL 
Switch DRAMCPU

Local DRAM (~90ns) + CXL (70~90ns)



24

q CXL enables practical and performant pooling
§ Load/Store access over PCIe 5.0 (“CXL.mem” protocol)
§ More practical than RDMA-based disaggregation designs

q CXL has higher access latency than local DRAM
§ CPU-less node with additional 70~90ns (~2x)
§ CXL switches are slow and will add more latencies
§ Latency-sensitive workloads will suffer from CXL latencies

J

CXL
CPU DRAM

Ld/St

CXL 
Switch DRAMCPU

Local DRAM (~90ns) + CXL (70~90ns)



25

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

Sl
ow

do
w
n
(%
)

Approximated CXL latencies: 142ns (182%), and 255ns (222%)



26

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

Sl
ow

do
w
n
(%
)

158 workloads: Proprietary, Redis, VoltDB, Spark, GAPBS, TPC-H, SPEC CPU 2017, etc.

Approximated CXL latencies: 142ns (182%), and 255ns (222%)



27

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

Sl
ow

do
w
n
(%
)

158 workloads: Proprietary, Redis, VoltDB, Spark, GAPBS, TPC-H, SPEC CPU 2017, etc.

Approximated CXL latencies: 142ns (182%),

Sl
ow

do
w
n
(%
)

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

and 255ns (222%)



28

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

Sl
ow

do
w
n
(%
)

158 workloads: Proprietary, Redis, VoltDB, Spark, GAPBS, TPC-H, SPEC CPU 2017, etc.

Approximated CXL latencies: 142ns (182%),

Sl
ow

do
w
n
(%
)

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

and 255ns (222%)

(a) A small fraction of workloads are not sensitive to CXL latencies



29

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

Sl
ow

do
w
n
(%
)

158 workloads: Proprietary, Redis, VoltDB, Spark, GAPBS, TPC-H, SPEC CPU 2017, etc.

Approximated CXL latencies: 142ns (182%),

Sl
ow

do
w
n
(%
)

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

and 255ns (222%)

(a) A small fraction of workloads are not sensitive to CXL latencies

(b) ~60% of the workloads see more than 5% slowdowns



30

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

Sl
ow

do
w
n
(%
)

158 workloads: Proprietary, Redis, VoltDB, Spark, GAPBS, TPC-H, SPEC CPU 2017, etc.

Approximated CXL latencies: 142ns (182%),

Sl
ow

do
w
n
(%
)

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

and 255ns (222%)

0

20

40

60

80

100

P1→ P13 YCSB A→F ML/Web, etc. bc, bfs, cc, pr, sssp, tc Queries 1→ 22 501.perlbench_r→ 657.xz_s facesim, vips, fft, etc.

Sl
ow

do
w
n
(%
)

(a) A small fraction of workloads are not sensitive to CXL latencies

(b) ~60% of the workloads see more than 5% slowdowns

(c) Latency-sensitive workloads see bigger impact under higher CXL latencies



31

How to pool stranded and untouched 
memory via CXL for efficiency
without sacrificing (much) performance 
at scale?



32

How to pool stranded and untouched 
memory via CXL for efficiency
without sacrificing (much) performance 
at scale?

e.g., 95% of NUMA-local VM performance



33

How to pool stranded and untouched 
memory via CXL for efficiency
without sacrificing (much) performance 
at scale?

e.g., 95% of NUMA-local VM performance

Idea: Predict the amount of  VM memory that can 
be safely allocated from the pool while satisfying the 
performance requirement via QoS monitoring.



34



35



36



37



38



39

Pond contributions: 
Hardware, system software, and distributed system layers to manage pooled memory



40

Pond contributions: 
Hardware, system software, and distributed system layers to manage pooled memory

Pond benefits: 
Reduce DRAM needs by 7% with a small poolà 3.5% reduction in cloud server cost



41

q Background & Motivation

q Pond Design
§ Overview
§ Memory pool scope
§ zNUMA
§ Prediction-assisted VM memory allocation 

q Evaluation

q Conclusion



42

85

90

95

100

2 8 16 32 64
Pool Size [CPU Sockets]

Re
qu

ire
d 

O
ve

ra
ll D

RA
M

 [%
]

10%
30%
50%

Percentage of pool memory
    assigned to each VM



43

85

90

95

100

2 8 16 32 64
Pool Size [CPU Sockets]

Re
qu

ire
d 

O
ve

ra
ll D

RA
M

 [%
]

10%
30%
50%

Percentage of pool memory
    assigned to each VM

Small pools are effective! 
While larger pools get diminishing returns.



44

q Zero-core NUMA (zNUMA)

q Funneling VM memory accesses by reusing existing OS memory 
management schemes (local-memory preference)

q No spilling under correct predictions

Local DRAM Pool DRAM

vCPU vCPU...

DDR CXL

zNUMA



45

q Zero-core NUMA (zNUMA)

q Funneling VM memory accesses by reusing existing OS memory 
management schemes (local-memory preference)

q No spilling under correct predictions

Local DRAM Pool DRAM

vCPU vCPU...

DDR CXL

zNUMA



46

q Zero-core NUMA (zNUMA)

q Funneling VM memory accesses by reusing existing OS memory 
management schemes (local-memory preference)

q No spilling under correct predictions

Local DRAM Pool DRAM

vCPU vCPU...

DDR CXL

zNUMA



47

if (workload latency insensitive)
Entire pool/CXL DRAM



48

if (workload latency insensitive)
Entire pool/CXL DRAM

else if (no untouched memory)

Entire local DRAM



49

if (workload latency insensitive)

zNUMA: Pool DRAM = Untouched

Entire pool/CXL DRAM

else if (no untouched memory)

Entire local DRAM

else



50

CPU

TMA pipeline slot for: 
backend-bound,
memory-bound,
store-bound,
DRAM-latency-bound
Other counters: LLC MPI,
memory bandwidth,
memory parallelism

Offline
test
runs

A/B tests
on internal
workloads

Relative slowdown if on pool memory

Model training

M
et

ric
s

Features

Labels

Latency insensitive?

Core

PMU

VM latency insensitive
è slowdown on CXL < 5%

Features from opaque VMs
è existing HW counters



51

CPU

TMA pipeline slot for: 
backend-bound,
memory-bound,
store-bound,
DRAM-latency-bound
Other counters: LLC MPI,
memory bandwidth,
memory parallelism

Offline
test
runs

A/B tests
on internal
workloads

Relative slowdown if on pool memory

Model training

M
et

ric
s

Features

Labels

Latency insensitive?

Core

PMU

VM latency insensitive
è slowdown on CXL < 5%

Features from opaque VMs
è existing HW counters



52

CPU

TMA pipeline slot for: 
backend-bound,
memory-bound,
store-bound,
DRAM-latency-bound
Other counters: LLC MPI,
memory bandwidth,
memory parallelism

Offline
test
runs

A/B tests
on internal
workloads

Relative slowdown if on pool memory

Model training

M
et

ric
s

Features

Labels

Latency insensitive?

Core

PMU

VM latency insensitive
è slowdown on CXL < 5%

Features from opaque VMs
è existing HW counters



53

VM: memory, cores, OS;
Location: region,
  availability zone;
Customer history from
previous VMs:
  0/25/50/75/100 
  percentile untouched;
Workload name

Guest-committed
memory counter

Access bits never
set since VM start

Untouched memory percentage

Model training

M
et

ad
at

a

Features

Labels

Untouched memory?

Hypervisor
page tables

Address   A M

Prediction target: the amount of untouched memory (GB)



54

Hypervisor
access bits

Core
PMU

CPU
Workload history?

Decision

Latency insensitive?

Untouched memory?

Prediction model

Entirely pool DRAM Pool DRAM=untouched Entirely local DRAM

Action

Yes
No

Yes

No

Yes No

Latency insensitive?
No Yes

Reconfiguration mitigation

(A
) V

M
 s

ch
ed

ul
in

g
(B

) Q
oS

 m
on

ito
rin

g

Overpredicted untouched?

Continue monitoring

No

Yes

VM type, OS, Region,
Percentiles of memory
usage in previous VM
by same Customer,
Workload name.

VM Metadata

Core
PMU

CPU



55



56



57

zNUMA is effective for correct predictions



58

0
10
20
30
40
50

0 25 50 75 100
Day in 2022

Av
er

ag
e 

U
nt

ou
ch

ed
M

em
or

y 
[%

]

0

5

10

O
ve

rp
re

di
ct

io
ns

[%
 o

f 
V
M

s]

Pond prediction model identifies 25% of untouched memory 
while only overpredicting 4% of  VMs



59

85

90

95

100

2 8 16 32 64
Pool Scope [CPU Sockets]

Re
qu

ire
d 

O
ve

ra
ll D

RA
M

 [%
] Fixed 15% percentage of VM memory 

with CXL latency at 182%

Pond with CXL latency at 222%

Pond with CXL latency at 182%

Configured to target <5% slowdown for 98% of  VMs



60

85

90

95

100

2 8 16 32 64
Pool Scope [CPU Sockets]

Re
qu

ire
d 

O
ve

ra
ll D

RA
M

 [%
] Fixed 15% percentage of VM memory 

with CXL latency at 182%

Pond with CXL latency at 222%

Pond with CXL latency at 182%

Configured to target <5% slowdown for 98% of  VMs

8-16 socket pool, 7-9% DRAM savings



61

q Detailed trace study results and analysis 
over 100 production clusters

q EMC and pool memory management

q Details of the prediction models

q More evaluation results

q ...



62

q Detailed trace study results and analysis 
over 100 production clusters

q EMC and pool memory management

q Details of the prediction models

q More evaluation results

q ...

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms
Huaicheng Li
Virginia Tech

Carnegie Mellon University
USA

Daniel S. Berger
Microsoft Azure

University of Washington
USA

Lisa Hsu
Una�liated

USA

Daniel Ernst
Microsoft Azure

USA

Pantea Zardoshti
Microsoft Azure

USA

Stanko Novakovic
Google
USA

Monish Shah
Microsoft Azure

USA

Samir Rajadnya
Microsoft Azure

USA

Scott Lee
Microsoft

USA

Ishwar Agarwal
Intel
USA

Mark D. Hill
Microsoft Azure

University of Wisconsin-Madison
USA

Marcus Fontoura
Stone Co
USA

Ricardo Bianchini
Microsoft Azure

USA

ABSTRACT
Public cloud providers seek to meet stringent performance require-
ments and low hardware cost. A key driver of performance and
cost is main memory. Memory pooling promises to improve DRAM
utilization and thereby reduce costs. However, pooling is challeng-
ing under cloud performance requirements. This paper proposes
Pond, the �rst memory pooling system that both meets cloud per-
formance goals and signi�cantly reduces DRAM cost. Pond builds
on the Compute Express Link (CXL) standard for load/store access
to pool memory and two key insights. First, our analysis of cloud
production traces shows that pooling across 8-16 sockets is enough
to achieve most of the bene�ts. This enables a small-pool design
with low access latency. Second, it is possible to create machine
learning models that can accurately predict how much local and
pool memory to allocate to a virtual machine (VM) to resemble
same-NUMA-node memory performance. Our evaluation with 158
workloads shows that Pond reduces DRAM costs by 7% with per-
formance within 1-5% of same-NUMA-node VM allocations.

CCS CONCEPTS
• Computer systems organization ! Cloud computing; •
Hardware ! Emerging architectures.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3578835

KEYWORDS
Compute Express Link; CXL; memory disaggregation; memory
pooling; datacenter; cloud computing.
ACM Reference Format:
Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,
StankoNovakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-
Based Memory Pooling Systems for Cloud Platforms. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3575693.3578835

1 INTRODUCTION

Motivation. Many public cloud customers deploy their workloads
in the form of virtual machines (VMs), for which they get virtual-
ized compute with performance approaching that of a dedicated
cloud, but without having to manage their own on-premises data-
center. This creates a major challenge for public cloud providers:
achieving excellent performance for opaque VMs (i.e., providers do
not know and should not inspect what is running inside the VMs)
at a competitive hardware cost.

A key driver of both performance and cost is main memory. The
gold standard for memory performance is for accesses to be served
by the same NUMA node as the cores that issue them, leading
to latencies in tens of nanoseconds. A common approach is to
preallocate all VM memory on the same NUMA node as the VM’s
cores. Preallocating and statically pinning memory also facilitate
the use of virtualization accelerators [4], which are enabled by
default, for example, on AWS and Azure [12, 14]. At the same time,
DRAM has become a major portion of hardware cost due to its poor
scaling properties with only nascent alternatives [72]. For example,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

574



63

7-9% DRAM savings by pooling 
~25% untouched memory 

Applicable for locally attached CXL

Close to local DRAM performance

Feasible hardware implementation

Thank you!



64

7-9% DRAM savings by pooling 
~25% untouched memory 

Applicable for locally attached CXL

Close to local DRAM performance

Feasible hardware implementation

Pond CXL emulation tool: https://github.com/vtess/pond

Thank you!

https://github.com/vtess/pond


65

7-9% DRAM savings by pooling 
~25% untouched memory 

Applicable for locally attached CXL

Close to local DRAM performance

Feasible hardware implementation

Pond CXL emulation tool: https://github.com/vtess/pond

Thank you!

https://github.com/vtess/pond

