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q CXL enables practical and performant pooling
§ Load/Store access over PCIe 5.0 (“CXL.mem” protocol)
§ More practical than RDMA-based disaggregation designs

q CXL has higher access latency than local DRAM
§ CPU-less node with additional 70~90ns (~2x)
§ CXL switches are slow and will add more latencies
§ Latency-sensitive workloads will suffer from CXL latencies
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How to pool stranded and untouched 
memory via CXL for efficiency
without sacrificing (much) performance 
at scale?

e.g., 95% of NUMA-local VM performance

Idea: Predict the amount of  VM memory that can 
be safely allocated from the pool while satisfying the 
performance requirement via QoS monitoring.
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Pond contributions: 
Hardware, system software, and distributed system layers to manage pooled memory
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Pond contributions: 
Hardware, system software, and distributed system layers to manage pooled memory

Pond benefits: 
Reduce DRAM needs by 7% with a small poolà 3.5% reduction in cloud server cost
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q Background & Motivation

q Pond Design
§ Overview
§ Memory pool scope
§ zNUMA
§ Prediction-assisted VM memory allocation 

q Evaluation

q Conclusion
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if (workload latency insensitive)
Entire pool/CXL DRAM

else if (no untouched memory)

Entire local DRAM
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if (workload latency insensitive)

zNUMA: Pool DRAM = Untouched

Entire pool/CXL DRAM

else if (no untouched memory)

Entire local DRAM

else



50

CPU

TMA pipeline slot for: 
backend-bound,
memory-bound,
store-bound,
DRAM-latency-bound
Other counters: LLC MPI,
memory bandwidth,
memory parallelism

Offline
test
runs

A/B tests
on internal
workloads

Relative slowdown if on pool memory

Model training

M
et

ric
s

Features

Labels

Latency insensitive?

Core

PMU

VM latency insensitive
è slowdown on CXL < 5%

Features from opaque VMs
è existing HW counters



51

CPU

TMA pipeline slot for: 
backend-bound,
memory-bound,
store-bound,
DRAM-latency-bound
Other counters: LLC MPI,
memory bandwidth,
memory parallelism

Offline
test
runs

A/B tests
on internal
workloads

Relative slowdown if on pool memory

Model training

M
et

ric
s

Features

Labels

Latency insensitive?

Core

PMU

VM latency insensitive
è slowdown on CXL < 5%

Features from opaque VMs
è existing HW counters



52

CPU

TMA pipeline slot for: 
backend-bound,
memory-bound,
store-bound,
DRAM-latency-bound
Other counters: LLC MPI,
memory bandwidth,
memory parallelism

Offline
test
runs

A/B tests
on internal
workloads

Relative slowdown if on pool memory

Model training

M
et

ric
s

Features

Labels

Latency insensitive?

Core

PMU

VM latency insensitive
è slowdown on CXL < 5%

Features from opaque VMs
è existing HW counters



53

VM: memory, cores, OS;
Location: region,
  availability zone;
Customer history from
previous VMs:
  0/25/50/75/100 
  percentile untouched;
Workload name

Guest-committed
memory counter

Access bits never
set since VM start

Untouched memory percentage

Model training

M
et

ad
at

a

Features

Labels

Untouched memory?

Hypervisor
page tables

Address   A M

Prediction target: the amount of untouched memory (GB)



54

Hypervisor
access bits

Core
PMU

CPU
Workload history?

Decision

Latency insensitive?

Untouched memory?

Prediction model

Entirely pool DRAM Pool DRAM=untouched Entirely local DRAM

Action

Yes
No

Yes

No

Yes No

Latency insensitive?
No Yes

Reconfiguration mitigation

(A
) V

M
 s

ch
ed

ul
in

g
(B

) Q
oS

 m
on

ito
rin

g

Overpredicted untouched?

Continue monitoring

No

Yes

VM type, OS, Region,
Percentiles of memory
usage in previous VM
by same Customer,
Workload name.

VM Metadata

Core
PMU

CPU



55



56



57

zNUMA is effective for correct predictions
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8-16 socket pool, 7-9% DRAM savings
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ABSTRACT
Public cloud providers seek to meet stringent performance require-
ments and low hardware cost. A key driver of performance and
cost is main memory. Memory pooling promises to improve DRAM
utilization and thereby reduce costs. However, pooling is challeng-
ing under cloud performance requirements. This paper proposes
Pond, the �rst memory pooling system that both meets cloud per-
formance goals and signi�cantly reduces DRAM cost. Pond builds
on the Compute Express Link (CXL) standard for load/store access
to pool memory and two key insights. First, our analysis of cloud
production traces shows that pooling across 8-16 sockets is enough
to achieve most of the bene�ts. This enables a small-pool design
with low access latency. Second, it is possible to create machine
learning models that can accurately predict how much local and
pool memory to allocate to a virtual machine (VM) to resemble
same-NUMA-node memory performance. Our evaluation with 158
workloads shows that Pond reduces DRAM costs by 7% with per-
formance within 1-5% of same-NUMA-node VM allocations.
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1 INTRODUCTION

Motivation. Many public cloud customers deploy their workloads
in the form of virtual machines (VMs), for which they get virtual-
ized compute with performance approaching that of a dedicated
cloud, but without having to manage their own on-premises data-
center. This creates a major challenge for public cloud providers:
achieving excellent performance for opaque VMs (i.e., providers do
not know and should not inspect what is running inside the VMs)
at a competitive hardware cost.

A key driver of both performance and cost is main memory. The
gold standard for memory performance is for accesses to be served
by the same NUMA node as the cores that issue them, leading
to latencies in tens of nanoseconds. A common approach is to
preallocate all VM memory on the same NUMA node as the VM’s
cores. Preallocating and statically pinning memory also facilitate
the use of virtualization accelerators [4], which are enabled by
default, for example, on AWS and Azure [12, 14]. At the same time,
DRAM has become a major portion of hardware cost due to its poor
scaling properties with only nascent alternatives [72]. For example,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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