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LeaplO Challenges
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Abstract

Today’s cloud storage stack is extremely resource hungry,
burning 10-20% of datacenter x86 cores, a major “storage tax”
that cloud providers must pay. Yet, the complex cloud stor-
age stack is not completely offload-ready to today’s IO accel-
erators. We present LeaplO, a new cloud storage stack that
leverages ARM-based co-processors to offload complex storage
services. LeaplO add many depl hall such
as hardware fungibility, software portubxlzly virtualizability,
composability, and efficiency. It uses a set of OS/software tech-
niques and new hardware properties that provide a uniform
address space across the x86 and ARM cores and expose vir-
tual NVMe storage to unmodified guest VMs, at a performance
that is competitive with bare-metal servers.

CCS Concepts. - Comp systems organization —
Cloud computing; Client-server architectures; System
on a chip; Real-time system architecture.

Keywords. Data Center Storage; ARM SoC; NVMe; SSD; Vir-
tualization; Performance; Hardware Fungibility

ACM Reference Format:

Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte,
Sriram Govindan, Dan R. K. Ports, Irene Zhang, Ricardo Bianchini,
Haryadi S. Gunawi, and Anirudh Badam. 2020. LeaplO: Efficient
and Portable Virtual NVMe Storage on ARM SoCs. In Pmceezlmp
of the Twenty-Fifth I Conference on Sup-
port for Programming Languages and Operating Systems (ASPLOS
°20), March 16-20, 2020, Lausanne, Switzerland. ACM, New York,
NY, USA, 15 pages. http%: /dni,org 10.1145/3373376.3378531

Permission to make digital or hard copies of all or part of this work for
personal or classroom use s granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org,

ASPLOS °20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378531

1 Introduction

Cloud storage has improved drastically in size and speed in
the last decade, with a market size expected to grow to $88
billion by 2022 [11]. With this growth, making cloud storage
efficient is paramount. On the technical side, cloud storage
is facing two trends, the growing complexity of cloud drives
and the rise of 10 accelerators, both unfortunately have not
blended to the fullest extent.

First, to satisfy customer needs, today’s cloud providers
must implement a wide variety of storage (drive-level) func-
tions as listed in Table 1. Providers must support both lo-
cal and remote isolated virtual drives with IOPS guaran-
tees. Users also demand drive-level atomicity/versioning,
and not to mention other performance, reliability, and space-
related features (checksums, deduplication, elastic volumes,
encryption, prioritization, polling for ultra-low latencies,
striping, replication, etc.) that all must be composable. Last
but not least, future cloud drives must support fancier inter-
faces [19, 24, 27, 63, 70].

As aresult of these requirements, the cloud storage stack
is extremely resource hungry. Our experiments suggest that
the cloud provider may pay a heavy tax for storage: 10-20%
of x86 cores may have to be reserved for running storage
functions. Ideally, host CPU cores are better spent for pro-
viding more compute power to customer VMs.

The second trend is the increasing prevalence of IO ac-
celeration technologies such as SmartSSDs [7, 16], Smart-
NICs [4, 8] and custom IO accelerators with attached com-
putation that can offload some functionality from the host
CPU and reduce the heavy tax burden. However, IO accel-
erators do not provide an end-to-end solution for offload-
ing real-deployment storage stacks. Today, the storage func-
tions in Table 1 cannot be fully accelerated in hardware for
three reasons: (1) the functionalities are too complex for low-
cost hardware acceleration, (2) acceleration hardware is typ-
ically designed for common-case operations but not end-to-
end scenarios, or (3) the underlying accelerated functions
are not composable.
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