LeaplO:

Efficient and Portable
Virtual NVMe Storage on ARM SoCs

Huaichen LI, Mingzhe Hao, Stanko Novakovic,

, Sriram Govindan, Dan Ports, Irene Zhang,
Ricardo Bianchini, Haryadi S. Gunawi, Anirudh Badam

e THE UNIVERSITY OF

“ CHICAGO MICI‘OSOft

Today’s Cloud Storage Model

o = -

VM VM VM

Today’s Cloud Storage Model
~ m ()

EAREaNr-i
VM VM VM

/dev/sda /dev/vda /dev/nvmeOn1

Today’s Cloud Storage Model

s as »
w

/dev/sda /dev/vda /dev/nvmeOn1
I

Today’s Cloud Storage Model

~ Cm ()
e Qs S
VM
/dev/sda /dev/vda /dev/nvmeOn1
I I I
I I I
I I I
Fe===== T ——mm—————_ 1

Today’s Cloud Storage Model

(9
l&" '
VM VM VM

/dev/sda /dev/vda /dev/nvme0n1

[Reliabili ty Secur ity][Versioni ng

Today’s Cloud Storage Model

(9
U- l&" '
VM VM VM

/dev/sda /dev/vda /dev/nvme0n1

O 0

[Rellablllty Security][Versioning] Scalablllty Disaggregation]

Today’s Cloud Storage Model

(9
U- l&" '
VM VM VM

/dev/sda /dev/vda /dev/nvme0n1

[Rellablllty Security][Versioning][Performance Scalablllty][Disaggregation]

The Heavy Cloud Storage Tax

The Heavy Cloud Storage Tax

CI d s -- . . A _ 1 i ‘ e r e
server [ix%E%E% E%éxséé'"éx%;gxseg'" IxBEEIX8EE

The Heavy Cloud Storage Tax

?le,
.'lr. | o
AAAAAA K MACHINE -° ®.%3

LEARNING <74
«

I
I
I
I
I
e | fodledled | fodlodTedled tedled
I
I
I
I
I

The Heavy Cloud Storage Tax

Cloud o « _

The Heavy Cloud Storage Tax

Storage

Cloud
server

.(mﬁ

services I
Bs

.

MACHINE * .54
LEARNING 7@ W

[

The Heavy Cloud Storage Tax

++ﬁ¢
s [PANE
Storage
services I g

e _.J o ©
Cloud o EE§=¥
server E>'<'§"655x8 86

.

MACHINE -* §.£4
LEARNING 7@ W

AN
Deep Storage Stack
Device Context Switches
management Polling/Interrupts
NS
(SSD J(.SSD J(SSD |

The Heavy Cloud Storage Tax

Storage
services

Cloud
server

Device

.
lad!

MACHINE -® %%
LEARNING <37@ %

Deep Storage Stack
Context Switches

managemt

ent Polling/ Interrupt5/

(SSD J(SSD J(SSD |

The Heavy Cloud Storage Tax

.
lad!

MACHINE -® %%
LEARNING <37@ %

I
1 A
Storage g [
services | &
ll |
[] i O 00 |
CIOUd a 7 . . I
server | 5’.‘.?..655"8 86 |
AN :
Deep Storage Stack

Device Context Switches [

management PoIIing/Interrupt5/

(SSD J(SSD J(SSD |

10-20% CPU cycles
burnt only for

storage stack

ARM Offloading for Cost-Efficiency

Rented VMs | Storage services

i
il

ARM Offloading for Cost-Efficiency

Rented VMs | Storage services More rented VMs
$$ 1’y $$
VM 51’8} VM
I s .

ARM Offloading for Cost-Efficiency

Rented VMs | Storage services More rented VMs Storage services

$$ | lm .

nun
nan

ARM Offloading for Cost-Efficiency

Rented VMs | Storage services More rented VMs Storage services

- $$ I s -
313

E{:H

ARM Offloading for Cost-Efficiency

Marvell's ThunderX2 Solution Now
Deployed for Microsoft Azure
Development

Arm-based server clusters for internal workloads spur
ceatinued product innovation

Rented VMs | Storage services More rented VMs Storage services

- $$ $$

VM % lﬂ VM VM

x86 x86 x86

x86

ARM Offloading for Cost-Efficiency

FINALY: AWS S5IVES SERVERS A REAL SHOT IN
THE ARM

Marvell's ThunderX2 Solution Now
Deployed for Microsoft Azure
Development

Arm-based server clusters for internal workloads spur
ceatinued product innovation

Rented VMs | Storage services More rented VMs Storage services
$$ $$ $$
w)| £ E w) W

100000101
&
»

LRAAALLA]

x86

x86 x86

ARM Offloading for Cost-Efficiency

FINALY: AWS S5IVES SERVERS A REAL SHOT IN
THE ARM

mm ARM SoCTCO: $100/year

m= x86 for VMs: $2000/year

Marvell's ThunderX2 Solution Now
Deployed for Microsoft Azure
Development

Arm-based server clusters for internal workloads spur
ceatinued product innovation

Rented VMs | Storage services More rented VMs Storage services
$$ $$ $$
w] | w) W

100000101
&
»

LRAAALLA]

x86

x86 x86

ARM Offloading for Cost-Efficiency

FINALY: AWS S5IVES SERVERS A REAL SHOT IN
THE ARM

mm ARM SoCTCO: $100/year

m= x86 for VMs: $2000/year

Marvell’'s ThunderX2 Solution Now
Deployed for Microsoft Azure
Development

Arm-based server clusters for internal workloads spur [""‘ZOX revenue gains

ceatinued product innovation

Rented VMs | Storage services More rented VMs Storage services

$$] I - $$ $$
VM % lﬂ VM VM

x86

x86 x86

LeaplO Overview

0O Next generation of Cloud Storage Stack offload-ready to
ARM System-on-Chip (SoC)

LeaplO Overview

0O Next generation of Cloud Storage Stack offload-ready to
ARM System-on-Chip (SoC)

@@@

(VM (VM [VM]

Storage Services

x86E Ix86

Device Management

(SSD | [ssD | [ssD |

LeaplO Overview

0O Next generation of Cloud Storage Stack offload-ready to
ARM System-on-Chip (SoC)

@&9 @&9

[
(VM]| VM][VM | : (VM][VM][VM |
[

Storage Services

Ix86E 3x86 x86 ARM

Storage Services

Device Management Device Management

(SSD | [ssD | [ssD | (SSD | [ssD | [ssD |

LeaplO Architecture
LeaplO Designs

- Portability

- Efficiency
Evaluation

Conclusion

LeaplO Architecture

User
VM

OS

Ix86

PCle

LeaplO Architecture

User
VM’

PCle

LeaplO Architecture

User
VM’
OS

PCle

NVMe Queue Pair (QP): @- % %

LeaplO Architecture

NVMe QP
Mapping

PCle

NVMe Queue Pair (QP): @- % %

LeaplO Architecture

NVMe QP
Mapping

PCle

NVMe Queue Pair (QP): @- % %

LeaplO Architecture

NVMe QP
Mapping

PCle

NVMe Queue Pair (QP): @- % %

LeaplO Architecture

NVMe QP
Mapping

PCle

NVMe Queue Pair (QP): @- % %

LeaplO Architecture

NVMe QP
Mapping

Storage

Services
~I()/

PCle

NVMe Queue Pair (QP): ’ % ?2

LeaplO Architecture

NVMe QP
Mapping

Storage

Services
~I()/

Design benefits:

+ Service extensibility

PCle

NVMe Queue Pair (QP): ’ % %

LeaplO Architecture

NVMe QP
Mapping

Storage

Services
~I()/

Design benefits:

+ Service extensibility

+ Polling for efficiency

PCle

NVMe Queue Pair (QP): ’ % %

LeaplO Architecture

NVMe QP
Mapping

Storage

Services
~I()/

Design benefits:

+ Service extensibility

+ Polling for efficiency

PCle + Service virtualization/composability

NVMe Queue Pair (QP): ’ % %

LeaplO Architecture

NVMe QP
Mapping

Storage

Services
~I()/

PCle

NVMe Queue Pair (QP): ’ % %

~
— SSD
— 1 ®

Qriority Scheduling /

Design benefits:
+ Service extensibility

+ Polling for efficiency

+ Service virtualization/composability

LeaplO Architecture

NVMe QP
Mapping

Storage

Services
~I()/

PCle

NVMe Queue Pair (QP): ’ % %

Qriority Scheduling /

Design benefits:
+ Service extensibility

+ Polling for efficiency

+ Service virtualization/composability

LeaplO Architecture

NVMe QP
Mapping

PCle

NVMe Queue Pair (QP): ’ % ?2

Storage

Services
~I()/

-0

1(

L)

o

Qriority Scheduling

lication

Design benefits:
+ Service extensibility

+ Polling for efficiency

+ Service virtualization/composability

Storage
// Functions

PCle

‘= @ @ Client

SQ CQ

Storage
// Functions L

PCle PCle

‘ _ 00 Client Server

SQ CQ

Storage
// Functions L

PCle PCle

‘ _ 00 Client Server

SQ CQ

. Storage {3
ARM : ARME
/ Functlons\

RDMA /TCP / REST

PCle PCle

‘ _ 00 Client Server

SQ CQ

PCle PCle

‘ _ 00 Client Server

SQ CQ

LeaplO Challenges

[How to achieve portability!?]

[How to achieve bare-metal performance!?]

The Need for Portability

10

The Need for Portability

| st Generation

)

{ okl TCP |
Yt | SSD |

The Need for Portability

| st Generation 2nd Generation

x86
mme | SSD

"acEL_RDMA |
mme | SSD

| TCP

—
[THTTTI

—

The Need for Portability

| st Generation

x86

| TCP

—

| ssD

—

2"d Generation

x86

I

| RDMA |

| ssD

—

3rd Generation

x86

| RDMA |

[ssD

—

10

The Need for Portability

It Generation 2"d Generation 3rd Generation

x86

x86

x86

Try to avoid fragmenting the server fleet into silos defined by

their hardware capabilities and specific software optimizations

LeaplO Portability

11

LeaplO Portability

~N

J

i % Rl - TSioih e) —
5 = ‘
= ® z =
70 3
- e =
g%
o

User VM

‘$0C”=in-VM)

11

LeaplO Portability

[UserVM |

“S0C”=in-VM)
' 6

[HDD }[SSD OpenChanneI SSD }

ﬁ@

S Treat Hardware Acceleration as

- =~ Opportunity instead of Necessity

11

LeaplO Efficient Data Path

.| Storage
- // Functions

PCle
Client

12

LeaplO Efficient Data Path

o] Storage
L / Functions
@ / . No direct ARM-x86 communication

Client
12

LeaplO Efficient Data Path

Storage
Functions

‘ No direct ARM-x86 communication

‘ Data copies across address spaces

Client

12

LeaplO Efficient Data Path

Storage
Functions

‘ No direct ARM-x86 communication

‘ Data copies across address spaces

Unified 3x86 f& SSD ﬁa

Address Y
Client Space Zero Copy

Existing ARM SoC Design Inefficiencies

Implications for SoC Vendors

13

Existing ARM SoC Design Inefficiencies

Implications for SoC Vendors
- Add Native DMA interface for ARM-x86 communication

(1). DMA accessffor QP mapping and data transfer

13

Existing ARM SoC Design Inefficiencies

Implications for SoC Vendors

- Add Native DMA interface for ARM-x86 communication

- Enable (I0)MMU Access from ARM for Address Translation

13

Existing ARM SoC Design Inefficiencies

Implications for SoC Vendors
- Add Native DMA interface for ARM-x86 communication
- Enable (I0)MMU Access from ARM for Address Translation

- Expose SoC DRAM to x86 to enable P2P-DMA

(3). P2P-DMA

13

Software Stack Overhead (“SoC”-VM)

Host

User I VM

14

Software Stack Overhead (“SoC”-VM)

r
Use Host

Linux
“SoC” VM

8.

14

Software Stack Overhead (“SoC”-VM)

(@) RR - Thru (b) RW - Thru
K= == v | | Leap
S5t .
3 s 1 [
4

1 4 16 64256 1 16 64256
#Threads #Threads

User Host

Linux
“SoC” VM

8.

Software Stack Overhead (“SoC”-VM)

(@) RR - Thru (b) RW - Thru
K= == v | | Leap
S5t .
3 s 1 [
4

1 4 16 64256 1 16 64256

FThreads #Threads>

@ Co

User I VM Host

Linux
“SoC” VM

Software Stack Overhead (“SoC”-VM)

(a) RR - Thru (b) RW - Thru

| Leap

Z

PT sy

w o
CMoPS)
=)
Z)

jmw@ § §

1 4 16 64256 1 16 64256
@ o

FThreads #Thread®
User I VM Host

Linux
“SOC” VM

Software Stack Overhead (“SoC”-VM)

(@) RR - Thru (b) RW - Thru

PT SNV Leap s

L w o
- CmoPS)

-
——

227

o

1 4 16 64256

FThreads #Threads>

-
,

User

@CT

Software Stack Overhead (“SoC”-VM)

(@) RR - Thru (b) RW - Thru
i PT SN ' _L‘eabi‘
St

#Threads #Threads>

User

@CT

14

Software Stack Overhead (“SoC”-VM)

(@) RR - Thru (b) RW - Thru (c) RR - Lat CDF (d) RW - Lat CDF
TIPT T g | [Coap mmmm | [T A1
5| |8 Pt | #T=16
\ 1 .6 : - #T=16 I_"
I 4
3 4t .- Pt v
0 JOHT=256 | #1=256
i 2| 4 4 10 o -
. I\ lk‘.: "\/ PT I - .L < lﬁé’ap\
6 A 2 3 A 2 3
#FThreads #ThreadS> Latency (ms) Latency (ms)
@ o
Userx VM
Host

Linux
“SoC” VM

14

(@) RR - Thru (b) RW - Thru (c) RR - Lat CDF

Software Stack Overhead (“SoC”-VM) @
(d) RW - Lat CDF

i PT MV Leap mmmmm 1
gl
\ N |87
1.6
1.4 r
|2t
12 3 1 2 3
#FThreads #Threads> Latency (ms) Latency (ms)

User

@CT

14

(@) RR - Thru (b) RW - Thru (c) RR - Lat CDF

Software Stack Overhead (“SoC”-VM) @
(d) RW - Lat CDF

T PT oy g | [Leap mm— 1
\ N |87
{6}
141
|2t
1 2 3 1 2 3
#Threads #Thread> Latency (ms) Latency (ms)
FIO LeaplO Software Overhead: 2-5%
User | VM Host

Linux
“SoC” VM
14

LeaplO Performance on ARM SoC

(a) FIO - Thru (b) YCSB - Thru

S v 1190 [50c
120 |
3 -g {90t
S 60 |
qF 1 30 I®

1 4 16 64 8 16 32
#Threads #Threads

LeaplO Performance on ARM SoC

(@) FIO-Thru (b) YCSB - Thru
— 150

120 |
| 90|
60 |
{30 @

VM s SoC mmmmy

1 4 16 64 8 16 32
#Threads #Threads

30% Overhead due to ARM SoC Inefficiencies;

Will improve with future ARM SoC Designs

More in the Paper!

0 LeaplO IO path and address translation
0 VM-“SoC” enhancement

0 Composable services

QO Threat Model

O NVMe over RDMA/TCP/REST

O More evaluation results

= Comparison with state of the art
virtualization solutions

= Service composability

16

More in the Paper!

0 LeaplO IO path and address translation
a VM-“SoC” enhancement

0 Composable services

QO Threat Model

O NVMe over RDMA/TCP/REST

O More evaluation results

= Comparison with state of the art
virtualization solutions

= Service composability

LeaplO: Efficient and Portable Virtual NVMe Storage
on ARM SoCs

Huaicheng Li, Mingzhe Hao
University of Chicago

Sriram Govindan
Microsoft

Stanko Novakovic
Microsoft Research

Dan R. K. Ports, Irene Zhang,
Ricardo Bianchini

Vaibhav Gogte
University of Michigan

Haryadi S. Gunawi
University of Chicago

Microsoft Research

Anirudh Badam

Microsoft Research

Abstract

Today’s cloud storage stack is extremely resource hungry,
burning 10-20% of datacenter x86 cores, a major “storage tax”
that cloud providers must pay. Yet, the complex cloud stor-
age stack is not completely offload-ready to today’s IO accel-
erators. We present LeaplO, a new cloud storage stack that
leverages ARM-based co-processors to offload complex storage
services. LeaplO add many depl hall such
as hardware fungibility, software portubxlzly virtualizability,
composability, and efficiency. It uses a set of OS/software tech-
niques and new hardware properties that provide a uniform
address space across the x86 and ARM cores and expose vir-
tual NVMe storage to unmodified guest VMs, at a performance
that is competitive with bare-metal servers.

CCS Concepts. - Comp systems organization —
Cloud computing; Client-server architectures; System
on a chip; Real-time system architecture.

Keywords. Data Center Storage; ARM SoC; NVMe; SSD; Vir-
tualization; Performance; Hardware Fungibility

ACM Reference Format:

Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte,
Sriram Govindan, Dan R. K. Ports, Irene Zhang, Ricardo Bianchini,
Haryadi S. Gunawi, and Anirudh Badam. 2020. LeaplO: Efficient
and Portable Virtual NVMe Storage on ARM SoCs. In Pmceezlmp
of the Twenty-Fifth I Conference on Sup-
port for Programming Languages and Operating Systems (ASPLOS
°20), March 16-20, 2020, Lausanne, Switzerland. ACM, New York,
NY, USA, 15 pages. http%: /dni,org 10.1145/3373376.3378531

Permission to make digital or hard copies of all or part of this work for
personal or classroom use s granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org,

ASPLOS °20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378531

1 Introduction

Cloud storage has improved drastically in size and speed in
the last decade, with a market size expected to grow to $88
billion by 2022 [11]. With this growth, making cloud storage
efficient is paramount. On the technical side, cloud storage
is facing two trends, the growing complexity of cloud drives
and the rise of 10 accelerators, both unfortunately have not
blended to the fullest extent.

First, to satisfy customer needs, today’s cloud providers
must implement a wide variety of storage (drive-level) func-
tions as listed in Table 1. Providers must support both lo-
cal and remote isolated virtual drives with IOPS guaran-
tees. Users also demand drive-level atomicity/versioning,
and not to mention other performance, reliability, and space-
related features (checksums, deduplication, elastic volumes,
encryption, prioritization, polling for ultra-low latencies,
striping, replication, etc.) that all must be composable. Last
but not least, future cloud drives must support fancier inter-
faces [19, 24, 27, 63, 70].

As aresult of these requirements, the cloud storage stack
is extremely resource hungry. Our experiments suggest that
the cloud provider may pay a heavy tax for storage: 10-20%
of x86 cores may have to be reserved for running storage
functions. Ideally, host CPU cores are better spent for pro-
viding more compute power to customer VMs.

The second trend is the increasing prevalence of IO ac-
celeration technologies such as SmartSSDs [7, 16], Smart-
NICs [4, 8] and custom IO accelerators with attached com-
putation that can offload some functionality from the host
CPU and reduce the heavy tax burden. However, IO accel-
erators do not provide an end-to-end solution for offload-
ing real-deployment storage stacks. Today, the storage func-
tions in Table 1 cannot be fully accelerated in hardware for
three reasons: (1) the functionalities are too complex for low-
cost hardware acceleration, (2) acceleration hardware is typ-
ically designed for common-case operations but not end-to-
end scenarios, or (3) the underlying accelerated functions
are not composable.

16

LeaplO Summary

O End-to-end Offload-Ready Cloud Storage Stack
" Portability
= Extensibility
= Efficiency

17

LeaplO Summary

O End-to-end Offload-Ready Cloud Storage Stack
" Portability
= Extensibility
= Efficiency

O 20x revenue gains

QO 2-5% software overhead (30% on SoC)

17

LeaplO Summary

O End-to-end Offload-Ready Cloud Storage Stack
" Portability
= Extensibility
= Efficiency

O 20x revenue gains
QO 2-5% software overhead (30% on SoC)

O Implications for SoC vendors to bridge the

performance gap between ARM and x86

17

LeaplO Summary

O End-to-end Offload-Ready Cloud Storage Stack
" Portability
= Extensibility
= Efficiency

O 20x revenue gains
QO 2-5% software overhead (30% on SoC)

O Implications for SoC vendors to bridge the

performance gap between ARM and x86

Thank you!
Questions?

17

