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ABSTRACT

With the exponential growth of data that are expected to reach 175 zettabytes by 2025, cloud

storage is increasingly becoming the central hub for data management and processing. Among

the many benefits cloud platforms promise, predictable performance and cost-efficiency are two

fundamental factors driving the success of modern cloud storage. However, under rapid changes

in modern cloud storage infrastructure in terms of both software and hardware, new challenges

emerge for achieving predictable performance with efficiency.

In more detail, modern data intensive applications and the new wave of computing paradigms

(e.g., data analytics, ML, serverless) drive the storage stack to undergo a radical shift towards

more feature-rich software designs on top of increasingly heterogeneous architectures. As a re-

sult, today’s cloud storage stack is extremely heavy-weight and complex, burning 10-20% of

data center CPU cycles and introducing severe performance non-determinism (i.e., long tail la-

tencies). Unfortunately, the deployment of new acceleration hardware (e.g., NVMe SSDs and IO

co-processors) only partially addresses the problem. Due to the intrinsic complexities and idiosyn-

crasies in hardware (e.g., NAND Flash management) and lack of system-level support, it remains

a challenge to design performant and cost-efficient cloud storage systems. In particular, achieving

sub-millisecond level latency predictability in a cost-efficient manner is the new battlefield.

Rooted in deep understanding and analysis of existing software/hardware stack, this disserta-

tion focuses on building new abstractions, interfaces, and end-to-end storage systems to achieve

predictable performance and cost-efficiency using a software/hardware co-design approach. By

revisiting the challenges across different layers in a holistic manner, the co-design approach opens

up simple yet powerful system-level policy designs to opportunistically exploit hardware idiosyn-

crasies and heterogeneity. The systems we build can effectively decrease latency spikes by up to

orders of magnitude and increase cost savings by 20×.

To address the challenge of predictable performance in modern Flash storage systems, we

present TEAFA, a tail-evading flash array design delivering deterministic performance. TEAFA

xvi



uniquely combines a simple yet powerful host-SSD interface, time window mechanism, and data

redundancy to proactively and deterministically reconstruct late requests, with only minor changes

to the host software and device firmware. The evaluation results across 9 data center storage traces

and several real storage workloads (e.g., FileBench, YCSB/RocksDB) show that TEAFA improves

the baseline by orders of magnitude and is only 1.1× to 2.1× slower than an ideal case where

there are no background operations induced tail latencies. When compared to other state-of-the-art

works (e.g., Proactive approach, Preemptive GC, P/E Suspension, Flash-on-Rails, and Harmonia)

focusing on improving IO performance, TEAFA is more deterministic and effective in cutting tail

latencies while being less intrusive and easy to deploy. Along with TEAFA, we also introduce OS-

level and device-level approaches, MITTOS and TTFLASH, respectively, to eliminate tail latencies

across the entire storage stack.

Although TEAFA can effectively improves tail latencies, a significant portion of CPU cycles

is needed to fulfill the reconstruction computations. Worse, at a large scale, the “storage tax” that

cloud providers have to pay takes up to 10-20% of datacenter CPU cycles. Thus, it’s challenging

to achieve cost/resource-efficiency in modern cloud storage stack designs. One opportunity is to

utilize modern IO accelerators for cost-efficient storage offloading. Yet, the complex cloud storage

stack is not completely offload-ready to today’s IO accelerators. To tackle the cost-efficiency

challenge, we present LeapIO, a next-generation cloud storage stack that leverages ARM-based co-

processors to offload complex storage services. LeapIO addresses many deployment challenges,

such as hardware fungibility, software portability, virtualizability, composability, and efficiency. It

employs a set of OS/software techniques and new hardware properties to provide a uniform address

space across the x86 and ARM cores to minimize data copies and directly expose virtual NVMe

storage to unmodified guest VMs. At the core, LeapIO runtime enables agile storage service

development at the user-space. Storage services on LeapIO are “offload ready;” they can portably

run in ARM SoC or on host x86 in a trusted VM. The software overhead only exhibits 2-5%

throughput reduction compared to bare-metal performance (still delivering the peak bandwidth

xvii



of 0.65 million IOPS on a datacenter SSD). Our current SoC prototype also delivers acceptable

performance, 5% further reduction on the server side (and up to 30% on the client) but with more

than 20× cost savings. Overall, LeapIO helps cloud providers cut the storage tax and improve

utilization without sacrificing performance.

Finally, we discuss the importance of scalable and extensible research platforms for fostering

future full-stack software/hardware storage research. Existing software platforms (e.g., SSD/SoC

simulators or emulators) are limited by the types of research they support, outdated, and not scal-

able. Hardware platforms suffer from wear-out issues and are difficult to use. Thus, it’s not an

excellent choice for new idea exploration in the early phase neither. We argue that it is a critical

time for the storage research community to have a new software-based full-system SSD emulator.

To this end, we build FEMU, a software (QEMU-based) NVMe flash emulator. FEMU is cheap

(open-sourced), relatively accurate (0.5-38% variance as a drop-in replacement of OpenChannel

SSD), scalable (can support 32 parallel channels/chips), and extensible (support internal-only and

split-level SSD research). FEMU has been used by researchers from tens of institutions and in

classes, demonstrating the urgent need for such a research platform and its success.
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CHAPTER 1

INTRODUCTION

In this data era, data is being generated everywhere and we face a more urgent need than ever before

to store and process data fast and efficiently. With the exponential growth of data that is expected

to reach 175 zettabytes by 2025, cloud storage is increasingly becoming the central hub for data

management and processing. Thus, storage research is of crucial importance to the continuity of

the data-driven development of the modern world.

Among the many benefits cloud platforms promise, predictable performance and cost-efficiency

are two fundamental factors driving the success of modern cloud storage. Specifically, users de-

mand fast access to the data in an economical way. To that end, cloud providers keep improving

the storage stack to match the ever-increasing data needs with new techniques. However, under

rapid changes in modern cloud storage infrastructure in terms of both software and hardware, new

challenges emerge for achieving predictable performance with efficiency.

In more detail, modern data intensive applications and the new wave of computing paradigms

(e.g., data analytics, ML, serverless) drive the storage stack to undergo a radical shift towards

more feature-rich software designs on top of increasingly heterogeneous architectures. As a re-

sult, today’s cloud storage stack is extremely heavy-weight and complex, burning 10-20% of

data center CPU cycles and introducing severe performance non-determinism (i.e., long tail la-

tencies). Unfortunately, the deployment of new acceleration hardware (e.g., NVMe SSDs and IO

co-processors) only partially addresses the problem. Due to the intrinsic complexities and idiosyn-

crasies in hardware (e.g., NAND Flash management) and lack of system-level support, it remains

a challenge to design performant and cost-efficient cloud storage systems. In particular, achieving

sub-millisecond level latency predictability in a cost-efficient manner is the new battlefield.
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1.1 Thesis Statement

In this dissertation, we seek to answer the question: How should the storage stack evolve to sat-

isfy the increasing needs for low and predictable latencies and cost-efficiency in the context of

heavy/unpredictable software stack and heterogeneous architectures? In particular, we make the

following thesis statement:

The performance predictability and CPU efficiency challenges associated with modern stor-

age stack can be effectively tackled by cross-layer co-designs across applications/OS and soft-

ware/hardware boundaries to exploit data redundancy for low and consistent latencies as well

as to seamlessly utilize low-cost co-processors for agile storage service offloading, both with

small efforts for easy deployment.

To support this statement, in the first part of the dissertation, we explore various novel tech-

niques and designs to achieve predictable latencies across different layers of the storage stack

(Chapter 3). In the second part, we think further to design the next-generation offloaded storage

stack to target both performance and cost-efficiency (Chapter 4). In the third part, we revisit the

lack of proper research platform support for conducting modern storage research (like the ones

discussed in the aforementioned parts) and develop a new storage research platform to fill the gap

(Chapter 5). In summary, this dissertation will cover the following systems we built:

• MITTOS: An OS that is transparent, exposing its resource busyness to enable applications to

achieve millisecond tail tolerance.

• TEAFA: A flash array delivering predictable performance, which uniquely combines a simple

yet powerful host-SSD interface to proactively and deterministically reconstruct late requests.

• TTFLASH: A “tiny-tail” flash drive (SSD) that eliminates GC-induced tail latencies by circum-

venting GC-blocked IOs with several novel strategies.

• FEMU: A software (QEMU-based) flash emulator for fostering future full-stack software/
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hardware SSD research, with accuracy, extensibility and scalability.

• LeapIO: A new cloud storage stack that leverages ARM-based co-processors to offload complex

storage services while satisfying many deployment requirements.

For the rest of the chapter, we will briefly introduce the problems of performance predictablity

(§1.2) and cost-efficiency (§1.3) in modern storage stack, categorize state-of-the-art approaches

and give a high-level overview of our solutions. In §1.4, we summarize the contributions of this

dissertation. In §1.5, we introduce the outline for the rest of the dissertation.

1.2 Performance Predictability

Low and stable latency is a critical key to the success of many services, but variable load and re-

source sharing common in cloud environments induce resource contention that in turn produces

“the tail latency problem.” With flash storage becoming the mainstream destination for storage

users, the SSD consumer market continues to grow at a significant rate [17], SSD-backed cloud-

VM instances are becoming the norm [14, 15]. From the users’ side, they demand fast and sta-

ble latencies [143, 160]. However, SSDs do not always deliver the performance that users ex-

pect [36]. Some even suggest that flash storage “may not save the world” (due to the tail latency

problem) [28]. Some recent works dissect why it is hard to meet Service Level Agreement (SLA)

with SSDs [199] and reveal high performance variability in 7 million hours of SSDs deployments

[165]. Built on top of flash/SSD, All Flash/SSD Array (AFA) is a popular solution for high-end

storage servers [67, 73, 80, 138]. The increasing deployment of real-time analytics and machine

learning applications further fuels the growth of AFA market to a predicted $18 billion market

by 2023 [7, 11]. Similarly, large scale flash storage common in large datacenter/cloud storage

providers [6, 55, 257] must address users’ craving for low and predictable latencies [118, 141].

In this context, tail latency is very important. Many recent SSD products are released and eval-

uated not just on the average speed but the percentile latencies as well [37, 77, 180]. These all paint
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the reality that customers would like SSD products with deterministically stable and low latency.

Unfortunately, it’s hard to have SSDs deliver stable latencies. The non-deterministic performance

comes from the fact that SSDs must perform many internal (background) management activities

such as the garbage collection (GC) process, wear leveling, and internal buffer flush [34, 149, 331].

Even a single background write/erase operation will cause the user IOs to be queued (delayed) be-

hind for tens of milliseconds or worse [205, 232, 309]. At the core of flash performance instability

is the well-known and “notorious” garbage collection (GC) process. A GC operation causes long

delays as the SSD cannot serve (blocks) incoming IOs. Due to an ongoing GC, read latency vari-

ance can increase by 100× [28, 141]. In the last decade, there is a large body of work that reduces

the number of GC operations with a variety of novel techniques. However, we find almost no work

in literature that attempts to eliminate the blocking nature of GC operations and deliver steady SSD

performance in long runs.

1.2.1 Existing Approaches

Due to this problem, many works have been proposed in the last decade to achieve stable latencies,

to reduce latency tail. One view of the design space is depicted in Figure 1.1, which we discuss at

a high level below.

• White-box (i.e., Use full-knowledge of the hardware for improved performance): This cat-

egory arguably has the highest number of publications. The lower left of the figure represents

pure white-box approaches that assume the SSD firmware can be entirely modified [137, 149,

185, 186, 190, 196, 220, 233, 249, 250, 296, 310, 311, 318, 328]. Many of the techniques here

only delay/optimize the GC process but not evade the GC process, thus still far from reducing

the tail significantly. Rearchitecting the firmware is also not a desirable option for many com-

modity SSDs. The upper side of the left region is an entirely host-managed/software-defined

flash [56, 126, 164, 170, 222, 257, 279]. Theoretically here the host can be specifically tuned

such that the SSD management operations do not interfere with user operations, but host-managed
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* Contributions of this dissertation: TEAFA, LeapIO, FEMU, and my contributions to MITTOS, TTFLASH 

Figure 1.1: Design space for achieving stable performance on top of modern Flash stor-

age stack. The figure depicts the design space of research in reducing tail latencies. The x-axis

represents the three spectrums, white-, gray-, and black-box approaches. Top left: AppFlash [222],

DIDACache [283], SDF [257], FlashBlox [170], RAIL [56], Willow [279], LightNVM [126], Mit-

tOS [164], IOFlow [297]; Bottom left: AutoSSD [196], BlueDBM [183], LightStore [137], ATLAS [149],

KAML [178], PGC [220], FlashShare [328], KVSSD [190], SOML [233], FEMU [228], FLIN [296],

TTFLASH [318], GCFreeSSD [185], PaRT-FTL [249], Triple-A [186]; Center: Nameless [330], Har-

monia [209], Stream [207], Biscuit [155], TEAFA [229], ActiveFlash [298]; Right: Reflex [211],

Decibel [251], LeapIO [227], Hedging [105, 141], C3 [295], F2FS [218], Gecko [286], Purity [138],

Rails [292], SWAN [201], SOFA [134].

strategies require “open” devices (e.g., OpenChannel SSDs) that are not as pervasive as commodity

SSDs in deployment.

• Black-box (i.e., Application-level only strategies to optimize performance): On the other

extreme, the right side of the figure are black-box approaches that attempt to circumvent tail la-

tencies at the application/OS layer without modifying the firmware or host-SSD interface [134,

138, 201, 218, 251, 286, 292, 312]. The advantage is that they can directly work on off-the-shelf

SSDs, but the downside is the difficulty to guarantee performance without full control of the SSD.

For example, early efforts to cut latency tails focused on coarse-grained jobs (tens to hundreds of

seconds) [142], where there is sufficient time to wait, observe, and launch extra speculative tasks if

necessary. Such a “wait-then-speculate” method has proven to be highly effective; many variants
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of the technique have been proposed and put into widespread use [105, 106, 326]. More chal-

lenging are applications that generate large numbers of small requests, each expected to finish in

milliseconds. For these, techniques that “wait-then-speculate” are ineffective, as the time to detect

a problem is comparable to the delay caused by it. One approach to this challenging problem is

cloning, where every request is cloned to multiple destinations (replicas) and the first to respond is

used [105, 304, 313]. This is proactive speculation, but doubles the workload intensity. To reduce

extra load, applications can delay the duplicate request slightly and cancel the clone when a re-

sponse is received (a “tied requests”) [141]; to achieve this, however, IO queue management and

revocation capability must be built in the application layer [127]. A more conservative alternative

is “hedged requests” [141], where a duplicate request is sent after the first request is outstanding

for more than, for example, the 95th-percentile expected latency; but the slow requests (5%) must

wait before being retried. Finally, if extra requests are not desirable, “snitching” [8, 295] – the

application monitoring request latency and picking the fastest replica – can be employed; however,

such techniques are ineffective if noise is bursty. All of the techniques discussed above attempt

to minimize tail in the absence of information about underlying resource busyness. While the

OS/Hypervisor layer may have such information, it is hidden and unexposed. A prime example is

the read() interface that returns either success or error. However, when resources are busy (disk

contention from other tenants, device garbage collection, etc.), a read() can be stalled inside the

OS or device for some time. Currently, there is no way for the OS or SSD to indicate that a request

may take a long time, nor is there a way for applications to indicate they would like “to know the

OS/SSD is busy.”

• Gray-box (i.e., Cross-layer collaboration for performance): After more than a decade of re-

search, the storage community decides that perhaps a better way is a middle (gray-box) approach

where the host (or applications) is allowed to control SSD internal operations but only in a limited

way [27, 207, 208, 209, 330]. The best recent example is the birth of the IO Determinism (IOD)

interface, which has been accepted to the NVMe 1.4 specification in mid-2019. One feature of
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IOD is to allow the host to submit a time window to the SSD, telling the device to try its best not

to perform any management activities within the time window, ultimately to guarantee a “deter-

ministic” performance [83]. But challenges remain. IOD is still a best-effort interface that does

not 100% guarantee free disturbance within the window. How to program the window value and

integrate IOD to the host stack are also open problems.

1.2.2 Overview of Our Solutions

We tackle the problem at different layers of the storage stack to achieve best performance. Below

we introduce our approaches in a top-down manner (MITTOS at the Application/OS level, TEAFA

at the Host/SSD boundary, and TTFLASH at the hardware level).

• OS Support for Predictable Performance: First, to solve the problem at the application and

the OS level, we advocate a new philosophy: OS calls should transparently expose OS busyness

to applications. The OS arguably knows “everything” about its resources, including which re-

sources suffer from contention. If the OS can quickly inform the application about a long service

latency, applications can manage tail impacts. If advantageous, they can choose not to wait, for

example performing an instant failover to another replica or taking other corrective actions. This

approach pushes prediction mechanisms into the OS layer which has more information, henceforth

the tail-tolerance logic in applications can be simplified. To this end, we introduce MITTOS, an

OS that is transparent, exposing its resource busyness to enable applications to achieve millisecond

tail tolerance. We materialize busyness transparency within the storage software stack, primarily

because storage devices are a major resource of contention [165, 199, 289]. In a nutshell, with

MITTOS, applications attach a deadline to IO operations (e.g., “read() should not take more than

100ms”). And, if the deadline cannot be satisfied (e.g., long disk queue), MITTOS immediately

returns EBUSY, freeing the application to quickly retry to another node without a long wait (perhaps

tens to hundreds of milliseconds). To examine how busyness transparency in MITTOS can bene-

fit applications, we study data-parallel storage such as distributed NoSQL systems. Examination
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shows that many NoSQL systems (e.g., MongoDB) do not adopt tail-tolerance mechanisms, and

thus can benefit from MITTOS support. Compared to hedged requests (the most effective black-

box approach), MITTOS reduces the completion time of individual IO requests by 23-26% at 95th

percentile, and 6-10% on average. Better, as tail latencies can be amplified by scale (i.e., a user

request can be composed of S parallel requests and must wait for all to finish), with S=5, MIT-

TOS reduces the completion time of hedged requests up to 35% at 95th percentile and 16-23% on

average. The higher the scale factor, the more reduction MITTOS delivers.

• Host/SSD Co-design for Tail Tolerance: In the spirit of the gray-box movement, we intro-

duce TEAFA, a tail-reducing flash array. TEAFA leverages the existing IOD interface, uniquely

programs the window time in the context of flash array, extends slightly the NVMe read sub-

mission/completion commands, modifies the SSD firmware level only minimally, and implements

most of the logic in the OS/host layer. All of these are done without adding a new interface

nor modifying the heavy SSD internal management (e.g., modify the GC/flush algorithm), but at

the same time being able to provide stable and deterministic latency (e.g., up to the 99.99th per-

centile). Our contributions specifically lie in the following techniques. (a) Fast-fail and busy bits:

In TEAFA, we extend the NVMe IO submission command with a “fast-fail” bit and the completion

command with a “busy” bit. With this simple extension, latency-sensitive read IOs can be tagged

with the fast-fail bit enabled, telling the SSD firmware to quickly return the read to the host with

the busy bit set if the read must wait behind some background operations. In the context of flash

array with redundancy (e.g., RAID-5), this busy notification allows the host to reconstruct the con-

tent of the busy read by performing extra reads from other drives and reconstruct the late data with

parity computation. (b) Shortest (background) remaining time: In the case of a large IO that reads

from multiple SSDs, multiple of the sub-IOs may receive busy errors from multiple SSDs and the

host cannot reconstruct all the busy reads (e.g., RAID-5 host can only reconstruct one busy read).

For this, we extend the completion command to also include “background remaining time” to be

piggybacked with the busy signal. For example, in RAID-5, when two sub-IOs are delayed by
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two SSDs, the host can resubmit one of them to the SSD with the shortest background remaining

time (SBRT policy). This is useful as background remaining time can range up to tens of millisec-

onds. (c) Static/dynamic IOD time window: SBRT policy only reduces the delay, but ideally we

should mitigate multiple busy reads completely. For this, TEAFA leverages the IOD time-window

interface to inform the SSD when not to perform any background operation. Essentially, TEAFA

enforces the SSDs in an array to perform background operations in non-overlapping windows –

if one SSD is performing background operations in one time window, others in the array are not

allowed. As mentioned above, IOD time window is a new concept; to the best of our knowledge,

no publication shows how to configure the window value. We contribute by introducing a static

and a dynamic algorithm to set up the window value in TEAFA. The static algorithm is based on

the SSD internal parameters and the dynamic one is about the host/OS modifying the value on

the run. We comprehensively evaluate all the TEAFA techniques above using a variety of micro-

and macro-benchmarks and compare it with other works such as Flash on Rails [292], Harmo-

nia [209], a naive black-box method (proactively issuing multiple requests), and preemptive GCs

[220]. Compared to pure no-background (“NoBG”) scenario, TEAFA only produces 1.1× to 2.1×

slowdowns between p99 and p99.99, improving the baseline by orders of magnitude. Compared

to other works, TEAFA is more deterministic in trimming the tail latencies and easy to deploy with

minimal changes.

• High Performance SSD Architecture Design: We address this urgent issue with “tiny-tail” flash

drive (TTFLASH), a GC-tolerant SSD that can deliver and guarantee stable performance. The goal

of TTFLASH is to eliminate GC-induced tail latencies by circumventing GC-blocked IOs. That is,

ideally there should be no IO that will be blocked by a GC operation, thus creating a flash storage

that behaves close to a “no-GC” scenario. The key enabler is that SSD internal technology has

changed in many ways, which we exploit to build novel GC-tolerant approaches. Specifically, there

are three major SSD technological advancements that we leverage for building TTFLASH. First,

we leverage the increasing power and speed of today’s flash controllers that enable more complex
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logic (e.g., multi-threading, IO concurrency, fine-grained IO management) to be implemented at

the controller. Second, we exploit the use of Redundant Array of Independent NAND (RAIN). Bit

error rates of modern SSDs have increased to the point that ECC is no longer deemed sufficient

[171, 200, 277]. Due to this increasing failure, modern commercial SSDs employ parity-based

redundancies (RAIN) as a standard data protection mechanism [13, 21]. By using RAIN, we can

circumvent GC-blocked read IOs with parity regeneration. Finally, modern SSDs come with a large

RAM buffer (hundreds of MBs) backed by “super capacitors” [20, 24], which we leverage to mask

write tail latencies from GC operations. The timely combination of the technology practices above

enables four new strategies in TTFLASH: (a) plane-blocking GC, which shifts GC blocking from

coarse granularities (controller/channel) to a finer granularity (plane level), which depends on intra-

plane copyback operations, (b) GC-tolerant read, which exploits RAIN parity-based redundancy

to proactively generate contents of read IOs that are blocked by ongoing GCs, (c) rotating GC,

which schedules GC in a rotating fashion to enforce at most one active GC in every plane group,

hence the guarantee to always cut “one tail” with one parity, and finally (d) GC-tolerant flush,

which evicts buffered writes from capacitor-backed RAM to flash pages, free from GC blocking.

With a thorough evaluation, we show that TTFLASH successfully eliminates GC blocking for a

significant number of IOs, reducing GC-blocked IOs from 2–7% (base case) to only 0.003–0.7%.

As a result, TTFLASH reduces tail latencies dramatically. Specifically, between the 99–99.99th

percentiles, compared to the perfect no-GC scenario, a base approach suffers from 5.6–138.2×

GC-induced slowdowns. TTFLASH on the other hand is only 1.0 to 2.6× slower than the no-

GC case, which confirms our near-complete elimination of GC blocking and the resulting tail

latencies. In summary, by leveraging modern SSD internal technologies in a unique way, we

have successfully built novel features that provide a robust solution to the critical problem of GC-

induced tail latencies.

10



1.3 “Storage Tax” — Efficiency Challenge

Cloud storage has improved drastically in size and speed in the last decade, with a market size

expected to grow to $88 billion by 2022 [66]. With this growth, making cloud storage efficient

is paramount. On the technical side, cloud storage is facing two trends, the growing complexity

of cloud drives and the rise of IO accelerators, both unfortunately have not blended to the fullest

extent.

First, to satisfy customer needs, today’s cloud providers must implement a wide variety of stor-

age (drive-level) functions as listed in Table 1.1. Providers must support both local and remote

isolated virtual drives with IOPS guarantees. Users also demand drive-level atomicity/versioning,

and not to mention other performance, reliability, and space-related features (checksums, dedupli-

cation, elastic volumes, encryption, prioritization, polling for ultra-low latencies, striping, replica-

tion, etc.) that all must be composable. Last but not least, future cloud drives must support fancier

interfaces [89, 97, 112, 257, 279].

As a result of these requirements, the cloud storage stack is extremely resource hungry. Our

experiments suggest that the cloud provider may pay a heavy tax for storage: 10–20% of x86 cores

may have to be reserved for running storage functions. Ideally, host CPU cores are better spent for

providing more compute power to customer VMs.

The second trend is the increasing prevalence of IO acceleration technologies such as SmartSSD

[57, 82], SmartNIC [49, 58] and custom IO accelerators with attached computation that can offload

some functionality from the host CPU and reduce the heavy tax burden. However, IO accelerators

do not provide an end-to-end solution for offloading real-deployment storage stacks. Today, the

storage functions in Table 1.1 cannot be fully accelerated in hardware for three reasons: (1) the

functionalities are too complex for low-cost hardware acceleration, (2) acceleration hardware is

typically designed for common-case operations but not end-to-end scenarios, or (3) the underlying

accelerated functions are not composable.
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Table 1.1 summarizes why the functionalities are not fully offload ready. We use one simple

case as an example. For “local virtual SSDs,” a cloud storage provider can employ Single Root IO

Virtualization (SR-IOV) SSDs [90] where IOPS/bandwidth virtualization management is offloaded

to the SSD hardware, freeing the host from such a burden. However, the cloud provider might want

to combine virtualization with aggressive caching in spare host DRAM, but in-SSD accelerators

cannot leverage the large host DRAM (i.e., not composable with other host resources) and do not

provide the same flexibility as software.

Custom IO accelerators have another downside. As acceleration hardware evolves, the entire

fleet of servers may never be uniform; each generation of servers will have better, but slightly

different hardware from previous ones. Without a unifying software platform, we run the risk

of fragmenting the fleet into silos defined by their hardware capabilities and specific software

optimizations.

We observe another trend in cloud platforms: ARM co-processors are being deployed for server

workloads. This is a more suitable alternative compared to custom accelerators; ARM cores are

more general (retain x86 generality) and powerful enough to run complex storage functions without

major performance loss.

Offloading the storage stack to ARM co-processors can bring substantial cost savings. The

bill-of-material cost of an ARM System-on-Chip (SoC) is low and the power consumed is 10W,

making an annual total Cost of Ownership (TCO) of less than ~$100 (<~3% of a typical server’s

annual TCO). In turn, this SoC frees up several x86 cores thereby directly increasing the revenue

from the services running on the server proportional to the additional cores – annually ~$2,000 or

more (20×) when the cores are used for running customer VMs and significantly higher for more

lucrative services. Even when accounting for typical replacement rates, ARM SoC TCO would

still be less than one year rent of the smallest recommended VM in the cloud.

But there is a major challenge, just dropping an ARM SoC on a PCIe slot would not be enough.

We had to rethink the entire storage stack design to meet real deployment challenges: hardware
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Local/remote virtual SSDs/services and caching. SR-IOV SSDs (hardware-assisted IO virtualiza-

tion) do not have access to host DRAM. Thus local SSD caching for remote storage protocols (e.g.

iSCSI [75], NVMeoF [38]) cannot be offloaded easily from x86.

Atomic write drive. Smart transactional storage devices [246, 267] do not provide atomicity across

replicated drives/servers.

Versioned drive. A multi-versioned drive that allows writers to advance versions via atomic writes

while the readers can stick to older versions, not supported in today’s smart drives.

Priority virtual drive. Requires IO scheduling on every IO step (e.g., through SSDs/NICs) with

flexible policies, hard to achieve in hardware-based policies (e.g., SSD-level prioritization).

Spillover drive. Uses few GBs of a local virtual drive and spills the remaining over to remote drives

or services (elastic volumes), a feature that must combine local and remote virtual drives/services.

Replication & distribution. Accelerated cards can offload consistent and replicated writes, but

they typically depend on a particular technology (e.g. non-volatile memory).

Other functionalities. Compression, deduplication, encryption, etc. must be composable with the

above drives, not achievable in custom accelerators.

Table 1.1: Real storage functions, not offload ready. The table summarizes why real cloud drive

services are either not completely offload ready or not easily composable with each other.

fungibility, portability, virtualizability, composability, efficiency, and extensibility, which led us to

designing LeapIO.

1.3.1 LeapIO Introduction

We present LeapIO, our next-generation cloud storage stack that leverages ARM SoC as co-

processors. To address deployment goals (§2.6) in a holistic way, LeapIO employs a set of

OS/software techniques on top of new hardware capabilities, allowing storage services to portably

leverage ARM co-processors. LeapIO helps cloud providers cut the storage tax and improve uti-

lization without sacrificing performance.

At the abstraction level we use NVMe, “the new language of storage” [52]. All involved

software layers from guest OSes, LeapIO runtime, to new storage services/functions all see the

same device abstraction: virtual NVMe drive. They all communicate via the mature NVMe queue-

pair mechanism accessible via basic memory instructions pervasive across x86 and ARM, QPI or

PCIe.

On the software side, we build a runtime that hides the NVMe mapping complexities from
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storage services. Our runtime provides a uniform address space across the x86 and ARM cores,

which brings two benefits.

First, our runtime maps NVMe queue pairs across hardware/software boundaries – between

guest VMs running on x86 and service code offloaded to the ARM cores, between client- and

server-side services, and between all the software layers and backend NVMe devices (e.g., SSDs).

Storage services can now be written in user space and be agnostic about whether they are offloaded

or not.

Second, our runtime provides an efficient data path that alleviates unnecessary copying across

the software components via transparent address translation across multiple address spaces: guest

VM, host, co-processor user and kernel address spaces. The need for this is that while ARM SoC

retains the computational generality of x86, it does not retain the peripheral generality that would

allow different layers access the same data from their address spaces.

The runtime features above cannot be achieved without new hardware support. We require

four new hardware properties in our SoC design: host DRAM access (for NVMe queue mapping),

IOMMU access (for address translation), SoC’s DRAM mapping to host address space (for effi-

cient data path), and NIC sharing between x86 and ARM SoC (for RDMA purposes). All these

features are addressable from the SoC side; no host-side hardware changes are needed.

We build LeapIO in 14,388 LOC across the runtime, host OS/hypervisor and QEMU changes,

and design the SoC using Broadcom StingRay V1 SoC.

Storage services on LeapIO are “offload ready;” they can portably run in ARM SoC or on host

x86 in a trusted VM. The software overhead only exhibits 2-5% throughput reduction compared to

bare-metal performance (still delivering 0.65 million IOPS on a datacenter SSD). Our current SoC

prototype also delivers an acceptable performance, 5% further reduction on the server side (and up

to 30% on the client) but with more than 20× cost savings.

Finally, we implement and compose different storage functions such as a simple RAID-like

aggregation and replication of local/remote virtual drives via NVMe-over-RDMA/TCP/REST, an
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IO priority mechanism, a multi-block atomic-write drive, a snapshot-consistent readable drive,

the first virtualized OpenChannel SSDs exposed to guest VMs, block cache, and many more, all

written in 70 to 4400 LOC in user space, demonstrating the ease of composability and extensibility

that LeapIO delivers.

1.4 Contributions

Overall, this dissertation makes the following contributions:

• We introduce a holistic predictable storage stack design spanning different layers of the

software/hardware hierarchy, ranging from novel upper-level application/OS abstractions to

low-level OS/SSD interface and SSD controller architecture designs. And we demonstrate

their superior performance (i.e., tail latencies) through extensive evaluations over a wide

range of storage/data workloads and comparisons with many state-of-the-art works.

• We advocate a new principle that the OS or the hardware (e.g., SSD controllers) should

quickly reject IOs (“fast fail”) that cannot be promptly served to enable flexible systems-

level policy designs for consistent IO performance. We materialize this principle in two

scenarios by exploiting data redundancy in modern storage systems: First, we introduce a

fast rejecting SLO-aware OS interface to add OS support for millisecond level tail tolerance

by quickly failing-over to less busy replicas; Second, we design a tail-evading all flash array

on top of a slightly modified NVMe interface by proactively reconstructing late IO requests

through RAID-level parity.

• We introduce a new SSD architecture that achieves guaranteed performance close to an ideal

scenario with a fine-grained plane-blocking Garbage Collection (GC) architecture to reduce

GC interferences to the foreground IOs, and exploiting Redundant Array of Independent

NAND (RAIN) and rotating GC for guaranteed low-latency IO reconstruction.

• We define and design a complete set of new hardware properties to make ARMSoC-to-
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peripheral communications as efficient as x86-to-peripherals. Furthermore, by taking ad-

vantage of these new hardware properties, we introduce a uniform address space across x86,

ARM SoC, and other PCIe devices (SSDs, NICs) to enable line-rate address translations and

data movement.

• We develop a portable storage offloading framework/runtime which abstracts away hardware

capabilities and exploits the uniform address space to make offloading seamless and flexible.

This enables an “offload-ready” design which allows storage services to portably run on

x86 or ARM whenever they are available. In essence, we treat hardware acceleration as

an opportunity rather than a necessity. This helps avoid fragmenting server fleets in data

centers into silos defined by their hardware capabilities and software optimizations. On top

of the runtime, we build several novel services composed of local/remote SSDs/services and

perform detailed performance benchmarks as well as analysis.

• We develop FEMU, a software-based NVMe SSD emulator to meet the increasing demands

for a cheap, accurate, scalable, and extensible storage platform that supports the rising

software-defined, split-level, and full-stack research.

• We contribute open-source1 implementations of MITTOS [1], TTFLASH [2], LeapIO [3],

TEAFA [4], and FEMU [5], demonstrating the efficacy of our principle, system and pol-

icy designs. Additionally, these systems are seeing impacts: LeapIO is being deployed in

Microsoft data centers to serve production workloads, MITTOS findings have been partially

merged to official Linux kernel and FEMU has been used by tens of institutions and classes.

1.5 Thesis Organization

The rest of the dissertation is organized as follows: In Chapter 2, we go through some background

knowledge to understand the state of the existing storage stack, quantify the unpredictability, and

1. TEAFA and LeapIO are to be released as of the writing.
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motivate the offloading design for efficiency. In Chapter 3, we dive deep into the designs and

evaluation of our solutions on achieving predictable performance across the entire storage stack:

new abstractions at application/OS level (MITTOS), host/SSD interface for deterministic com-

munication (TEAFA), and new architectures of SSD controller designs to eliminate tail latencies

(TTFLASH). In Chapter 4, we present our principled design of offload-ready cloud storage stack

design to satisfy data center deployment requirements (LeapIO). In Chapter 5, we discuss the ur-

gent need for a software-based SSD research platform to foster future full-stack research, and talk

about our solution (FEMU). In Chapter 6, we discuss the limitations of our solutions and the broad

design space/concerns regarding tail-tolerance and efficient offloading. In Chapter 7, we review

an extensive list of related works and distinguish our solutions from them. Lastly, we talk about

future work in Chapter 8 and conclude in Chapter 9.
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CHAPTER 2

BACKGROUND AND MOTIVATION

This chapter provides the necessary background and motivation for various aspects of this dis-

sertation. We start with a high-level overview of modern storage stack (§2.1), introducing the key

components this dissertation revisits. Then, we talk about the NVMe interface (§2.2) and SSD con-

troller architectures (§2.3) to conceptually understand the state of modern flash storage devices and

reason about the potential “sources” of unpredictable IO latencies. Next, we analyze and quantify

the effects of GC-induced performance unpredictability at both single SSD device (§2.4) and flash

array scale (§2.5) to motivate our holistic tail-tolerant designs. Lastly, we discuss the motivation

for storage offloading to achieve cost-efficiency (§2.6).

2.1 Modern Storage Stack Overview

As shown in Figure 2.1, modern storage stack consists of 5 main pieces, which we elaborate below.

1 User Storage Applications: Traditional storage applications such as file server, object store,

KV store, and databases run in the user space and utilize the high-level APIs to access storage ser-

vices. As modern storage workloads become much more data-intensive and performance-hungry, it

is extremely important to deliver fast and efficient access to data with minimal application changes.

To this end, we revisit the software and hardware trends to redesign the entire storage stack while

only requiring very small application-side modifications (§3.2, §3.1).

2 Application/OS Interface: Applications can simply call read() or write() to read/write data.

These block/file-based (POSIX) APIs have been in use for decades and are the standard storage

interface between applications and the low-level storage stack. While being easy to use, the inter-

face is passive, not allowing applications enough flexibility to achieve performance predictability.

For example, lower-level latency hiccups caused by resource contentions will always propagate

back to applications and there is currently no way for applications to request deterministic latency.
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Figure 2.1: Modern Storage Stack. The figure shows the simplified storage stack across storage

applications running at the user space, IO management functionalities (i.e., File/Block IO stack) at the

kernel space, storage/acceleration devices (e.g., SSDs and IO Accelerators) at the hardware level, as well

as the interfaces connecting them (i.e., POSIX sitting between user applications and the OS, and NVMe in

between the software and hardware).

What new interfaces are needed to overcome the aforementioned drawbacks? We answer this later

with MITTOS (§3.1).

3 Kernel/OS level Block IO Layers: The kernel-level block IO (BIO) stack is the core of the

entire storage stack. It implements a wide range of storage services using a layered approach.

For example, we have a file system (FS) to satisfy file-level requests and BIO for block-level

accesses. There are also many other storage functions such as RAID, IO priority scheduling, and

caching to satisfy reliability and performance requirements. Additionally, with emerging software-

defined flash designs, the kernel/OS also fulfills flash managements responsibility with a host-side

“firmware” (e.g., LightNVM). All these services are composable with each other. However, as

hardware gets faster, the kernel level storage layers impose significant performance overhead and

consume way too many CPU cycles. Worse, current OS’s FS/BIO designs lack support for stable

IO latencies, which we will aim to tackle by advocating new OS design principles (MITTOS in

§3.1) and proposing new frameworks to build cost-efficient storage services with performance

guarantees (LeapIO in §4.1).

4 Software/Hardware Interface: OS communicates with storage devices over PCIe bus for
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direct device management or through ethernet/fiber-channel fabrics for remote storage access. On

top of the physical links, NVMe is the new de-facto storage protocol widely used in different

scenarios (local/remote storage, VMs, etc.). It provides a lightweight queue pair model for IO

submission and processing and has the potential to achieve more advanced functionalities. More

details will be presented in §2.2 as it is a key element and repurposed/extended for different roles

in several of our works (§3.2, §4.1, §5.3).

5 Hardware Devices: Flash storage (in the form of SSDs) are largely replacing hard disk drives

in real deployment due to their superior performance. Moreover, with the rise of hardware spe-

cialization, IO accelerators (e.g., ARM- or FPGA based SmartSSDs/SmartNICs) are also being

increasingly deployed to achieve efficiency. We will dive into SSD internals in §2.3 as an exam-

ple to understand how hardware level intricacies will make performance predictability challenging

to achieve. This dissertation build hardware-native solutions to exploit hardware capabilities for

performance and efficiency (§3.3, §3.2, §4.1, §5.3).

2.2 NVMe Primer

NVM Express (NVMe) is the de-facto storage protocol widely used for today’s fast storage devices,

such as NAND Flash and 3D Xpoint SSDs. It utilizes a queue pair model to facilitate IO processing

while exposing minimal software overhead. As shown in Figure 2.2, each queue pair consists of a

Submission Queue (SQ) and a Completion Queue (CQ). The SQ and CQ are shared memory between

the host and the device. Thus, they are directly accessible from both sides with no overhead.

The host creates IO queues during the driver’s initialization phase, and the number of queue pairs

usually match the number of cores for lock-less access, better cache locality, and thus better IO

scalability.

With NVMe, the IO processing logic is quite simple, with the following steps: 1 IO submis-

sion to the SQ: IOs are encapsulated into NVMe commands by the driver. Each NVMe command

takes 64 bytes and stores all the information which represent the IO, including SLBA (starting log-
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Figure 2.2: NVMe Architecture. This figure presents the NVMe architecture, including the in-

teraction between the host-side NVMe driver and the device-side NVMe device controller (e.g.,

FEMU, LeapIO, TEAFA). SQ and CQ represent the submission and completion queues. The I/O

processing logic is denoted as 1© to 7©, with a detailed explanation in §2.2.

ical block address), NLB (number of logical blocks, i.e., IO length), PRPs (Physical Region Pages,

i.e., physical addresses of the IO buffers), and other meta- and management fields. The NVMe

command entry is put into the tail of the SQ, indicating a new IO submission for the NVMe con-

troller to process; 2 IO submission notification: This step is for the host to notify the NVMe

controller about new IO arrivals. This is done by writing the new tail position of the SQ to the

corresponding doorbell register; 3 NVMe controller fetching NVMe command from the SQ: In this

step, NVMe commands in the queue will be fetched from head and then for 4 IO processing at the

NVMe controller, where it will be serviced, either by the caching layer or sent down to back-end

storage media (e.g., DRAM or NAND); 5 Adding IO completion entry to the CQ: After an IO is

done, the NVMe controller will compose an NVMe completion entry and put it to the tail of the
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CQ. Then, the device will trigger an interrupt to the host, indicating to the host for IO completion

processing; 6 Host side IO completion handling: When the corresponding interrupt handler is

scheduled (or when the host side proactively polls on the CQ), the host will fetch an entry from the

CQ head and return the IO status back to the upper-level user applications; Lastly, 7 Updating the

CQ head position: Similar to 2 , this step is for the host to sync the new head position of the CQ

with the device to avoid overflows.

NVMe is not just a low-level storage interface, it can be used to fulfill high-level goals. Later,

we will show that how NVMe can serve as the key abstraction to bridge the semantic gap between

different “worlds” (TEAFA in §3.2), and to offload a wide range of composable storage services

(LeapIO in §4.1). Furthermore, we will demonstrate how polling based IO processing for NVMe

IOs can improve IO performance significantly under different contexts (FEMU in Chapter 5, and

LeapIO in §4.1).

2.3 SSD Primer

As shown in Chapter 1, complex device internals is a major cause of unpredictable latencies. Thus,

before presenting our solutions, we first describe SSD internals that are essential for understanding

the problem of unpredictability. In particular, this section describes how GC operates from the

view of the physical hardware.

Figure 2.3 shows a basic SSD internal layout. Data and command transfers are sent via parallel

channels (C1..CN). A channel connects multiple flash planes; 1–4 planes can be packaged as a

single chip (dashed box). A plane contains blocks of flash pages. In every plane, there is a 4-

KB register support; all flash reads/writes must transfer through the plane register. The controller

is connected to a capacitor-backed RAM used for multiple purposes (e.g., write buffering). For

clarity, we use concrete parameter values shown in Table 3.2.

GC operation (4 main steps): When used-page count increases above a certain threshold (e.g.,

70%), a GC will start. A possible GC operation reads valid pages from an old block, writes them
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Figure 2.3: SSD Internals (Section 2.3).

to a free block, and erases the old block, within the same plane. Figure 2.3 shows two copybacks

in a GC-ing plane (two valid pages being copied to a free block). Most importantly, with 4-KB

register support in every plane, page copybacks happen within the GC-ing plane without using the

channel [101].

The controller then performs the following for-loop of four steps for every page copyback: (1)

send a flash-to-register read command through the channel (only 0.2µs) to the GC-ing plane, (2)

wait until the plane executes the 1-page read command (40µs without using the channel), (3) send

a register-to-flash write command, and (4) wait until the plane executes the 1-page write command

(800µs without using the channel). Steps 1–4 are repeated until all valid pages are copied and then

the old block is erased. The key point here is that copyback operations (steps 2 and 4; roughly

840µs) are done internally within the GC-ing plane without crossing the channel.

GC Blocking: GC blocking occurs when some resources (e.g., controller, channel, planes)

are used by a GC activity, which will delay subsequent requests, similar to head-of-line blocking.

Blocking designs are used as they are simple and cheap (small gate counts). But because GC

latencies are long, blocking designs can produce significant tail latencies.

One simple approach to implement GC is with a blocking controller. That is, even when

only one plane is performing GC, the controller is busy communicating with the GC-ing plane

and unable to serve outstanding I/Os that are designated to any other planes. We refer to this
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Figure 2.4: Various levels of GC blocking. Colored I/Os in bright planes are servable while non-

colored I/Os in dark planes are blocked. (a) In controller-blocking (§2.3), a GC blocks the controller/entire

SSD. (b) In channel-blocking (§2.3), a GC blocks the channel connected to the GC-ing plane. (c) In plane-

blocking, a GC only blocks the GC-ing plane.

as controller-blocking GC, as illustrated in Figure 2.4a. Here, a single GC (the striped plane)

blocks the controller, thus technically all channels and planes are blocked (the bold lines and dark

planes). All outstanding I/Os cannot be served (represented by the non-colored I/Os). OpenSSD

[46], VSSIM [325], and low-cost systems such as eMMC devices adopt this implementation.

Another approach is to support multi-threaded/multi-CPU with channel queueing. Here, while

a thread/CPU is communicating to a GC-ing plane (in a for-loop) and blocking the plane’s channel

(e.g., bold line in Figure 2.4b), other threads/CPUs can serve other I/Os designated to other chan-

nels (the colored I/Os in bright planes). We refer this as channel-blocking GC (i.e., a GC blocks the

channel of the GC-ing plane). SSDSim [169] and disksim+SSD [101] adopt this implementation.

Commodity SSDs do not come with layout specifications, but from our experiments (§2.4), we

suspect some form of channel-blocking (at least in client SSDs) exists.

Figure 2.5 also implicitly shows how blocked I/Os create cascading queueing delays. Imagine

the “Outstanding I/Os” represents a full device queue (e.g., typically 32 I/Os). When this happens,

the host OS cannot submit more I/Os, hence user I/Os are blocked in the OS queues. We show this

impact in our evaluation.
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2.4 GC-Induced Tail Latency

We present two experiments that show GC cascading impacts, which motivate our work. Each

experiment runs on a late-2014 128GB Samsung SM951, which can sustain 70 “KWPS” (70K of

4KB random writes/sec). In Figure 2.5a, we ran a foreground thread that executes 16-KB random

reads, concurrently with background threads that inject 4-KB random-write noises at 1, 2.5, and

5 KWPS (far below the max 70 KWPS) across three experiments. We measure Li, the latency of

every 16-KB foreground read. Figure 2.5a plots the CDF of Li, clearly showing that more frequent

GCs (from more-intense random writes) block incoming reads and create longer tail latencies. To

show the tail is induced by GC, not queueing delays, we ran the same experiments but now with

random-read noises (1, 2.5, and 5 KRPS. The read-noise results are plotted as the three overlapping

thin lines marked “ReadNoise,” which represents a perfect no-GC scenario. As shown, with 5

KWPS noise, read operations become 15×, 19×, and 96× slower compared to no-GC scenarios,

at 90th, 95th and 99th percentiles, respectively.

In Figure 2.5b, we keep the 5-KWPS noise and now vary the I/O size of the foreground random

reads (8, 16, 32, 64, and 128 KB across five experiments). Supposedly, a 2× larger read should

only consume 2× longer latency. However, the figure shows that GC induces more tail latencies

in larger reads. For example, at 85th percentile, a 64-KB read is 4× slower than a 32-KB read.

The core of the problem is this: if a single page of a large read is blocked by a GC, the entire read

cannot complete; as read size increases, the probability of one of the pages being blocked by GC

also increases, as we explain later (§2.3). The pattern is more obvious when compared to the same

experiments but with 5-KRPS noises (the five thin gray lines marked “ReadNoise”).

For a fairer experiment, because flash read latency is typically 20× faster than write latency,

we also ran read noises that are 20× more intense and another where read noises is 20× larger in

size. The results are similar.
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Figure 2.5: GC-Induced Tail Latencies (Section 2.4) in a single SSD.

2.5 Tail Latency in AFA

Background operations: From the previous section, we know that SSD firmware must perform

many background management operations such as GC, wear leveling, internal write buffer eviction,

and ECC checking/scrubbing. While many components inside an SSD exhibit parallelism, there

are two places of serialization: channel and chip. When a channel is being used to transfer data,

other IOs must wait. When a chip is reading data from the NAND medium to its page register

(or writing from register to the NAND), other IOs must wait. Thus, when background operations

are queued behind a channel or a chip, these operations will delay user (foreground) IOs, hence

creating non-deterministic (background-induced tail) latencies.

Tail in flash array: Imagine a typical sequential large read to block addresses B1 to B4 that are

striped across multiple SSDs. If one of them is “busy” (must wait for a background operation to

finish), then the entire large read will be delayed. Figure 2.6a shows the cascading impact of a

busy SSD (doing GC) to large user IOs.

Here, we form a RAID-0 on 4 real SSDs [31] with 4KB chunk size on which we run 16KB

full-stripe reads (foreground). To trigger different intensities of GC (background) noises, we also

inject random-write noises of 100, 200, 400, and 800 KWPS (kilo-writes-per-second) where “1W”
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Figure 2.6: DCSSD GC Impacts in SSD Array (Section 2.5). Each experiment runs on a RAID-0

of four Data Center SSDs.

implies a 4KB random write. Every ith full-stripe read generates 4 page sub-IOs.1 We instrument

Linux Software RAID to measure every sub-IO latency. Thus, for every ith read, we measure 4

sub-IO latencies Li1..Li4 from the 4 SSDs. We then measure the longest delayed (latest) sub-IO

with the following slowdown metric: Si=Max(Li j)/Median(Li j) where j=1..4. With 4 drives we

use the 2nd earliest time as the median. Put simply, Si represents the slowdown to wait for the

latest returned page (the tail) in every full-stripe read i.

Figure 2.6a plots the CDF of all Si, showing that due to background activities, the latest sub-

IO of a full-stripe I/O can arrive multiple times slower than the earlier ones. The slowdown

becomes worse when GC happens more often (100KWPS green vs. 800KWPS red line). e.g., with

100KWPS, a sub-IO read is 13× slower than the median at p97.2 Under 800KWPS, we see 23×

slowdown at p98.

We emphasize that this slowdown is due to GC and not the random user writes. This is verified

by the five (overlapping) thin gray lines marked “NoGC” where we convert the user write to a read

noise. The gray lines mostly hovering around x=1 essentially show that the foreground full-stripe

1. We use the term “sub-IOs” frequently in this paper. In Linux, a large read is broken to multiple stripe-level

reads, and each stripe-level read is broken down to multiple sub-IOs, where a sub-IO represents a chunk read.

2. “pY” implies the Yth percentile (e.g., p99 implies the 99th percentile, y=0.99 in the CDF graphs).
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reads observe no (1×) slowdown of sub-IO completions. For a fairer experiment, as NAND read

latency is around 20× faster than write latency, we also set the read noises to be 20× more intense

or 20× larger in size and obtain similar results.

Opportunity: From the above experiment, we find a big opportunity to cut latency tail. To show

this, we also record the slowdown of the 2nd latest returned page: S2
i =2ndMax(Li j)/Median(Li j).

Figure 2.6b compares the distribution of the 1st- and 2nd-latest slowdowns. For readability, we

only show the experiment with 800KWPS noise.

As shown, the probability that two sub-IOs of a stripe read are simultaneously delayed by GC

is much lower than only one page being blocked. For example, >6× slowdown of the latest page

happens 14% of the time (x=6 at p86), but the 2nd-latest page is >6× slower only 3% of the time

(x=6 at p97). Thus, if we put this finding in the context of RAID-4/5, 11% of the slow IOs can be

made fast by reconstructing the late sub-IOs from another SSD that holds the parity block of the

stripe. This finding motivates TEAFA.

2.6 Cloud Storage Deployment Goals

Figure 2.7 paints the deployment goals required for the next-generation storage stack. As shown,

the fundamental device abstraction is NVMe virtual drive, illustrated with a “●”, behind which

are the NVMe submission and completion queue pairs for I/O management. The expected deploy-

ment/use model can be seen in Figure 2.7a. Here a user mounts a virtual block drive ● to her VM

(guest VM) just like a regular NVMe drive. We now elaborate the goals.

a© Fungibility and portability: We need to keep servers fungible regardless of their acceler-

ation/offloading capabilities. That is, we treat accelerators as opportunities rather than necessities.

The storage software stack should be portable – able to run on x86 or in the SoC whenever avail-

able (i.e., “offload ready”) as Figure 2.7a illustrates. The user/guest VMs are agnostic to what is

implementing the virtual drive.
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Figure 2.7: Goals. As described in Section 2.6.

Fungibility and portability prevent “fleet fragmentation.” Different server generations have

different capabilities (e.g., with/without ARM SoC, RDMA NICs or SR-IOV support), but newer

server generations must be able to provide services to VMs running on older servers (and vice

versa). Fungibility also helps provisioning; if the SoC cannot deliver enough bandwidth in peak

moments, some services can borrow the host x86 cores to augment a crowded SoC.

b© Virtualizability and composability: We need to support virtualizing and composing of,

not just local/remote SSDs, but also local/remote IO services via NVMe-over-PCIe /RDMA/TCP/

REST. As depicted in Figure 2.7b, a user can obtain a local virtual drive that is mapped to a portion

of a local SSD that at the same time is also shared by another remote service that glues multiple

virtual drives into a single drive (e.g., RAID). A storage service can be composed on top of other

remote services.

c© Efficiency: It is important to deliver performance close to bare metal. The runtime must

perform continuous polling on the virtual NVMe command queues as the proxy agent between

local/remote SSD and services. Furthermore, ideally services must minimize data movement be-
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tween different hardware/software components of a machine (on-x86 VMs, in-SoC services, NICs,

and SSDs), which can be achieved a uniform address space (Figure 2.7c).

d© Service extensibility: Finally, unlike traditional block-level services that reside in the kernel

space for performance, or FPGA-based offloading which is difficult to program, ideally storage

services should be implemented at the user space (Figure 2.7d), hence allowing cloud providers to

easily manage, rapidly build, and communicate with a variety of (trusted) complex storage services.

30



CHAPTER 3

“TAIL-FREE” FLASH STORAGE STACK

In this chapter, we describe our holistic tail-free storage stack designs by revisiting the OS, soft-

ware/hardware interface and hardware architectures to achieve predictable IO latencies. We start

with MITTOS (§3.1), an OS level approach with a fast-rejecting SLO interface for data-parallel

applications to achieve millisecond level latencies. Moving down to the lower levels of the storage

stack, we then present TEAFA (§3.2) and TTFLASH (§3.3) at the software and hardware inteface

and controller level to exploit data redundancy for predictable performance. We detail the designs

and use cases of these three approaches. In §3.4, we discuss the implementations. Later, we will

present detailed evaluations in §3.5, §3.6, and §3.7, respectively. Then we end this chapter with

summaries of our three approaches for low and stable latencies in general (§3.8). We leave the dis-

cussions to Chapter 6 (§6.1–§6.3). The materials in this chapter are based on our papers “TeaFA: A

Tail-Evading Flash Array with a Gray-box IO Determinism Interface” (Under submission) [229],

“MITTOS: Supporting Millisecond Tail Tolerance with Fast Rejecting SLO-Aware OS Interface”

(SOSP’17) [164], and “Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection Tail La-

tencies in NAND SSDs” (FAST’17) [318].1

3.1 MITTOS: OS Support for Millisecond Tail Tolerance

MITTOS provides operating system support to cut millisecond-level tail latencies for data-parallel

applications. In MITTOS, we advocate a new principle that operating system should quickly reject

IOs that cannot be promptly served. To achieve this, MITTOS exposes a fast rejecting SLO-aware

interface wherein applications can provide their SLOs (e.g., IO deadlines). If MITTOS predicts that

the IO SLOs cannot be met, MITTOS will promptly return EBUSY signal, allowing the application

1. I am the 2nd author in the MITTOS and TTFLASH papers. These two works are done in collaboration with other

students at University of Chicago and the content of this chapter represents my contributions.
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Figure 3.1: MITTOS Deployment Model (§3.1.1).

to failover (retry) to another less-busy node without waiting. We build MittOS within the storage

stack, but the principle is extensible to CPU and runtime memory managements as well. MittOS’

no-wait approach helps reduce IO completion time up to 35% compared to wait-then-speculate

approaches.

3.1.1 Deployment Model and Use Case

MITTOS suits the deployment model of data-parallel frameworks running on multi-tenant ma-

chines, a common practice, as illustrated in Figure 5.6. Here, every machine has local storage re-

sources (e.g., disk) directly managed by the host OS. On top, different tenants/applications (A...D)

share the same machine. Let us consider a single data-parallel framework (e.g., MongoDB) de-

ployed as applications A1−A3 across machines #1-3 , and a user sending two parallel requests R1

to A1 and R2 to A2, each supposedly takes only 10ms (the term “user” implies the application’s

users). If the disk in machine #2 is busy because other tenants (B/C/D) are busy using the disk,

ideally MongoDB should quickly retry the request R2 to another replica A3 on machine #3.

In wait-and-speculate approaches, request R2 might only be retried after some time (e.g., 20ms)

has elapsed, resulting in R2’s completion time of roughly 30ms, a tail latency 3x longer than R1’s

latency. In contrast, MITTOS will instantly return EBUSY (no wait in the application), resulting in

R2’s completion time of only 10+e ms; e is a one-hop network overhead.

In the above model, MITTOS will be integrated to the host OS layer from where applications

can get direct notification of resource busyness. However, our model is similar to container- or

VM-based multi-tenancy models, where MITTOS can be integrated jointly across the host OS and
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VMM or container-engine layers. We use the direct application-to-host model for faster research

prototyping, but MITTOS principles will remain the same across these models.

3.1.2 Use Case

Figure 5.9 shows a simple use-case illustration of MITTOS. 1© The application (e.g., MongoDB)

creates a deadline for a user. 2© The application then tags read() calls with the deadline. 3© As the

IO request enters a resource queue in the kernel, MITTOS checks if the deadline can be satisfied.

4© If the deadline will be violated in the resource queue, MITTOS will instantly return EBUSY error

code to the application. 5© Upon receiving EBUSY, the application can quickly failover/retry the

request to another replica node.

As an additional note, a user request can span a stream of multiple read() calls, thus we also

provide a deadline descriptor that can glue a sequence of read() operations (similar to stream/tx

begin() and end() [263, 266]). Later, we discuss to what value a deadline should be set.

3.1.3 Goals / Principles

MITTOS advocates the following principles.

• Busyness transparency (“busy is error”): In the PC era, the OS must be best-effort; returning

busy errors is undesirable as PC applications cannot retry elsewhere. However, in tail-critical dat-

acenter applications, best effort interface is insufficient to help applications manage ms-level tails.

Datacenter applications inherently run on redundant machines/replicas, thus there is no “shame”

for the OS to admit busyness. In large-scale deployments, this principle works well, as the proba-

bility of all replicas busy at the same time is extremely low.

• Instant feedback/failover: The sub-ms instant feedback gives ms-level operations more flex-

ibility to failover quickly. Making a system call and receiving EBUSY only takes <5µs ( 3© and 4©

in Figure 5.9). Failing over to another machine ( 5© in Figure 5.9) only involves one more network

hop (e.g., 0.3ms in EC2 and our testbed or even 10µs with Infiniband [256]).
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Figure 3.2: MITTOS use-case illustration (§3.1.2).

• Keep existing OS policies: MITTOS’ simple interface extensions allow existing OS opti-

mizations and policies to be preserved. MITTOS does not negate all prior advancements in the

QoS literature. We only advocate that applications get notified when OS policies fail to meet

user deadlines due to unexpected bursty contentions. For example, even with CFQ, IOs from

high-priority processes occasionally must wait for lower-priority ones to finish; in SSD, garbage

collection or wear-leveling activities can induce a background noise even with advanced isolation

techniques.

• Keep applications simple: With MITTOS, prediction, cloning, hedging, and cancellation are

less needed in applications. These mechanisms are now pushed to the OS layer, which then can

be reused by many applications. In MITTOS, the rejected request is not queued (step 4© in Figure

5.9); it is automatically cancelled when the deadline is violated. Thus, applications do not need to

wait or revoke IOs, nor they add more contentions to the already-contended resources. MITTOS

also keeps application failover logic simple and sequential (the sequence of 2©- 5© in Figure 5.9).

3.1.4 Design Challenges

The biggest challenge of integrating MITTOS to a target resource and its management is the EBUSY

prediction (i.e., whether the arriving IO should be accepted or rejected). There are three major

challenges: (1) We must understand the contention nature and queueing discipline of the target

resource. For example, in disks, the spindle is the resource of contention, but in SSDs, parallel

chips and channels exhibit independent queueing delays. Furthermore, the target resource can
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be managed by different queuing disciplines (noop/FIFO, CFQ, anticipatory [173], etc.). Thus,

EBUSY prediction will vary across different resources and schedulers. (2) In terms of performance

overhead, latency prediction must be O(1) for every arriving IO. O(N) prediction that iterates

through N pending IOs is not desirable. (3) In terms of accuracy, different device types (different

vendors) have different latency characteristics; seek cost varies across disks and flash programming

time varies across SSDs, even across pages within the same chip.

3.1.5 Case Studies

The goal of this section is to demonstrate that MITTOS principles can be integrated to many

resource managements such as the disk noop (§3.1.6) and SSD (§3.1.7). In each integration, we

describe how we address the three challenges (understanding the resource contention nature and

fast and accurate latency prediction).

3.1.6 Disk Noop Scheduler (MITTNOOP)

Our first and simplest integration is to the noop scheduler. The use of noop for disk is actually

discouraged, but the goal of our description below is to explain the basic mechanisms of MITTOS,

which will be re-used in subsequent sections.

Resource and deadline checks: In noop, arriving IOs are put to a FIFO dispatch queue whose

items will be absorbed by the disk to its device queue. The logic of MITTNOOP is relatively

simple: when an IO arrives, it calculates the IO’s wait time (Twait) given all the pending IOs in the

dispatch and device queues. If Twait>Tdeadline+Thop, then EBUSY is returned; Thop is a constant of

0.3ms one-hop failover in our testbed.

Performance: A naive O(N) way to perform a deadline check is to sum all the N pending IOs’

processing times. To make deadline check O(1), MITTNOOP keeps track the disk’s next free time

(Tf ree), as explained below. The arriving IO’s wait time is simply the difference of the current and

next free time (Twait=Tf ree−Tnow). If the disk is currently free (Tf ree<Tnow), the IO is submitted
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directly.

Accuracy: When an IO is accepted, MITTNOOP adds the next free time with the predicted pro-

cessing time to serve the new IO (Tf ree+=TprocessNewIO). To make Tf ree accurate, TprocessNewIO

must be precise. To achieve that, we must profile the disk’s read/write latency, specifically the

relationships between IO sizes, jump distances, and latencies. We omit the detailed discussion for

space, as such a methodology is described extensively in disk literature [9, 272, 276]. In a nutshell,

TprocessNewIO is a function of the size and offset of the current IO, the last IO completed, and all

the IOs in the device queue. Our one-time profiling takes 11 hours (disk is slow).

Tf ree will automatically be calibrated when the disk is idle (Tf ree=Tnow+TprocessNewIO). How-

ever, under no-idle period, a slight prediction error in Tf ree+=TprocessNewIO will accumulate

over time as thousands/millions of IOs are submitted. To calibrate more accurately, we attach

TprocessNewIO and the IO’s start time to the IO descriptor, such that upon IO completion, we can

measure the “diff” of the actual and predicted processing time (Tdi f f=TprocessActual−TprocessNewIO)

and then calibrate the next free time (Tf ree+=Tdi f f ).

We note that the disk firmware can reorder IOs based on their offsets, especially when noop

is FIFO. However, with an advanced offset-based scheduling like CFQ, such inaccuracy will be

reduced. In the evaluation, we will only evaluate MITTCFQ, which we describe next.

3.1.7 SSD Management (MITTSSD)

Latency variability in SSD is an ongoing problem [28, 35, 141]. Read requests from a tenant can be

queued behind writes by other tenants, or the GC implications (more read-write page movements

and erases). A 4KB read can be served in 100µs while a write and an erase can take up to 2ms and

6ms, respectively. While there are ongoing efforts to achieve a more stable latency (GC impact

reduction [167, 209, 220, 318] or isolation [170, 199]), none of them cover all possible cases. For

example, under write bursts or no idle period, read requests can still be delayed significantly [220,

§4][318, §6.6]. Even with isolation, occasional wear-leveling page movements will introduce a
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significant noise [170, §4.3].

Fortunately and typically, not all SSDs are busy at the same time, a situation that empowers

MITTSSD. A read-mostly tenant can set a deadline of <1ms; thus, if the read is queued behind

writes or erases then the tenant can retry elsewhere.

Resource and deadline checks: There are two initial challenges in building MITTSSD. First,

CFQ optimizations are not applicable as SSD parallelizes IO requests without seek costs; the use

of noop is suggested [22]. While we cannot reuse MITTCFQ, MITTNOOP is also not reusable.

This is because unlike disks where a spindle (a single queue) is the contended resource [104, 239],

an SSD is composed of multiple parallel channels and chips. Calculating IO serving time in the

block-level layer will be inaccurate (e.g., ten IOs going to ten separate channels do not create

queueing delays). Thus, MITTSSD must keep track of outstanding IOs to every chip.

However, to achieve that, only the SSD firmware has the full knowledge of SSD internals.

Fortunately, host-managed/software-defined flash [257] is gaining popularity and publicly avail-

able (e.g., Linux LightNVM [126] on OpenChannel SSDs. Here, all SSD internal channels, chips,

physical blocks and pages are all exposed to the host OS, which also manages all SSD manage-

ments (FTL, GC, wear leveling, etc.). With this new technology, MITTSSD in the OS layer is

possible.

As an additional note, a large IO request can be striped to sub-pages to different channels/chips.

If any sub-IO violates the deadline, EBUSY is returned for the entire request; all sub-pages are not

submitted to the SSD.

Performance: Similar to MITTNOOP’s approach, MITTSSD maintains the next available time

of every chip (as explained below), thus the wait-time calculation is O(1). For every IO, the

overhead is only 300 ns.

Accuracy: Making MITTSSD accurate involves solving two more challenges. First, MITTSSD

needs to know the chip-level read/write latency as well as the channel speed, which can be obtained

from the vendor’s NAND specification or profiling. For measuring chip-level queueing delay, our
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profiler injects concurrent page reads to a single chip and for channel-level queueing delay, con-

current reads to multiple chips behind the same channel. As a result, for our OpenChannel SSD:

TchipNextFree+=100µs per new page read. That is, a page (16KB) read takes 100µs (chip read and

channel transfer); >16KB multi-page read to a chip is automatically chopped to individual page

reads. Second, Twait=Tnow−TchipNextFree+ (60µs ×#IOSameChannel). That is, the IO wait time

involves the target chip’s next available time plus the number of outstanding IOs to other chips

in the same channel, where 60µs is the channel queueing delay (consistent with the 280 MBps

channel bandwidth in the vendor specification). If there is an erase, TchipNextFree+=6ms. Writes

are discussed below.

Second, while read latencies are uniform, write latencies (flash programming time) vary across

different pages. Pages that are mapped to upper bits of MLC cells incur 2ms programming time,

while those mapped to lower bits only incur 1ms. To differentiate upper and lower pages, one-

time profiling is sufficient. Our profiled write time of the 512 pages of every NAND block is

“11111121121122...2112.” That is, 1ms write time is needed for pages #0-6, 2ms for page #7,

1ms for pages #8-9, and the middle pages (“...”) have a repeating pattern of “1122.” The pattern

is the same for every block (consistent with the vendor specification); hence, the profiled data can

be stored in an 512-item array.

3.1.8 A Sample Application: MongoDB

Any application that employs data replication can leverage MITTOS with small modifications.

As a sample application, we pick MongoDB (the “top NoSQL” [40]). Being written in C++,

MongoDB enables fast research prototyping of new system calls usage.

The following is a series of our modifications. (1) MongoDB can create one deadline for every

user, which can be modified anytime. A user can set the deadline value to the 95th-percentile

(p95) expected latency of her workload. For example, if the workload mostly hits the disk, the

p95 latency can be >10ms. In contrast, if the dataset is small and mostly hits the buffer cache, the
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p95 latency can be <0.1ms. (2) MongoDB should use MITTOS’ read() or addrcheck() system

calls to attach the desired deadline. (3) If the first two tries return EBUSY, the last retry (currently)

disables the deadline. Having MITTOS return EBUSY with wait time, to allow a 4th retry to the

least busy node (out of the three), is a possible extension. (4) Finally, one last specific change in

MongoDB is adding an “exceptionless” retry path. Many systems (Java/C++) use exceptions to

catch errors and retry. In MongoDB, C++ exception handling adds 200 µs, thus we must make a

direct exceptionless retry path.

3.2 TEAFA: Tail-evading Flash Array for IO Determinism

SSDs entered the industry looking like disks, a totally black-box device to the host. But, through

decades of journey, the Storage Interfaces Technical Committees continuously make extensions to

host-SSD interfaces, from UNMAP (official in 2007) [25], TRIM (2011) [27], ATOMIC_WRITE (2013)

commands [29], to STREAM (2017) [44], from ABC [241], OpenChannel(2016) [39] to ZNS (2020)

[81].

After all these years, the committees finally accept the need to have an interface that can help

applications observe stable latencies. This interface concept is known as IO Determinism (IOD)

[84]. We are only aware of two specific commands proposed under this concept: SET, which

informs the SSD to partition the chips physically, and WINDOW, which informs the SSD (to try its

best) not to perform any background operation within the time window [260].

These IOD commands were standardized recently in June 2019 [83] but it is unclear how to

program them, e.g., what a proper window value is. A long time window will make the SSD run out

of provisioned space and start GC, breaking the IOD contract. A short window of stable latencies

is not attractive to users with long-running operations. This IOD concept opens up new interesting

research questions.

We present TEAFA, a tail-evading flash array. Below we first describe the design principles

and overview.
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• Leverage data redundancy in flash array for a timely read reconstruction. As we target enter-

prise deployment where flash array is almost a de-facto storage solution, TEAFA exploits data

redundancy for tail tolerance.

For example, in a RAID-5 flash array, redundancy exists in the form of parity data that enables

a late (busy) chunk to be reconstructed using the parity and the rest of the chunks of the same

stripe. Reconstruction is done by the “host” – in software-based RAID, the host implies the OS

layer (e.g., Linux Software RAID) and in hardware RAID, the host implies the RAID controller.

More specifically, let us suppose a stripe consisting of 3 data chunks (B0, B1, B2) and 1 parity

chunk (P). If reading B0 is slow, B0 can be reconstructed by reading the parity and other chunks

within the stripe (B0=B1⊕B2⊕P). If the read is full stripe and a chunk Bi is slow, then a simple P

can be read.

While leveraging redundancy for early reconstruction is straightforward, one must address the

question of exactly when the host should perform this. If the host waits for a few milliseconds

(detect stragglers first), the wait is too long for µs operations. On the other extreme, if the host

always proactively spawn the extra reads in the beginning along with user reads, this will generate

unnecessarily more load (e.g., the SSDs are actually not busy).

• Continue breaking the host-SSD semantic gap with the gray-box principle. To solve the “when”

problem above, a timely decision is needed. Continuing the spirit of gray-box approaches, we

advocate the SSDs to minimally collaborate with the host on two matters: (a) signal the host

when an IO is “busy” behind other background activities, such that the host can perform data

reconstruction in a deterministic and timely manner and (b) negotiate with the host on a proper

time window value such that the SSDs in the array can perform background operations in non-

overlapping time windows. Breaking the semantic gap with these two simple ideas only requires

us programming the IOD WINDOW value and using one bit in the NVMe submission/completion

commands.

• Do not intrusively modify the SSD (and applications). We acknowledge that SSD vendors tend
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not to modify the FTL design too much as the current FTL policies have gone through years of

deployment and massive changes would increase the time to deploy the techniques. Thus, it is not

in our interest to modify the internal SSD management policies too intrusively. Furthermore, we

also do not want to modify applications. To these ends, we carefully design TEAFA by keeping

most changes in the host layer while only modifying the SSD side with just simple logics.

In the following subsections, we present TEAFA’s three main techniques (§3.2.1-3.2.3).

3.2.1 Fast-Fail and Busy Bits

When an SSD is a sole storage, it must be best effort, serving user IOs as fast as it can, but

occasionally still have to queue them behind background operations. However, if the SSD knows

there is redundancy in other SSDs managed by the host, it “knows” there is another way to read (or

reconstruct) the busy data. Here, we argue that it is acceptable for the SSD to return busy signals

rather than queueing IOs for an indeterminate time. We do this in three steps.

First, we extend the base NVMe read submission command with a “fast-fail” bit (using a slot

in the existing 64 reserved bits). When the RAID-based host submits user IOs to the underlying

array, it always marks these original read IOs with fast-fail bit enabled.

Second, the SSD firmware processes IOs as usual when fast-fail bit is disabled, but upon seeing

IOs with the fast-fail bit enabled, the firmware will quickly return (reject) the IOs when there are

expensive background operations queued in front of them (in channel/chip-level queues). For this

purpose, we extend the NVMe read completion message with a “busy” bit (using the reserved

bits). In returning the busy reads, the SSD marks those IO completions with the busy bit enabled

to distinguish them with normal returned IOs.

Finally, upon receiving back a busy read, the host will run the read reconstruction, by submit-

ting additional IOs that we call reconstruction IOs (to differentiate them from the original user

IOs). After reconstruction, the host can return the user IOs to upper layers and deem it completed.

A limitation of this approach is that it can only reconstruct k sub-IOs within a stripe where k is
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the number of parity blocks (e.g., k=1 in RAID-5 and k=2 in RAID-6). Thus, it is still tail-prone

when >k sub-IOs are returned busy (i.e., the reconstruction IOs are also returned with busy bits

set). The subsequent sections will address this limitation.

Regardless of the limitation, this approach by itself is enough to deliver a large benefit, for two

reasons. First, returning a busy read only takes 1µs through PCIe and the xor-based reconstruction

takes less than 10µs on modern CPUs. Thus, this fast-fail notification (plus reconstruction) can

provide orders of magnitude faster response than forcing the user to wait for background operations

to complete. Second, as highlighted earlier (Figure 2.6b in §2.5), the probability that two sub-IOs

of a stripe being delayed by two simultaneously busy SSDs is significantly smaller than only one

sub-IO being delayed. This implies that the fast-fail approach is enough to circumvent the many

single busy sub-IOs.

3.2.2 Shortest BG Remaining Time

We now enhance our first technique above for the cases where multiple busy sub-IOs are returned.

Let us imagine a user full-stripe read to a RAID-5 (excluding the parity read) and one of the sub-

IOs is returned with busy=1. The host would then send a reconstruction IO, the parity read with

fast_fail=1, in order to reconstruct the busy sub-IO. Now, if the parity read also returns busy=1,

the host must re-submit one of the two busy sub-IOs again, but the question is which one should

be sent below.

The simplest is a random way: select one from the two, but with a 50% chance picking the

longer delay. The problem here is that the wait time due to a background (“BG”) operation can

span a long time from “almost finish” (near 0 second) or “just begin” (e.g., induce >60× slowdown

when moving tens of valid pages as demonstrated earlier in §2.5).

A more effective approach is to re-submit the one with the shortest BG remaining time. This

requires the SSD to inform the host such BG timing information. In TEAFA, we piggyback the

remaining BG time (Trem) in the NVMe completion message (using the 64 reserved bits). In precise
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definition, Trem of a busy sub-IO is how long this read IO would have waited inside the SSD to get

served (i.e., until when the read command reaches the destination NAND chip).

Next, when the host receives two busy sub-IOs, it re-submits the one with the smallest Trem.

To generalize this, in the worst case where the RAID-5 host receives busy sub-IOs from all the N

drives (including busy parity read), then it would resubmit N−1 reads with the least Trem.

This kind of “gray-box information” [109, 158] is valuable because it does not reveal the in-

ternal details but yet is helpful for the host. Guessing the remaining time in a black-box way will

be challenging due to the many vendor-specific implementations (different FTLs, GC algorithms,

etc.). Inside the SSD, the firmware can easily estimate the BG remaining time. An SSD firmware

typically maintains multiple queue structures for the parallel flash units. Trem can be simply es-

timated by counting the number of pending background IOs in front of the user IO within the

channel/chip queues. Prior works have shown that such a queue-based wait time is feasible to

calculate [148, 149, 164].

We now address the question whether SSD vendors are willing to reveal such information.

First, the Trem technique can be made optional. Our earlier approach (§3.2.1) is powerful enough

and can be combined with the next method (§3.2.3) where Trem only helps in very corner cases,

as explained later. Second, we argue that returning Trem does not reveal more information be-

yond what users already see. Prior works already show that users can deconstruct many internal

SSD layouts by simply deconstructing the user-observed latencies [153, 154, 334]. Third, if slight

“obfuscation” is needed, Trem can be designed to be a normalized number to alleviate potential

timing channel attacks, similar to the chunk wearing information in the OpenChannel 2.0 specifi-

cation [53].

3.2.3 BG Time Window

Our earlier approaches are effective when the probability of multiple sub-IOs delayed by concur-

rent BG operations is low. However, we observe a different case within a flash array design (in one
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of the co-authors’ company) that is deployed by a large number of customers. The design absorbs

user writes to a large, separate battery-backed RAM (outside the flash array). The host always

flushes this external RAM to the array in the form of large sequential writes of the same-size (+/-

1 block) to the underlying SSDs (i.e., always full-stripe flushes). Hence, all the SSDs age at the

same pace. Because SSDs of an array are usually the same model (same FTL logic), GC operations

kick in at relatively the same time. This causes the host to see multiple busy sub-IOs returned with

similar Trem values. Handling cases like this is important for other similar flash-array designs that

employ an external RAM and full-stripe flushes.

It would be ideal if background operations in the individual SSDs of an array are not overlap-

ping in time. In RAID-5 for example, at most one SSD performs background operations in a given

time window, allowing the RAID-5 host to always successfully circumvent at most one busy read.

To our advantage, an initial time window interface in IOD is already officially accepted (§2.5).

However, we are not aware of published papers on how to program/set the time window value.

Herein lies our contribution, specifically in the context of flash array. To program the time win-

dow value, TEAFA introduces two options: a static (SSD managed) and a dynamic window (host

managed), described in detail in Section 3.2.4. We summarize them below.

In the SSD-managed static-window approach (§3.2.4), the SSDs use the internal proprietary in-

formation to inform the host a proper time window value (Twin) to be used. For instance, Twin=1sec

implies that the SSDs will take turns performing BG operations at 1s granularity. The host only

needs to tell the SSDs their position in the array (e.g., so that SSD1 only performs BG operations

between t=0..1sec, SSD2 between t=1..2sec, and so on). This configuration is set during the

RAID creation.

The host-managed dynamic-window approach (§3.2.4) does not require the SSDs to provide

the window value. Rather, the window time will be initially set by the host using a random value

(e.g., 0.5sec) and will be adjusted dynamically live during the runtime to eventually reach a rel-

atively optimal window size. On one hand, a large Twin will potentially starve the device (the
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Sym. Meaning Ex. values

Basic properties

β Valid page ratio in a block 25%

tr NAND page read latency 100µs

tw NAND page write latency 1500µs

te NAND block erase latency 6ms

npg # of pages in one NAND block 512

cblk NAND block size 8MB

nch # of channels in the SSD 16

Covp SSD over-provisioning space (5%) 100GB

Nd # of devices in the RAID group 16

Derived values

Tgc Time to garbage collect one block 0.4s

Bgc GC bandwidth in a WINDOW 455MB/s

Bu User write bandwidth in a WINDOW 1GB/s

Table 3.1: Symbols (§3.2.4). The table explains the symbols used in TEAFA’s WINDOW algorithm. The

top part are the basic properties of modern datacenter SSDs [77, 126] and the bottom part are the derived

values. The right-most column shows example values we use in Section 3.2.4.

provisioned space), as GC cannot be frequently triggered to reclaim enough free blocks. On the

other hand, a small Twin (e.g., less than one GC blocking time) is not enough to ensure one GC can

finish within the Twin period, hence breaking the IOD expectation. A small Twin will also increase

write amplification [214] as it forces GCs to happen more frequently, not letting the SSDs to absorb

as many overwrites as possible.

3.2.4 Time Window Algorithms

We now discuss the algorithms behind our static and dynamic time windows.

• SSD-Managed Static Window: In this method, we advocate the SSD firmware to calculate

the proper time window (Twin). The algorithm is based on the width of the RAID, SSD’s NAND

characteristics (read/write latencies), and firmware policies (e.g., GC policies), as listed in Table

3.1. The host only needs to tell the SSDs the array width (Nd) and then the firmware gives the

resulting Twin value to the host without exposing the internal proprietary information.

Twin must satisfy the following constraint:
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Twin ≤ Covp / (Nd × Bu−Bgc)

Here we consider a period with Nd time windows (e.g., a RAID-5 setup with Nd devices). As

only one SSD is allowed to perform GC on its own turn (one time window), the user writes can

keep coming within the full “cycle” (a period of Nd×Twin) until the SSD has a chance again to

do GC. Thus, Nd×Bu represents the user write load for one SSD within a cycle. Within its time

window, the SSD can run GCs freely to reclaim space, say at the speed of Bgc (expanded later

below). This means (Nd×Bu)−Bgc is the net write load that an SSD should handle in a cycle. In

other words, the net incoming write load should not take up all the free over-provisioned space that

the SSD has (Covp).

All combined, the time window length (Twin) must be less than the size of the over-provisioned

space (Covp) divided by the net write load, hence the constraint above. Given that Covp is typically

a fixed size, Twin is mainly decided by Nd , Bu and Bgc. For example, under a wide RAID (large

Nd), Twin must be set smaller to avoid breaking the IOD contract.

Now, let’s further derive the GC speed (Bgc), which can be simply calculated as the amount of

space reclaimed divided by the GC time. Suppose an average valid page ratio of β in one victim

block, we can gain (1−β )×cblk more space by cleaning one block, where cblk is the NAND block

size. With nch parallel channels, nch× of such size can be performed at the same time. Hence, Bgc

is as follows:

Bgc = (1 − β ) × cblk× nch / Tgc

In the equation above, we introduce Tgc which is the time length to clean a block. The equation

is as follows where the parameters can be found in Table 3.1. In a nutshell, Tgc depends on how

many valid pages to move and the NAND read/write time, plus the block erase time.

Tgc = (tr + tw) × β × npg + te

Now, let’s use the example parameter values in Table 3.1 to give a more concrete picture. For

Bgc, the resulting value will be 455MB/s. Next, given a user load (Bu) and RAID size (Nd), we can

get the safe range for Twin. For example, even under a bursty write load (Bu) of 1GB/s, roughly
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equal to 42 drive writes per day (DWPD), and 16 drives (Nd), Twin≤6.4s is safe enough. SSD

vendors could follow our constraint above to find a proper Twin value for every model.

• Host-Managed Dynamic Window: In this approach, we do not add more work to the SSD, but

rather have the host dynamically set the window value. Upon reboot, the host sets a base value

B (e.g., 0.5sec) and during runtime dynamically adjusts the value using a simple algorithm below,

which is only possible given the busy signals supported in TEAFA (§3.2.1), hence showing the

power of all of the approaches combined.

Every period of P (e.g., 50ms), the host increases the value by I ms (e.g., 10ms) as long as it

does not see more than k busy sub-IOs within a stripe (k=1 in RAID-5; §3.2.1). In other words,

as long as the host can always reconstruct up to k busy sub-IO(s) within a stripe, then the window

value is deemed “safe,” as it allows all the SSDs to have enough time to perform BG operations

without overlapping each other in time. As mentioned earlier (§3.2.3), ideally, Twin is set as high

as possible to reduce write amplification, hence the reason we increase the value gradually.

If more than k busy sub-IOs are observed, it implies that Twin is too large for the current user

load, hence forcing the SSDs to execute some BG operations within the supposedly deterministic

period and breaking the IOD expectation. For example, the internal RAM buffer or the over-

provisioned NAND space is almost full, forcing a flush or GC to happen, respectively. When the

host sees more than k busy sub-IOs, the host decreases the Twin by half2 and informs the SSDs of

the new window value.

We acknowledge that there are potentially many other possibilities to set the window value.

For example, device performance likely deteriorates over time, thus even the static method requires

window time recalibration. Above are our early attempts to figure out ways to program the window

value and we find them simple and effective enough.

A very small Twin will reduce TEAFA back to the base case where there is no time window.

This is because a too small time window won’t be long enough for BG operations to finish, thus

2. Mimicking the TCP AIMD algorithm (additive increase multiplicative decrease) [60].
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BG operations started from previous time window will last into next few time windows and still

cause concurrent BG operations. Under such cases, TEAFA read construction won’t help as it can

only deterministically reconstruct one busy sub-IO. Here, we argue that Twin should also satisfy

the following constraints:

Twin ≥ b × Tgc

Where b (b≥1) is a constant which implies the number of GCs that’s allowed to happen per

channel per time window. This guarantees that Twin is at least as long as one GC time, thus we

won’t see one GC from one SSD hogs two or more time windows. If more than one GC from each

channel GCs (b > 1) need to be issued, the SSD vendor could use a relatively larger lower bound

(larger b) for Twin or they can postpone the additional BG operations to the next time window of

the SSD without breaking the IOD contract.

3.2.5 RAID size (Nd)

To guarantee that there won’t be concurrent GCs happening in the RAID group at any time point

under time window mechanism, we need to ensure that GCs in each SSD can be timely completed

within its own time window. SSDs need to balance user writes which consume free pages and GCs

which reclaim space, under which a steady state is maintained to guarantee the SSD not to run

out of over-provisioning space. Thus, the basic constraint here is that there should be enough free

pages cleaned by GCs to satisfy incoming user writes under a certain Twin.

Here, we try to answer: how large can Nd be without breaking TEAFA IOD promises?

We derive the maximum RAID size allowable (Nd) such that no concurrent BG operations will

happen. That is, as we can only reconstruct one busy sub-IO, there should be at most one SSD

performing BG operations at all time. Below we show that Nd=21 is safe even under intensive

write. We first use concrete values. The basic parameters used are the same as Table 1 in our main

submission, and then we give a detailed analysis.

We have provided a constraint about Twin in our main submission, where the over-provisioning
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space is used by for buffering bursty user writes. Here, we further tighten the constraint (by

dropping the help from over-provisioning space) and consider a case where GC speed (Bgc) should

match user load (Bu) to maintain each SSD’s stable status. Thus,

Nd × Bu ≤ Bgc

In each “cycle” of Nd×Twin time, the incoming user write load is Nd×Bu×Twin, and the GC

load is Bgc×Twin, to satisfy the constraint we state above, user load should be equal to or smaller

than GC load, thus we can get the above constraint formula.

According to this, we can get Nd ≤ Bgc / Bu. We have deducted that Bgc can be 455MB/s

given an average case. As for Bu, even if we consider a 5 drive write per day guarantee from the

SSD vendor, assuming a 2TB SSD, 5 DPWD roughly equals to 121MB/s (5×2TB/24hours). This

means Nd can only be as high as 455/121<4.

However, with modern ONFI based NAND techniques which support multi-planes and multiple-

registers in each plane, the GC speed (Bgc) actually can be much higher. To be specific, SSD

controller can utilize multi-plane commands to read/write multiple NAND pages at almost the

same cost of single tr/tw. Further, with multiple registers per plane, NAND die bandwidth can

be much higher by interleaving data transfer through the channel and NAND read/program opera-

tions. Based on this, let’s calculate the new Bgc assuming a 4-plane NAND die (e.g., Toshiba A19

MLC NAND, [170]) with multiple-registers.

Given Tgc time, we can clean 4× more space since the 4 blocks in neighbor planes on the same

die can be garbage collected simultaneously. Thus,

Bgc = 4 × (1 − β ) × cblk× nch / Tgc

Similarly, here Tgc means the time needed for the above blocking cleaning operations. It’s still

mainly decided by the time to move valid pages in the victim blocks. But with multiple registers,

the channel transfer time can be hidden from consecutive read/write operations. Under a standard

ONFI 3.0 interface, transferring 4KB data through the channels takes roughly 15µs (260MB/s

channel speed, [126]), thus it takes tch=60µs for a 16KB page. Hence, we have
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Tgc = (tr + tw + 6 × tch) × β × npg + te

In the above formula, the “6×tch” part represents the extra time to transfer 3 extra set of page

data from the other 3 planes for both reads and writes (3×2×tch). And the rest is the same as the

Tgc calculation formula in the main submission.

Still plugging in the parameters in Table 1 in the main paper, we can get Bgc=1495MB/s. This

will allow Nd to be as large as 12 under 5 DWPD or 21 under 3 DWPD, which is enough for

building a large RAID in real deployment.

3.3 TTFLASH: Tiny-Tail Flash Controller

TTFLASH is a “tiny-tail” flash drive (SSD) that eliminates GC-induced tail latencies by circum-

venting GC-blocked I/Os with four novel strategies: plane-blocking GC, rotating GC, GC-tolerant

read, and GC-tolerant flush. It is built on three SSD internal advancements: powerful controllers,

parity-based RAIN, and capacitor-backed RAM, but is dependent on the use of intra-plane copy-

back operations.

We now present the design of TTFLASH, a new SSD architecture that achieves guaranteed

performance close to a no-GC scenario. We are able to remove GC blocking at all levels with the

following four key strategies:

1. Devise a non-blocking controller and channel protocol, pushing any resource blocking from

a GC to only the affected planes. We call this fine-grained architecture plane-blocking GC

(§3.3.1).

2. Exploit RAIN parity-based redundancy (§3.3.2) and combine it with GC information to

proactively regenerate reads blocked by GC at the plane level, which we name GC-tolerant

read (§3.3.3).

3. Schedule GC in a rotating fashion to enforce at most one GC in every plane group, such

that no reads will see more than one GC; one parity can only “cut one tail.” We name this

rotating GC (§3.3.4).

50



Sizes Latencies

SSD Capacity 256 GB Page Read 40µs

#Channels 8 (flash-to-register)

#Planes/channel 8 Page Write 800µs

Plane size 4 GB (register-to-flash)

#Planes/chip ** 1 Page data transfer 100µs

#Blocks/plane 4096 (via channel)

#Pages/block 256 Block erase 2 ms

Page size 4 KB

Table 3.2: SSD Parameters. This paper uses the above parameters. (**) 1 planes/chip is for simplicity

of presentation and illustration. The latencies are based on average values; actual latencies can vary due

to read retry, different voltages, etc. Flash reads/writes must use the plane register.

4. Use capacitor-backed write buffer to deliver fast durable completion of writes, allowing them

to be evicted to flash pages at a later time in GC-tolerant manner. We name this GC-tolerant

flush (§3.3.5).

For clarity of description, the following sections will use concrete parameter values shown in Table

3.2.

3.3.1 Plane-Blocking GC (PB)

Controller- and channel-blocking GC are often adopted due to their simplicity of hardware im-

plementation; a GC is essentially a for-loop of copyback commands. This simplicity, however,

leads to severe tail latencies as independent planes are unnecessarily blocked. Channel-blocking is

no better than controller-blocking GC for large I/Os; as every large I/O is typically striped across

multiple channels, one GC-busy channel still blocks the entire I/O, negating the benefit of SSD

parallelism. Furthermore, as SSD capacity increases, there will be more planes blocked in the

same channel. Worse, GC period can be significantly long. A GC that copybacks 64 valid pages

(25% valid) will lead to 54 ms (64×840µs) of blocked channel, which potentially leaves hundreds

of other I/Os unservable. An outstanding read operation that supposedly only takes less than 100

µs is now delayed longer by order(s) of magnitude [28, 141].

To reduce this unnecessary blocking, we introduce plane-blocking GC, as illustrated in Figure
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2.4c. Here, the only outstanding I/Os blocked by a GC are the ones that correspond to the GC-ing

plane (# labels). All I/Os to non-GCing planes (non-# labels) are servable, including the ones in

the same channel of the GC-ing plane. As a side note, plane-blocking GC can be interchangeably

defined as chip-blocking GC; in this paper, we use 1 plane/chip for simplicity of presentation.

To implement this concept, the controller must perform a fine-grained I/O management. For

illustration, let us consider the four GC steps (§2.3). In TTFLASH, after a controller CPU/thread

sends the flash-to-register read/write command (Steps 1 and 3), it will not be idle waiting (for

40µs and 800µs, respectively) until the next step is executable. (Note that in a common imple-

mentation, the controller is idling due to the simple for-loop and the need to access the channel to

check the plane’s copyback status). With plane-blocking GC, after Steps 1 and 3 (send read/write

commands), the controller creates a future event that marks the completion time. The controller

can reliably predict how long the intra-plane read/write commands will finish (e.g., 40 and 800 µs

on average, respectively). To summarize, with plane-blocking GC, TTFLASH overlaps intra-plane

copyback and channel usage for other outstanding I/Os. As shown in Figure 2.4c, for the duration

of an intra-plane copyback (the striped/GC-ing plane), the controller can continue serving I/Os to

other non-GCing planes in the corresponding channel (▲ I/Os).

Plane-blocking GC potentially frees up hundreds of previously blocked I/Os. However, there is

an unsolved GC blocking issue and a new ramification. The unsolved GC blocking issue is that the

I/Os to the GC-ing plane (# labels in Figure 2.4c) are still blocked until the GC completes; in other

words, with only plane-blocking, we cannot entirely remove GC blocking. The new ramification

of plane-blocking is a potentially prolonged GC operation; when the GC-ing plane is ready to take

another command (end of Steps 2 and 4), the controller/channel might still be in the middle of

serving other I/Os, due to overlaps. For example, the controller cannot start GC write (Step 3)

exactly 40 µs after GC read completes (Step 1), and similarly, the next GC read (Step 1) cannot

start exactly 800 µs after the previous GC write. If GC is prolonged, I/Os to the GC-ing plane will

be blocked longer. Fortunately, the two issues above can be masked with RAIN and GC-tolerant
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Figure 3.3: TTFLASH Architecture. The figure illustrates our RAIN layout (§3.3.2), GC-tolerant read

(§3.3.3), rotating GC (§3.3.4), and GC-tolerant flush (§3.3.5). We use four channels (C0−C3) for simplicity

of illustration. Planes at the same “vertical” position form a plane group (G0, G1, etc.). A RAIN stripe is

based on N−1 LPNs and a parity page (e.g., 012P012).

read.

3.3.2 RAIN

To prevent blocking of I/Os to GC-ing planes, we leverage RAIN, a recently-popular standard for

data integrity [13, 21]. RAIN introduces the notion of parity pages inside the SSD. Just like the

evolution of disk-based RAIDs, many RAIN layouts have been introduced [171, 200, 221, 223],

but they mainly focus on data protection, write optimization, and wear leveling. On the contrary,

we design a RAIN layout that also targets tail tolerance. This section briefly describes our basic

RAIN layout, enough for understanding how it enables GC-tolerant read (§3.3.3).

Figure 3.3 shows our RAIN layout. For simplicity of illustration, we use 4 channels (C0−C3)

and the RAIN stripe width matches the channel count (N=4). The planes at the same position in

each channel form a plane group (e.g., G1). A stripe of pages is based on logical page numbers

(LPNs). For every stripe (N−1 consecutive LPNs), we allocate a parity page. For example, for

LPNs 0-2, we allocate a parity page P012.

Regarding the FTL design (LPN-to-PPN mapping), there are two options: dynamic or static.

Dynamic mapping, where an LPN can be mapped to any PPN, is often used to speed-up writes
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(flexible destination). However, in modern SSDs, write latency issues are absorbed by capacitor-

backed RAM (§3.3.5); thus, writes are spread across multiple channels. Second, dynamic mapping

works well when individual pages are independent; however, RAIN pages are stripe dependent.

With dynamic mapping, pages in a stripe can be placed behind one channel, which will underutilize

channel parallelism.

Given the reasons above, we create a page-level hybrid static-dynamic mapping. The static

allocation policies are: (a) an LPN is statically mapped to a plane (e.g., LPN 0 to plane G0C0 in

Figure 3.3), (b) N−1 consecutive LPNs and their parity form a stripe (e.g., 012P012), and (c) the

stripe pages are mapped to planes across the channels within one plane group (e.g., 012P012 in

G0). Later, we will show how all of these are crucial for supporting GC-tolerant read (§3.3.3) and

rotating GC (§3.3.4).

The dynamic allocation policy is: inside each plane/chip, an LPN can be dynamically mapped

to any PPN (hundreds of thousands of choices). An overwrite to the same LPN will be redirected

to a free page in the same plane (e.g., overwrites to LPN 0 can be directed to any PPN inside G0C0

plane).

To prevent parity-channel bottleneck (akin to RAID-4 parity-disk bottleneck), we adopt RAID-

5 with a slightly customized layout. First, we treat the set of channels as a RAID-5 group. For

example, in Figure 3.3, P012 and P345 are in different channels, in a diagonal fashion. Second, as

SSD planes form a 2-dimensional layout (GiC j) with wearout issues (unlike disk’s “flat” LPNs),

we need to ensure hot parity pages are spread out evenly.

3.3.3 GC-Tolerant Read (GTR)

With RAIN, we can easily support GC-tolerant read (GTR). For a full-stripe read (which uses N−1

channels), GTR is straightforward: if a page cannot be fetched due to an ongoing GC, the page

content is quickly regenerated by reading the parity from another plane. In Figure 3.3, given a full-

stripe read of LPNs 0–2, and if LPN 1 is unavailable temporarily, the content is rapidly regenerated
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by reading the parity (P012). Thus, the full-stripe read is not affected by the ongoing GC. The re-

sulting latency is order(s) of magnitude faster than waiting for GC completion; parity computation

overhead only takes less than 3µs for N≤8 and the additional parity read only takes a minimum of

40+100µs (read+transfer latencies; Table 3.2) and does not introduce much contention.

For a partial-stripe read (R pages where R<N−1), GC-tolerant read will generate in total N−R

extra reads; the worst case is when R=1. These N−R extra parallel reads will add contention

to each of the N−R channels, which might need to serve other outstanding I/Os. Thus, we only

perform extra reads if TGCtoComplete>B×(40+100)µs where B is the number of busy channels

in the N−R extra reads (for non-busy channels the extra reads are free). In our experience, this

simple policy cuts GC tail latencies effectively and fairly without introducing heavy contention.

In the opposing end, a “greedy” approach that always performs extra reads causes high channel

contention.

We emphasize that unlike tail-tolerant speculative execution, often defined as an optimization

task that may not be actually needed, GC-tolerant read is affirmative, not speculative; the con-

troller knows exactly when and where GC is happening and how long it will complete. GTR is

effective but has a limitation: it does not work when multiple planes in a plane group perform GCs

simultaneously, which we address with rotating GC.

3.3.4 Rotating GC (RGC)

As RAIN distributes I/Os evenly over all planes, multiple planes can reach the GC threshold and

thus perform GCs simultaneously. For example, in Figure 3.3, if planes of LPNs 0 and 1 (G0C0

and G0C1) both perform GC, reading LPNs 0–2 will be delayed. The core issue is: one parity can

only cut “one tail”. Double-parity RAIN is not used due to the larger space overhead.

To prevent this, we develop rotating GC (RGC), which enforces that at most one plane in each

plane group can perform one GC at a time. Concurrent GCs in different plane groups are still

allowed (e.g., one in each Gi as depicted in Figure 3.3). Note that rotating GC depends on our
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RAIN layout that ensures every stripe to be statically mapped to a plane group.

We now emphasize our most important message: there will be zero GC-blocked I/Os if rotating

GC holds true all the time. The issue here is that our rotating approach can delay a plane’s GC as

long as (N−1)×Tgc (the GC duration). During this period, when all the free pages are exhausted,

multiple GCs in a plane group must execute concurrently. This could happen depending on the

combination of N and the write intensity.

Employing a large stripe width (e.g., N=32) is possible but can violate rotating GC, implying

that GC tail latencies cannot be eliminated all the time. Thus, in many-channel (e.g., 32) modern

SSDs, we can keep N=8 or 16 (e.g., create four 8-plane or two 16-plane groups across the planes

within the same vertical position). Increasing N is unfavorable not only because of rotating GC

violation, but also due to reduced reliability and the more extra I/Os generated for small reads by

GTR (§3.3.3). In our evaluation, we use N=8, considering 1/8 parity overhead is bearable.

3.3.5 GC-Tolerant Flush (GTF)

So far, we only address read tails. Writes are more complex (e.g., due to write randomness, read-

and-modify parity update, and the need for durability). To handle write complexities, we leverage

the fact that flash industry heavily employs capacitor-backed RAM as a durable write buffer (or

“cap-backed RAM” for short) [24]. To prevent data loss, the RAM size is adjusted based on the

capacitor discharge period after power failure; the size can range from tens to hundreds of MB,

backed by “super capacitors” [20].

We adopt cap-backed RAM to absorb all writes quickly. When the buffer occupancy is above

80%, a background flush will run to evict some pages. When the buffer is full (e.g., due to intensive

large writes), a foreground flush will run, which will block incoming writes until some space is

freed. The challenge to address here is that foreground flush can induce write tails when the

evicted pages must be sent to GC-ing planes.

To address this, we introduce GC-tolerant flush (GTF), which ensures that page eviction is
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free from GC blocking, which is possible given rotating GC. For example, in Figure 3.3, pages

belonging to 3’, 4’ and P3′4′5′ can be evicted from RAM to flash while page 5’ eviction is delayed

until the destination plane finishes the GC. With proven rotating GC, GTF can evict N−1 pages in

every N pages per stripe without being blocked. Thus, the minimum RAM space needed for the

pages yet to be flushed is small.

For partial-stripe writes, we perform the usual RAID read-modify-write eviction, but still with-

out being blocked by GC. Let us imagine a worst-case scenario of updates to pages 7’ and 8’ in

Figure 3.3. The new parity should be P67′8′ , which requires read of page 6 first. Despite page 6

being unreachable, it can be regenerated by reading the old pages P678, 7, and 8, after which pages

7’, 8’, and P67′8′ can be evicted.

We note that such an expensive parity update is rare as we prioritize the eviction of full-stripe

dirty pages to non-GCing planes first and then full-stripe pages to mostly non-GCing planes with

GTF. Next, we evict partial-stripe dirty pages to non-GCing planes and finally partial-stripe pages

to mostly non-GCing planes with GTF. Compared to other eviction algorithms that focus on re-

ducing write amplification [198], our method adds GC tail tolerance.

3.4 Implementation

3.4.1 MITTOS Implementation

MITTOS is implemented in 3260 LOC in Linux v4.10 (MITTNOOP, and MITTSSD in 1810, 1450

lines respectively, and an additional 50 lines for propagating deadline through the IO stack. These

changes spread across 28 kernel files in 5 directories.

The core modification in MongoDB to leverage MITTOS support is only 50 LOC, which

mainly involves adding user’s deadlines and calling addrcheck (MongoDB by default uses mmap()

to read data file). For testing MITTOS’ read() interface, we also add read-based method to Mon-

goDB in 40 LOC. For making one-hop, exceptionless retry path, we add 20 more lines of code.
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Finally, to evaluate MITTOS with other advanced techniques, we must add cloning and hedged-

request features to MongoDB for another 210 LOC.

3.4.2 TEAFA Implementation

We first describe the platforms we use, and then the breakdown of TEAFA implementation, and

other re-implementation of related works.

• Platforms: To implement TEAFA, we exhaustively tried many popular SSD research platforms

from OpenSSD [46], DFC Card [41], FEMU [228], to LightNVM/OpenChannel-SSD (OCSSD)

[126]. At the end only FEMU and LightNVM work as suitable platforms. We first discuss why

OpenSSD and DFC are not an appropriate platform to implement TEAFA, and then we further

describe our changes to LightNVM for TEAFA.

OpenSSD: The most ideal platform to implement TEAFA is the OpenSSD platform where we

can modify the FTL logic and the NVMe interface implementation. However OpenSSD front-end

programming framework is a single-threaded C implementation of the controller, which on the

positive side speeds up FTL research development, but on the negative side not enabling more

complex implementations. For example, in OpenSSD, when the SSD is doing a GC, the controller

cannot be programmed to concurrently read the submission queue and return a busy signal. This

simple programming model doesn’t confirm with the ONFI controller specification that shows

when a controller sends read/write device-level commands to the NAND chips, the event-based

controller can proceed doing other concurrent operations. We tried many approaches to work

around this, but at the end discard using OpenSSD.

DFC Card: Dragon Fire Card [41] is another SoC-based platform where the firmware changes

can be implemented in the “mini” Linux on running on the SoC. Earlier DFC cards can directly

manage NAND chips (the on-SoC Linux has an FTL driver), but it’s no longer supported; The

latest version of DFC cards directly attach to off-the-shelf SSDs where the FTL now resides in the

SSD firmware, hard to modify. DFC cards lately are used as research platform to show near-storage
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processing, rather than pure FTL research.

FEMU (upgraded): This is a recent flash emulation platform (QEMU-based and DRAM-

backed) [228] that allows applications and OS to run on top. It is reported to be more scalable than

the popular VSSIM [325]. However, we must perform some fundamental modifications before

we can build TEAFA here. First, FEMU default FTL’s high computation overhead (adapted from

VSSIM) causes inaccurate emulation under high user load. Thus, we (1) implemented a new

page-level FTL optimized for FEMU emulation model, (2) offloaded the FTL logic into a separate

polling thread to avoid interference from other management logics, and (3) re-implemented the

data placement and GC policies taken from modern SSD designs [126, 265]. This whole upgrade

requires 980 LOC, but now FEMU can deliver a low and stable read latency of 40µs and 400

KIOPS. Second, we had to extend the firmware emulation with more basic features such as write

buffering and flushing policies (e.g., LRU with a balanced binary search tree) and preemptive

GC policy in 740 LOC, all of which was not supported in base FEMU. All of the upgrades and

extensions now allow us to build TEAFA’s firmware logic in FEMU as well as to rapidly re-

implement other related works for evaluation purposes.

LightNVM+OCSSD: FEMU allows fast prototyping but one drawback is its DRAM-backed

emulation nature (i.e., not a real SSD). Because OpenSSD and DFC Card do not work for us, we

have to resort to LightNVM+OCSSD. Thus, we also build TEAFA’s firmware logic in LightNVM

to show a real SSD evaluation. TEAFA implentation on the OCSSD is based on CNEX WestLake

SDK. Our OCSSD uses the OpenChannel Spec 1.2 and runs LightNVM (the FTL) to manage

NAND flash. LightNVM uses a state-of-the-art preemptive GC and a rate limiter to balance user

and GC writes. OCSSD features host-managed IO scheduling, data placement and flexible pre-

emptive GC policies, thus rendered a promising solution for solving the unpredictability problem

associated with NAND flash. However, we find OCSSD/LightNVM has the following problems:

(1) firmware prioritizes reads over writes (2) LightNVM limits inflight writes to each LUN (a.k.a,

NAND die) to be at most 1 while allowing as many as reads submitted to the OC controller. Un-
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der this design, when using a mixed workload with r/w ration 2:1, we observe write throughput

drop to 3MB/s for whole SSD, if we kill the read workloads, the write throughput will be back

to 1GB/s (under frequent GCs). We argue that base LightNVM design achieves best read perfor-

mance at the cost of write bandwidth. Even in this case, user read might end up being queued

behind by GC requests and experience tens of ms latencies. As NAND moving to 3D TLC And

QLC with even 196 layers , program and erase latencies are getting worse, reaching 4ms and 10ms

respectively by themselves. In this sense, it still makes sense to help save a read being blocked by

writes or erases, using TEAFA reconstruction method. We argue the firmware’s bias over writes

doesn’t follow the OpenChannel standard where the controller should execute command in FIFO

and leave I/O scheduling to the host. Thus, our first effort is to work around the firmware problem

by maintaining FIFO queue in LightNVM in 600 LOC. To be specific, LightNVM uses vector I/O

commands, carrying at most 64 4KB sectors. While this reduces submission overhead, it makes

performance monitoring to the underlying OC controller hard. Thus, we enhance LightNVM with

a per-LUN queue. We insert a shim layer between pblk and NVMe driver to intercept pblk level

IO requests and divide them into per-LUN level requests which will be managed by our per-LUN

queue. In the IO completion path, we aggregate all the per-LUN requests back to user the original

pblk request. This design doesn’t introduce much overhead on the host as host CPU is powerful.

LightNVM uses vector I/O commands to reduce command transmission overhead, however, this

might impose load imbalance over all the parallel LUNs. The per-LUN queue design also makes

it easier for people to design sophisticated I/O scheduling and data placement algorithms. The

per-LUN queue works in FIFO manner to guarantee fairness. Due to the OC controller limitation

on prioritizing reads over writes, we limit the number of inflight reads to be 1 if there is a write

operation in front, thus making sure that write won’t be starved by read operations. In addition, we

also solved a severe bug of LightNVM when working with Linux software RAID which will cause

system hangup. The problem is reported to and confirmed by LightNVM maintainers and we also

submitted patches to fix it.
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• TEAFA software implementation: This is broken down to the following layers.

The host (Linux Software RAID): Here we implement the TEAFA’s host-side logic in 806

LOC in Linux 4.15. While the complexity is small, it took us months to address a couple of hurdles.

First, when a busy read is returned, Linux triggers a complex timeout thread and a series of retries

in the NVMe layer, hence we have to augment the driver code to distinguish between busy and real

failure signals to bypass unnecessary IO retries. Second, to change the RAID-level IO processing

logic for tracking the status of each busy IOs and their BG remaining time, we must change the

complex Linux RAID state machine where originally every sub-IO path was highly diverged. In

other words, each sub-IO is treated “independent”, but in TEAFA, the status of every sub-IO must

be monitored with respect to the other sub-IOs within the same stripe (for busy sub-IO counting

and retry decision with/without fast-fail bits enabled).

The interface: We modify the Linux 4.15 NVMe driver to support TEAFA interface changes

in just 18 LOC. As mentioned, the fast-fail and busy bits do not require a new bit position, but

rather are “piggybacked” using the existing 64 free reserved bits in command/completion mes-

sages. While we focus on NVMe in this paper, we have also experimented with SATA, virtio and

IDE interfaces, without breaking the RAID layer and FTL logic, demonstrating the simplicity of

our interface changes. For SATA/IDE, due to lack of re-usable bits in the IO command structure

(only 8-bit usable), we have to divide Trem into 28 buckets, instead of passing back a real remaining

time value.

The SSD “firmware”: Modifying a real firmware can be done with OpenSSD or through

collaboration with SSD vendors. Because of the limitations mentioned above, we implement the

TEAFA firmware logic in 294 LOC in FEMU and 186 in LightNVM. The firmware logic is es-

sentially for making fast-fail decisions and processing the fast-fail/busy bits. For computing the

BG remaining time, we add a fine-grained IO status monitoring at the channel/chip queue, which

is as simple as counting the number of requests in each queue and the remaining time of in-flight

requests. As emphasized numerous times, TEAFA does not force any major policy changes such as
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re-architecting the GC process. As an additional note, although our firmware prototype is in soft-

ware (FEMU and LightNVM), our industry partners agree that the simplicity of TEAFA’s firmware

logic can be easily added to a real firmware.

• Re-implementation of other works In our evaluation, we compare TEAFA with other works.

But because other works use varying platforms (some of which even cannot run), “apples-to-

apples” comparison would be difficult to make. Fortunately, with the upgraded FEMU platform,

we were able to re-implement other works such as Harmonia [209], Flash on Rails [292], a proac-

tive approach (more later) and Preemptive GC [220] in around 1400 LOC. Here we provide more

details on how we implement related-work on FEMU platform.

Proactive: To avoid the uncertainty caused by the timeout threshold, Proactive method is more

aggresive. Despite user IO size, Proactive always sends full-stripe reads down to all the devices

in the RAID group. And it only waits for the first few returned IOs before marking the user IO as

done and returning to upper layers. Here, if all the user IOs going to different devices return sooner

than the rest extra issued IOs, we directly complete user IO and discard results from extra reads.

Otherwise, if some user IOs are blocked by device-level BG operations and return late, we wait for

enough parity IOs returning and proactively reconstruct the user read data. After reconstruction

is done, we complete user IO and later discard late-returned user IOs. This simplies the overall

design and is potentially more deterministic to ensure fast IO latencies, but at the cost of extra

IO overhead to all the drives in the RAID group and some of the reads might overload the device

considering their read data won’t be used at all. We implement Proactive method in Linux software

RAID, no other changes are needed.

Harmonia: To alleviate concurrent GC caused tail latencies, Harmonia [209] utilizes a global

GC policy to coordinate GCs in different SSDs to start at the same time. Compared to uncoor-

dinated GCs, Harmonia helps lower the overall possibility that IOs will be blocked by GCs, thus

improving performance. In Harmonia, all GCs happen at the same time, we simply program the

Twin appropriately. We implement Harmonia in FEMU with a global GC control logic. Whenever
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it detects GC is kicking in on SSD, it will proactively trigger GCs on other SSDs in the same RAID

group. This way, we trigger GCs across all the SSDs in the RAID at the same time. Harmonia only

requires FEMU modifications, where on top of each FEMU FTL structures, we simulate a global

RAID controller logic for such GC synchronization logics.

Preemptve GC: With preemptive GC (PGC) [220], user reads can be interleaved with GC

reads, writes and erases to alleviate GC inteference to user requests. This helps improve user re-

quest latency compared to conventional non-preemptive GC where user IOs might need to wait for

the completion of garbage collection one or more NAND blocks. Under low capacity utilization,

PGC can keep postponing GC requests to achieve low lantency for user requests. One user read

can still be unlucky and delayed behind a write or erase, which takes at least several millisecond. In

the worst case, when the amount of free space on the device runs critical, PGC has to be frequently

kicked in and block one user request with multiple GC IOs. We add PGC into FEMU. While PGC

logics sound simple, it brings several challenges when we integrate it to FEMU platform. First,

FEMU utilizes a simplified NAND timing model, which makes it difficult for timing emulation in

the PGC case. Second, FEMU doesn’t have a low-level queue structure and asynchronous event

model which can be used to “queue” PGC requests. We argument FEMU with support such sup-

port and queue user and GC requests fairly with a similar approach like rate-limiter in LightNVM.

PGC only requires FEMU modifications.

Flash on Rails: Flash on Rails (“Rails” for short) [292] utilizes redundant data to improve

performance. It put a subset of SSDs into read-only and write-only mode and switch their roles

alternatively with a fixed time window size (e.g., 5s). Rails requires a large write buffer to stage

incoming writes before it can be safely flushed to the write-mode drives. Since all the reads are

directed to the read-only SSD drives, Rails claimes to achieve read-only performance, without

experiencing write or GC interferences. We implement Rails using two emulated FEMU SSD

instances working in RAID 1 mode with a 10s time window size as used in the original paper. We

used a large write buffer as required by Rails in front of FEMU FTL logics. While writes will be
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directed to and cached by the write buffer, and also written to the write-only FEMU drive directly,

reads will be directed directly to the read-only FEMU drive, with no interference from writes at

all. Later during role swapping, we flush the writes in the write buffer into the FEMU drive which

was previously in read-only mode to maintain data consistency. After this, the two FEMU drives

exchange their roles, i.e., the previous read-only mode drive will now be the write-only drive.

Rails only requires changes in FEMU. While Rails is better implemented in the host level, e.g., the

RAID controller or OS level as it needs to control user write buffering, we find doing on on top

of FEMU is much easier with only user-level code changes, and we achieve similar read-only like

performance for the workloads, as claimed in the original Rails papers.

This section describes our implementations of TTFLASH, TEAFA, and MITTOS, which are all

publically available.

3.4.3 TTFLASH Implementation

• ttFlash-Emu (“VSSIM++”): To run Linux kernel and file system benchmarks, we also port

TTFLASH to VSSIM, a QEMU/KVM-based platform that “facilitates the implementation of the

SSD firmware algorithms” [325]. VSSIM emulates NAND flash latencies on RAM disk. Unfortu-

nately, VSSIM’s implementation is based on 5-year old QEMU-v0.11 IDE interface, which only

delivers 10K IOPS. Furthermore, as VSSIM is a single-threaded design, it essentially mimics a

controller-blocking SSD (1K IOPS under GC).

These limitations led us to make major changes. First, we migrated VSSIM’s single-threaded

logic to a multi-threaded design within the QEMU AIO module, which enables us to implement

channel-blocking. Second, we migrated this new design to a recent QEMU release (v2.6) and con-

nected it to the PCIe/NVMe interface. Our modification, which we refer as “VSSIM++”, can sus-

tain 50K IOPS. Finally, we port TTFLASH features to VSSIM++, which we refer as ttFlash-Emu,

for a total of 886 LOC of changes.

Finally, we also investigated the LightNVM (OpenChannel SSD) QEMU test platform [45].
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LightNVM [126] is an in-kernel framework that manages OpenChannel SSD (which exposes in-

dividual flash channels to the host, akin to Software-Defined Flash [257]). Currently, neither

OpenChannel SSD nor LightNVM’s QEMU test platform support intra-SSD copy-page command.

Without such support and since GC is managed by the host OS, GC-ed pages must cross back and

forth between the device and the host. This creates heavy background-vs-foreground I/O transfer

contention between GC and user I/Os. For example, the user’s maximum 50K IOPS can down-

grade to 3K IOPS when GC is happening. We leave this integration for future work after the

intra-SSD copy-page command is supported.

3.5 MITTOS Evaluation

We use YCSB [139] to generate 1KB key-value get() operations, create a noise injector to emulate

noisy neighbors, and deploy 3 MongoDB nodes for microbenchmarks, 20 nodes for macrobench-

marks, and the same number of nodes for the YCSB client nodes. Data is always replicated across

3 nodes; thus, every get() request has three choices. For MITT-SSD, we only have one machine

with an OpenChannel SSD (4GHz 8-core i7-6700K with 32GB DRAM and 2TB OpenChannel

SSD with 16 internal channels and 128 flash chips).

All the latency graphs in Figures 3.4 show the latencies obtained from the client get() requests.

In the graphs, “NoNoise” denotes no noisy neighbors, “Base” denotes vanilla MongoDB running on

vanilla Linux with noise injections, and “MittOS” or “Mitt” prefix denotes our modified MongoDB

running on MITTOS with noise injections.

3.5.1 Microbenchmark Results

The goal of the following experiments is to show that MITTOS can successfully detect the con-

tention, return EBUSY instantly, and allow MongoDB to failover quickly. We setup a 3-node Mon-

goDB cluster and run our noise injector on one replica node. All get() requests are initially
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Figure 3.5: MITTSSD vs. Hedged. The figures are explained in Section 3.5.2.

directed to the noisy node.

Figure 3.4 shows the results for MITTSSD (note that we use our lab machine for this one with

a local client). First, SSD can serve the requests in <0.2ms (NoNoise). Second, when read IOs are

queued behind write IOs (the noise), the latency variance is high (Base); the noise injector runs a

thread of 64KB writes. Third, with MITTSSD, MongoDB instantly reroutes the IOs that cannot

be served in 2ms (the small gap between Base and MittSSD lines is the cost of software failover).

3.5.2 MITTSSD Results with Amazon EC2 Noise

For MITTSSD, we can only use our single OpenChannel SSD in one machine with 8 core-threads.

We carefully (a) partition the SSD into 6 partitions with no overlapping channels, hence no con-
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Figure 3.6: Prediction inccuracy. (As explained in §3.5.3).

tention across partitions, (b) set up 6 MongoDB nodes/processes on a single machine serving only

6 concurrent client requests, each mounted on one partition, (c) pick noise distributions only from

6 nodes, and (d) set the deadline to the p95 value, which is 0.3ms (as there is no network hop).

While latency is improved with MITTOS (the gap between MittSSD and Base in Figure 3.5a),

we surprisingly found that hedge (Hedged line) is worse than the baseline. After debugging, we

found another limitation of hedge (in MongoDB architecture). In MongoDB, the server creates a

request handler for every user, thus 18 threads are created (for 6 clients connecting to 3 replicas).

In stable state, only 6 threads are busy all the time. But for 5% of the requests (after the timeout

expires), the workload intensity doubles, making 12 thre-ads busy simultaneously (note that SSD

is fast, thus processes are not IO bound). These hedge-induced CPU contentions (12 threads on a

8-thread machine) cause the long tail. Figure 3.5b shows the resulting % of latency reduction.

3.5.3 Prediction Accuracy

Figure 3.6 shows the results of MITTSSD accuracy tests. For a more thorough evaluation, we use

5 real-world block-level traces from Microsoft Windows Servers (the details are publicly available

[193, §III][19]), choose the busiest 5 minutes, and replay them on just one machine. For a fairer

experiment, as the traces were disk-based, we re-rate the trace 128× more intensive (128 chips)

for SSD tests. For each trace, we always use the p95 value for the deadline.

The % of inaccuracy includes: false positives (EBUSY is returned, but TprocessActual ≤ Tdeadline)

and false negatives (EBUSY is not returned, but TprocessActual > Tdeadline). During accuracy tests,

EBUSY is actually not returned; if error is returned, the IO is not submitted to the device, hence

67



the actual IO completion time cannot be measured, which is also the reason why we cannot report

accuracy numbers in real experiments. Instead, we attach EBUSY flag to the IO descriptor, thus upon

IO completion, the accuracy can be measured.

Figure 3.6 shows the % of false positives and negatives over all IOs. In total, MITTSSD

inaccuracy is only up to 0.8%. Without the improvements (§3.1.7), its inaccuracy can rise up to

6% (no hard-to-predict disk seek time). The next question is how far our predictions are off within

the inaccurate IO population. We found that all the “diff”s are <1ms on average, for SSDs . We

leave further optimizations as future work.

3.6 TEAFA Evaluation

TEAFA evaluation is divided into three sections: We first show the basic results of tail latency im-

provement brought by TEAFA approaches (§3.6.1). Then, we compare TEAFA with other related

works (§3.6.4). Finally, we perform other extended evaluations (§3.6.5).

Platform setup: Most experiments are done on FEMU (for reasons mentioned in §3.4) running

on Emulab D430 machines [68], equipped with two 8-core Intel Xeon E5-2630v3 CPUs at 2.4 GHz

and 64GB DDR4 DRAM. LightNVM+OCSSD experiments are done on a local machine with a

similar specification.

We configure a RAID-5 with Linux mdadm tool with a large stripe cache size and thread count

to avoid software RAID-5 daemon being the performance bottleneck [30, 87]. The default 4KB

chunk size is used as recommended for SSD arrays [23, 138].

We deploy 4 FEMU NVMe SSDs for the RAID-5. Each FEMU drive emulates 8 channels and

8 NAND chips per channel (backed by DRAM for the storage) with a total capacity of 12GB per

drive (limited by the DRAM size). The SSD parameters are set to 1 plane/chip, 192 blocks/plane,

256 pages/block, 4KB page size, 40µs page-read, 200µs page-write, and 2ms block-erase. We use

a standard baseline GC algorithm [169, 265, 325] with the optimum chip/plane-level GC block-

ing [228].
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BG operations: We only cover the two most common background operations: GC and internal

buffer flush. In most of the evaluation, we disable write buffering to cleanly show the impact of

GC, but later we show the negative impacts of internal buffer flush and how TEAFA evades it. We

did not induce other BG operations such as wear leveling as it is essentially similar to GC (internal

data movement).

Workloads: We use the standard SNIA disk block traces [91] that we have re-rated 8-32 times

more intense to reflect SSD workloads. We also use four new SSD traces from Microsoft data

center, spanning cloud storage, search engine and database workloads. In these traces, we pick the

1-hour busiest period. Before running the workload, we follow the standard SNIA performance

testing specification [92] to make FEMU SSDs into steady state.

3.6.1 Basic results of TEAFA Approaches under TPCC workload

This section shows the improvement made by the combination of the three TEAFA strategies, one

at a time: “Tea1” represents only the fail-fast and busy-signal approach (§3.2.1), “Tea2” the one

with background remaining time (§3.2.2), and “TeaFA” the complete approach.

The complete approach TeaFA uses a static time window of 100 ms (§3.2.4), which is chosen to

meet the constraint of at most one busy sub-IO per stripe given the SSD parameters we use above.

Note that the 100ms value is lower than the example time window value in §3.2.4 because our

FEMU drive is small (DRAM backed) while in §3.2.4, we use typical SSD parameters for general

analysis.

For simplicity of figure presentation, we first show only the results of one workload, TPCC.

Figure 3.7a shows the read latencies at major percentile values (p75 to p99.99) of five different

approaches: (1) The red Base line represents the TPCC workload running on a 4-SSD RAID-5

without any tail evading strategies. As shown, starting at p95 (x=95) the Base’s latency starts

increasing, which is consistent with what we see on real commodity SSDs (§2.5). (2) The orange

Tea1 line shows that by just cutting the longest tail (via data reconstruction as signaled by the

69



 0

 20

 40

75 90 95 99 99.9 99.99

L
a

te
n

c
y
 (

m
s
)

Percentiles

[a] TPCC Read Latency

Base
Tea1
Tea2

TeaFA

NoGC
 0

 4

 8

1 2 3 4

P
e

rc
e

n
ta

g
e

 (
%

)

# of busy sub-IOs

[b] Busy Reads

Base

TeaFA

Figure 3.7: TEAFA percentile latencies and #busy sub-IOs with TPCC (§3.6.1). Figure (a)

shows the TPCC read latencies (in y-axis) at major percentiles p75 to p99.99 (in x-axis) with various TEAFA

strategies (Tea1, Tea2, and TeaFA) compared to the Base line and the ideal NoGC case. Figure (b) shows

the percentage of stripe-level reads (in y-axis) that experience 1 to 4 busy sub-IOs (in x-axis). It shows that

TEAFA converts multiple concurrent busy sub-IOs to at most one busy sub-IO per stripe in RAID-5, thus

always guaranteeing reconstructability of busy reads.

busy bits), we significantly evade the latency tail up to p99, this is also consistent with our earlier

opportunity analysis (§2.5). (3) The blue Tea2 line shows that the background-remaining-time

approach helps, although not significantly, because we cannot completely evade two busy sub-IOs,

but only optimize the latency by choosing the fastest one. (4) The bold green TeaFA line shows that

the time window approach can significantly cut further the tail area, even up to p99.99. Again, this

is because the time-window approach attempts to guarantee at most one busy sub-IO per stripe.

(5) The thin gray NoGC line shows the “ideal” read performance with GC delay emulation disabled

in FEMU. The thin gap between the NoGC and TeaFA lines show the power of TEAFA in evading

latency tail. Even at p99.99, TEAFA is only 9% slower than this ideal performance.

Figure 3.7b reveals the reason behind this tail-evading success. The x-axis shows how many

sub-IOs of a stripe are returned with busy=1. As a reminder, in Linux, a large read is broken to

many stripe-level reads, and each stripe-level read is broken down to chunk-level sub-IOs. Thus,

with 4-drive RAID, we will only see a maximum of 4 sub-IOs (x=4) that can be busy-returned.

In Figure 3.7b, at x=1, the Base bar shows that roughly 7% of stripe-level reads experience 1

busy sub-IO, but since the base approach just waits (does not reconstruct) busy sub-IOs, we can see

the Base line in Figure 3.7a starts to increase between the p90 and p99 values (100-7%). However,

in Tea1, Tea2 to TeaFA approaches, this is not an issue, because they can reconstruct easily one
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busy sub-IO.

Still in Figure 3.7b, at x=2, the Base bar shows that almost 1% of the stripe-level reads experi-

ence 2 busy sub-IOs. The Tea2’s SBRT approach cannot completely evade these ≥2 busy sub-IOs,

hence the Tea2 line in Figure 3.7a starts increasing between the p99 and p99.9 values.

Now with the complete TeaFA’s time window approach, the green TeaFA bar in Figure 3.7b

shows that the time-window approach successfully shifts the concurrent GCs across time such that

at most there is only one busy sub-IO per stripe. Hence, the TeaFA bar is higher than the Base bar,

reaching y=8% at x=1 but y=0 at x>1. In other words, it is acceptable to see a higher percentage

of one busy sub-IO (reconstructable) as long as we evade multiple busy sub-IOs.

In Figure 3.8, we present the tail latencies at p99.99. This is the complementary results to p99

and p99.9 tail latencies which are already shown in our main submission. Here, again, the p99.99

matches the conclusion we get from p99 and p99.9, that by integrating all TEAFA strategies, we

can effectively trim the tail latencies at p99.99. Tea1 and Tea2 don’t help much because at this

high percentile, the tails cannot be easily trimmed without the help from time window.

3.6.2 Basic Results of TEAFA Approaches under All Workloads

Figure 3.8 shows the overall result with all the workloads. To simplify the figure, we only show

latency values at p99 (top graph) and p99.9 (bottom one). Overall, the TeaFA bars summarize that

TEAFA, between the p99 and p99.9 percentiles, delivers on average 3.5×, and up to 9.6× faster

latencies compared to the base approach, and only 1.1× to 2.1× slower than the ideal NoGC case.
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Figure 3.8: TEAFA p99, p99.9, and p99.99 latencies with all the workloads (§3.6.2). The

figures show the p99 (top figure), p99.9 (center) and p99.99 (bottom) latencies of all the workloads under

different TEAFA strategies including the Base and NoGC cases. It shows that TEAFA successfully evades

tail latencies and almost reaches the NoGC values at high percentiles.

In Table 3.3, we present the detailed characteristics of the trace workloads used in our main

submission. The table covers major characteristics such as read/write ratio, average read/write size

and IO intensity (IO inter-arrival time and IOPS). Note that the numbers in the table only captures

the average view of the whole workload as each workload characteristics change with time. e.g.,

for BSEL, even if the average inter-arrival time is over 20ms, it doesn’t imply this workload is not

intensive at all, instead, this workload contains many large IOs (>1MB) and the IOPS at certain

time range can reach thousands.

While SNIA block traces are well described, our 4 new traces from Microsoft data centers

need further description. “AST” represents AzureStorage traces collected from Microsoft Azure

storage backend, “BIDX/BSEL” are the Bing search engine indexing workloads, and “COSM” are

the workloads from Microsoft CosmosDB KV store.

For readers who are interested to see the full CDF graphs, we put them in Figure 3.9. Note that
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Workload #IOs Read% Read size Write size IO Max Inter-time

AST 320K 18% 24KB 20KB 64KB 1417µs

BIDX 21K 36% 60KB 104KB 288KB 6974µs

BSEL 164K 4% 260KB 78KB 11MB 21951µs

COSM 403K 8% 214KB 91KB 16MB 8936µs

DTRS 147K 72% 42KB 53KB 64KB 2034µs

EST 71K 24% 15KB 43KB 1MB 8445µs

LMBE 1112K 89% 12KB 191KB 192KB 539µs

MSNFS 487K 74% 8KB 128KB 128KB 3696µs

TPCC 513K 64% 8KB 137KB 4MB 721µs

Table 3.3: Block trace charateristics. This table show the detailed characteristics of the blocks traces

we use. “#IOs” represents the total number of IOs in the trace, “Read%” means the percentage of reads

in each trace, and “Read size, Write size, IO Max” represents the average read, write and max IO size.

“Inter-time” means the average inter-arrival time between two consecutive IOs in each trace

different workloads have different characteristics, hence the various gap sizes between the lines.

However, all of them point to a consistent result that each of the TEAFA strategies move the CDF

line to the upper left (better) with the TeaFA line closest to the NoGC line.

Figure 3.10 shows the percentage of stripe-level reads that observe busy sub-IOs (from 1busy

to 4busy). The top figure 3.10a shows that the Base approach observes many multiple busy sub-

IOs in many of the workloads, e.g., a high percentage of concurrent 3busy sub-IOs appears in

COSM and TPCC workloads (see the orange bars). The bottom figure 3.10b again shows that TEAFA

successfully shifts the concurrent GCs across time (higher 1busy bars with almost no 2-4busy

bars).

In Figure 3.10b, one can see that for COSM and LMBE, we can see small 2-4busy bars (y<0.05%

on average). Upon further investigation, this is not because of a too-high time-window value

(100ms in this case). Rather, because the workloads are write intensive and GCs kick in most of

the time, there are left-over GCs that started just before and finished slightly after the time-window

expires in the corresponding SSD. This can be fixed easily in the future by making the GC page

movement and block erase only start if the time estimate does not pass the expiration time.
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Figure 3.9: Tail Latencies in CDF (§3.6.2). The figures represent the same experiments in Figure 3.8.

The figures basically show a more complete picture (in CDF above p96) of the p99 and p99.9 values shown

in Figure 3.8.

3.6.3 Results from Real Storage Applications

This subsection shows the results from running 6 different FileBench workloads and demonstrates

that TEAFA can help with application perceived latencies. We report the average read latencies

here as FileBench doesn’t support reporting per-IO latency. As depicted in Figure 3.11, we see

latencies get consistently better after applying different TEAFA techniques. This aligns well with

previous trace-based experiments to prove TEAFA’s ability to benefit applications in achieving

better performance.
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Figure 3.10: #Busy sub-IOs in all the workloads (§3.6.2). These bar figures represent the same bar

figure in Figure 3.7b (that only shows TPCC), but now we show the results from all workloads. The 1busy to

4busy bars represent the number of busy sub-IOs per stripe, and the y-axis shows the percentage of stripe-

level reads that experience busy sub-IOs. The bottom figure essentially shows that TEAFA successfully

shifts multiple concurrent 2-4busy sub-IOs to 1busy sub-IOs.

3.6.4 Versus Other Works

We now compare TEAFA with other related works. Due to space constraints, we only show one

benchmark TPCC (we reach the same observation in other benchmarks).

Comparison with Proactive (Always Full Stripe): A simple black-box way to cut 1-busy

sub-IOs is to always proactively send a full-stripe read including the parity read. Hence, out of

every N sub-IOs, the stripe-read completes when the first N−1 sub-IOs finishes. Figure 3.12a

shows the comparison. Proactive is effective as it can reconstruct 1-busy sub-IOs but it still loses

to TEAFA at high percentiles due to its inability to evade concurrent busy sub-IOs. Proactive also

negatively adds more load; Figure 3.12b shows that Proactive sends down 2.4× more IOs to the

base case, while the TeaFA bar only issues 6% more reads.

Comparison with Harmonia: Harmonia [220] is an approach that tells the SSDs in an array

to do GCs at the same time (i.e., a synchronized GC in flash array). We observe that Harmonia is

able to improve the overall average latency by 27% compared to the baseline, but it fails to cut tail

latencies as effective as TEAFA, as shown in Figure 3.12c. In Harmonia, a small percentage of
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Figure 3.11: Average latencies of different Filebench workloads (§3.6.3). The figures represent

experiments by running 6 different storage workloads using Filebench on top of ext4 file system. We report

the average read latencies as Filebench doesn’t support per-IO latency tracking.
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Figure 3.12: vs. Proactive and Harmonia (§3.6.4-3.6.4). Figure (a) compares the TPCC CDF

latencies on TEAFA vs. Proactive. Figure (b) shows the normalized number of IOs that Proactive and

TEAFA send down to the flash array (2.4× vs. 6%). Figure (c) compares the TPCC latencies on TEAFA

vs. Harmonia.

IOs must wait when all the SSDs are doing GC concurrently.

Comparison with Flash-on-Rails: Flash on Rails [292] is a tail-cutting technique that divides

the SSDs of an array into read-only and write-only SSDs, and performs read-write role swapping

periodically. A similar strategy can also be found in Gecko [286] and SWAN [201]. Figure 3.13a

shows that Rails is indeed able to deliver a pure read-only latency to users (the left-most line). Here,

TEAFA loses to Rails because in our current setup we have not enabled internal write buffering,

hence user reads in TEAFA can be queued behind the longer user writes. Rails on the other hand

ensures pure read latency.

However, Rails has downsides. The first is reduced read throughput. As Rails break the read-

write role of the SSDs separately, there are fewer number of devices to serve reads. Figure 3.13b
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Figure 3.13: vs. Rails and Preemptive GC (§3.6.4-3.6.4). Figure (a) shows the TPCC read CDF

latencies on TEAFA vs. Rails. Figure (b) shows user-perceived read throughput on Rail vs. TEAFA. Figure

(c) shows the TPCC read latencies on TEAFA vs. Preemptive GC.

shows that Rails’ read throughput is significantly lower compared to TEAFA. In other words,

Rails does not leverage the purpose of a flash array in delivering higher bandwidth, while TEAFA

behaves the same as a typical RAID. Rails’ other downsides include the need for a large external

buffer to cache incoming writes and the induced IO contention during the read-write role swapping.

Comparison with Preemptive GC: Preemptive GC (PGC) [220] is an approach that allows user

reads to be interleaved in between GC individual read/write/erase operations, hence user reads are

not queued far behind. Figure 3.13c shows that the PGC line cuts a huge area of the latency tail as

compared to the Base line in Figure 3.9i. But the TeaFA line in Figure 3.13c shows that TEAFA

wins over preemptive GC. The reason is straightforward: in TEAFA, users reads do not need to

wait behind any GC operations as they will be busy returned and reconstructed. More recent works

attempt to preempt in the middle of a GC write or erase [205, 232, 309], which can make the PGC

line closer, the same or slightly better to the TeaFA line, but require more special hardware support.

Comparison with Other Related Works (Not Evaluated): We unfortunately did not have

enough time to re-implement many other tail-cutting works into the same FEMU platform. Thus,

we only perform a qualitative comparison below.

Speculative IOs [302, 314, 317] can be integrated into RAID where parity/redundant IOs are

sent when the original data IOs have not returned after a certain timeout threshold. For disks, such

a method is fitting because the timeout is usually set in the granularity of seconds (e.g., 5sec). But
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SSD operates at micro-second level. Setting a low timeout will essentially make this approach into

a pro-active approach (§3.6.4). Setting it to high will lead to a long wait-time.

Partitioning such as FlashBlox [170], OPS isolation [199], and IOD SET [83] methods basi-

cally partition the SSDs such that user-vs-GC, user-vs-write, or user-vs-user contention is reduced.

While simple and effective, the drawback of partitioning methods is the same as of Rails’ (§3.6.4),

that the aggregate throughput is sacrificed.

Tiny-Tail Flash [318] is a white-box approach that requires RAIN [16] inside the SSD in order

to perform internal read reconstruction, and it also performs a rotating GC. But because TEAFA

is a gray-box approach, the challenges we face (interfaces, time window, etc.) are different than

those addressed in white-box approaches.

MittOS/MittSSD [164] is an OS approach that predicts how long every IO to the SSD will

take. If the predicted latency is higher than the deadline SLO, the OS returns a busy error code

such that the application can retry to another less busy node. MittOS and TEAFA are in the same

spirit, but the MittSSD part requires “open” SSD devices such as OpenChannel SSDs that expose

the internal NAND layout such that the latency estimation can be made accurate, hence also a

white-box approach.

Similar to Gecko [286] in spatial separation of device roles, SWAN [201] is an AFA design with

two-dimensional data organization. TEAFA differs from them in that it utilizes a small interface

change for fast IO responses through temporal coordination of background operations.

3.6.5 Other Evaluations

This last section shows further evaluations.

Dynamic Window Time: Here we evaluate TEAFA’s dynamic time window algorithm. Figure

3.14a shows that the dynamic-window approach is very close to the static one. As discussed

before, because the dynamic window calculation is host managed, based on the busy signals the

host receives from the SSDs, there will be instances where the window grows too large causing
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Figure 3.14: Extended evaluations on Dynamic time window. Dynamic Time Windows

multiple stripe-level sub-IOs to be returned with busy bits enabled. This is why the performance

of the dynamic time window is slightly worse than the static one as the figure shows. While in

the prior evaluation sections, we have shown the robustness of the static time window across many

different workload intensities, in the near future work, we will further explore the robustness of the

dynamic time window under various write bursts.

TEAFA on LightNVM+OCSSD: While all prior experiments are based on an emulator (FEMU),

we show that TEAFA approach also runs well on real SSD hardware. As discussed before (§3.4),

LightNVM+OCSSD [126] is the only platform we could use for this purpose. Our extension in

LightNVM represents the TEAFA’s firmware changes, and our modified Linux Software RAID

remains the same. These two layers run on top of OCSSD. Figure 3.14b compares TEAFA vs. the

Base approach running TPCC on this real hardware platform. As shown, we obtained a similar

improvement as in the FEMU platform in Figure 3.9i.

Window Time and Write Amplification: Finally, to show the implication of window time to

write amplification, we ran a further analysis using SSDSim [169]. Figure 3.15 shows the results

of this analysis across different workloads. As expected, even a small time window value such

as less than 50ms will help reduce write amplification as it performs less frequent GCs (delaying

unnecessary GCs until next time window). A large time window is healthy for reducing write
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Figure 3.15: Time window impacts to write amplification (§3.6.5). The figure shows the resulting

write amplification factor (WAF) in the y-axis when different static time window values are used (in the

x-axis) for a variety of workloads.

amplification, but again it does not allow the cleaning to keep up with the incoming writes, hence

will force the GC to break the time window contract, causing multiple busy sub-IOs that creates

tail latencies.

3.7 TTFLASH Evaluation

We now present extensive evaluations showing that TTFLASH significantly eliminates GC block-

ing. We evaluate ttFlash-Emu (on VSSIM++), as described in Section 3.4. We use filebench [10]

with six personalities as listed in the x-axis of Figure 3.16. ttFlash-Emu emulates 48GB SSDs

(limited by the machine’s DRAM). We use a machine with 2.4GHz 8-core Intel Xeon Processor

E5-2630-v3 and 64-GB DRAM. The simulated and emulated SSD drives are pre-warmed up with

the same workload.

Figure 3.16 shows the average latencies of filebench-level read operations (including kernel,

file-system, and QEMU overheads in addition to device-level latencies) and the percentage of GC-

blocked reads measured inside ttFlash-Emu. We do not plot latency CDF as filebench only reports

average latencies. Overall, ttFlash-Emu shows superior performance compared to the baseline.
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Figure 3.16: Filebench on ttFlash-Emu. The top and bottom figures show the average latencies of

read operations and the percentage of GC-blocked reads, respectively, across six filebench personalities.

“Base” represents our VSSIM++ with channel-blocking (§3.4).

3.8 Summary

Existing application-level tail-tolerant solutions can only guess at resource busyness, as such infor-

mation is not exposed by the OS. We propose a fundamentally different philosophy: transparency

of resource busyness, and have demonstrated the effectiveness of this approach in MITTOS, and

documented its benefits for a popular NoSQL application. The MITTOS design pushes latency

prediction into the OS layer, where it can deliver good prediction that simplifies applications and

eases their tail and other performance management. As cloud systems continue the drive for cost-

efficiency, we expect consolidation and sharing to be a fundamental reality. In such a world,

busyness transparency, as embodied in the MITTOS principles, should only grow in importance.

The spirit of gray-box approaches are now accepted by the community, becoming official in-

terfaces. We propose a “sweet” design spot to use and extend slightly the IOD interface, and to

minimally modify the SSD firmware so not to be intrusive to vendors, but keep most of the tail
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evading logic in the host. We hope this simple and elegant design will increase the chance of

TEAFA adoption. We also believe there are many exciting future research questions such as how

to use IOD interface (e.g., program the window time), and hope TEAFA can spur more solutions

in this space.

SSD technologies have changed rapidly in the last few years; faster and more powerful flash

controllers are cable of executing complex logic; parity-based RAIN has become a standard means

of data protection; and capacitor-backed RAM is a de-facto solution to address write inefficiencies.

In our work, we leverage a combination of these technologies in a way that has not been done

before. This in turn enables us to build novel techniques such as plane-blocking GC, rotating GC,

GC-tolerant read and flush, which collectively deliver a robust solution to the critical problem of

GC-induced tail latencies.
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CHAPTER 4

LEAPIO: EFFICIENT AND PORTABLE VIRTUAL

NVME STORAGE ON ARM SOCS

Today’s cloud storage stack is extremely resource hungry, burning 10-20% of datacenter x86 cores,

a major “storage tax” that cloud providers must pay. Yet, the complex cloud storage stack is not

completely offload-ready to today’s IO accelerators. While our solutions in Chapter 3 successfully

attacked the challenges for predictable performance, they couldn’t help with the “storage tax”

challenge to make the storage stack run efficiently. In this chapter, we present LeapIO, a new

cloud storage stack that leverages ARM-based co-processors to offload complex storage services.

LeapIO addresses many deployment challenges, such as hardware fungibility, software portability,

virtualizability, composability, and efficiency. It uses a set of OS/software techniques and new

hardware properties that provide a uniform address space across the x86 and ARM cores and

expose virtual NVMe storage to unmodified guest VMs, at a performance that is competitive with

bare-metal servers.

The organization of this chapter is as follows. We first describe LeapIO design in §4.1, by

visiting LeapIO from different angles. Then, we discuss the implementation in §4.2 and present

evaluation results in §4.3. Lastly, we summarize in §4.4. We leave futher discussion to Chapter

6 (§6.4). The content of this chapter is adapted from our paper “LeapIO: Efficient and Portable

Virtual NVMe Storage on ARM SoCs” [227] published at ASPLOS’20.

4.1 LeapIO Design

We now present the design of LeapIO from different angles: hardware (§4.1.1), software (§4.1.2),

control flow (§4.1.3), data path (§4.1.4), and x86/ARM portability (§4.1.5).

We first clarify several terms: “ARM” denotes cheaper, low-power processors suitable enough
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for storage functions (although their architecture need not be ARM’s); “SoC” means ARM-based

co-processors with ample memory bundled as a PCIe SoC; “x86” implies the powerful and expen-

sive host CPUs (although can be non x86); “rNIC” stands for RDMA-capable NIC; “SSD” means

NVMe storage; “functions” and “services” are used interchangeably.

4.1.1 The Hardware View

We begin with the hardware view.

In the left side of Figure 4.1, the top area is the host side with x86 cores, host DRAM, and

IOMMU. In the middle is the PCIe bus connecting peripheral devices. In the bottom right is our

SoC card (bold blue edge) containing ARM cores and on-SoC DRAM. Our SoC and rNIC are co-

located on a single PCIe card as explained later. The right side in Figure 4.1 shows a real example

of our SoC deployment. In terms of hardware installation, the SoC is simply attached to a PCIe

slot. However, easy offloading of services to the SoC while maintaining performance requires four

hardware capabilities (labels 1© to 4© in Figure 4.1), which all can be addressed from the SoC

vendor side.

1© HW1: Host DRAM access by SoC. The SoC must have a DMA engine to the host DRAM

(just like rNIC). However, it must allow the user-space LeapIO runtime (running in the ARM SoC)

to access the DMA engine to reach the location of all the NVMe queue pairs mapped between the

on-x86 user VMs, rNIC, SSD, and in-SoC services (§4.1.3).

It’s a prevalent technology for modern PCIe devices to access host DRAM coherently via

DMA engines. Moreover, PCIe controllers can also expose DMA engines to user space, thus

allowing user-space programs utilizing DMA engines to communicate with host DRAM directly.

This is already well supported by today ’s programmable hardware with ready-to-use open-source

drivers [76, 96].

2© HW2: IOMMU access by SoC. The trusted in-SoC LeapIO runtime must have access to

an IOMMU coherent with the host in order to perform page table walk of the VM’s address space
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that submitted the IO. When an on-x86 user VM accesses a piece of data, the data resides in the

host DRAM, but the VM only submits the data’s guest address. Thus, the SoC must facilitate the

LeapIO runtime to translate guest to host physical addresses via the IOMMU (§4.1.4).

Modern computer systems utilize IOMMU between host DRAM and PCIe devices for address

translations. When PCIe devices try to access host DRAM, it sends PCIe read/write transactions to

IOMMU and IOMMU will perform address translation for addresses in PCIe transactions [252].

Modern IO devices, such as NVMe SSDs, RDMA NICs, FPGAs, GPUs are all designed to comply

with IOMMU. In LeapIO, we just need the SoC vendor to expose such capability to our runtime at

user-space level in SoC OS.

3© HW3: SoC’s DRAM mapped to host. The on-SoC DRAM must be visible by the rNIC

and SSD for zero-copy DMA. For this, the SoC must expose its DRAM space as a PCIe BAR

(base address register) to the host x86. The BAR will then be mapped as part of the host physical

address space by the host OS. With this capability, main hardware components such as rNIC, SSD,

host x86, and the SoC can read/write data via the host address space without routing data back and

forth (§4.1.4).

In LeapIO, we require SoC to expose its DRAM space to x86 as a PCIe BAR. We argue

that this is also an easy-to-achieve technique. For example, NVMe features such as Controller

Memory Buffer (CMB) allows the SSD controller to share its device memory to x86 [54]. There

are other devices which expose all of its DRAM space to x86 host as part of its PCIe configuration

space [50]. With byte-addressable SSD on the horizon [97, 112], it will be much easier to use
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device DRAM directly from host. Similar technology can be applied to ARM SoC designs.

4© HW4: NIC sharing. The NIC must be “shareable” between the host x86 and ARM SoC

because on-x86 VMs, other host agents, and in-SoC services are all using the NIC. NIC can be

used by the host to serve VM traffic as well as by the SoC for offloaded remote storage functions.

One possibility is to co-locate the ARM cores and the NIC on the same PCIe card (“NIC**” in

Figure 4.1), hence not dependent on the external NIC capabilities (§3.4).

4.1.2 The Software View

Now we move to the software view. To achieve all the goals in §2.6, LeapIO software is relatively

complex, thus we decide to explain it by first showing the high-level stages of the IO flows, as

depicted in stages a© to f© in Figure 4.2.

a© User VM. On the client side, a user runs her own application and guest OS of her choice

on a VM where no modification is required. For storage, the guest VM runs on the typical NVMe

device interface (e.g., /dev/nvme0n1) exposed by LeapIO as a queue pair (represented by ●) con-

taining submission and completion queues (SQ and CQ). This NVMe drive which can be a local

(ephemeral) drive or something more complex will be explained later.

b© Host OS. We add a capability into the host OS for building queue-pair mappings (more in

4.1.3) such that the LeapIO runtime c© sees the same NVMe command queue exposed to the VM.

The host OS is not part of the datapath.

c© Ephemeral storage. If the user VM utilizes local SSDs (e.g., for throughput), the requests

will be put into the NVMe queue mapped between the LeapIO runtime and the SSD device (the

downward ●—●). Because the SSD is not in the SoC (not inside the bold edge), they need to

share the NVMe queue stored in the host DRAM (more in §4.1.3).

d© Client-side LeapIO runtime and services. The client-side runtime (shaded area) repre-

sents the LeapIO runtime running on the ARM SoC (bold blue edge). This runtime “glues” all the

NVMe queue pairs (●—●) and end-to-end storage paths over a network connection (◆—◆). To
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plicity, we use two nodes, client and server, running in a datacenter. The arrows in the figure only represent

the logical control path, while the data path is covered in §4.1.4. Our runtime and storage services (the

shaded/pink area) can transparently run in the SoC (as shown above) or on the host x86 via our “SoCVM”

support (in §4.1.5).

quickly process new IOs, the LeapIO runtime polls the VM-side NVMe submission queue that has

been mapped to the runtime address space (●—●). This runtime enables services to run arbitrary

storage functions in user space (“ f ()”, see Table 1.1) that simply operate using NVMe interface.

The functions can then either forward the IO to a local NVMe drive (●) and/or a remote server

with its own SoC via RDMA or TCP (◆). Later, §4.1.4 will provide details of the data path.

At this stage, we recap the aforementioned benefits of LeapIO. First, the cloud providers can

develop and deploy the services in user space (extensibility). The LeapIO runtime also does not

reside in the OS, hence all data transfers bypass the OS level (both host OS and SoC-side OS are

skipped). The SoC-side OS can be any standard OS. Second, with mapped queue pairs, the runtime

employs polling to maintain fast latency and high throughput (efficiency). Third, VMs can obtain a

rich set of block-oriented services via virtual NVMe drives (virtualizability/composability). Most

importantly, although in the figure, the LeapIO runtime and services are running in the SoC, they

are also designed to transparently run in a VM on x86 to support older servers (portability), which

we name the “SoCV M” feature (more in §4.1.5).

e© Remote access (NIC). If the user stores data in a remote SSD or service, the client runtime
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simply forwards the IO requests to the server runtime via TCP or RDMA through the NIC (◆—◆).

Note that the NIC is housed in the same PCIe slot (dotted bold edge) as the ARM SoC in order to

fulfill property HW4 (shareable rNIC).

f© Server-side LeapIO runtime and services. The server-side LeapIO runtime prepares the

incoming command and data by polling the queues connected to the client side (◆). It then invokes

the server-side storage functions f () that also run in the user level within the SoC. The server-side

service then can forward/transform the IOs to one or more NVMe drives (●) or remote services.

The figure shows the access path to its local SSD (the right-most ●—●).

4.1.3 The Control Setup

We now elaborate on how LeapIO provides the NVMe queue-pair mapping support to allow differ-

ent components in LeapIO to use the same NVMe abstraction to communicate with each other. To

illustrate this, we use the two logical queue-pair mappings (two ●—●) in the client side of Figure

4.2 and show the physical mappings in Figure 4.3a-b.

a©VM-runtime queue mapping. This is the mapping between the user VM and the in-SoC

client runtime (red lines). The actual queue-pair location is in the host DRAM (middle row). The

user VM (upper left) can access this queue pair via a standard mapping of guest to host address

(via hypervisor-managed page table of the VM). For the in-SoC runtime to see the queue pair,
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the location must be mapped to the SoC’s DRAM (upper right), which is achieved via DMA.

More specifically, our modified host hypervisor establishes an NVMe admin control channel with

LeapIO runtime. There is a single admin NVMe queue pair that resides in the host DRAM but it

is DMA-ed by the host to the runtime address space, thus requiring property HW1 (§4.1.1).

b©Runtime-SSD queue mapping. This is the mapping between the in-SoC runtime with the

SSD (orange lines). Similar to the prior mapping, the hypervisor provides to the SSD the address

ranges within the memory mapped region. The SSD does not have to be aware of the SoC’s

presence. Overall, the memory footprint of a queue pair is small (around 80 KB). Thus, LeapIO

can easily support hundreds of virtual NVMe drives for hundreds of VMs in a single machine

without any memory space issue for the queues.

With this view (and for clarity), we repeat again the control flow for local SSD write operations,

using Figure 4.3. First, a user VM submits an NVMe command such as write() to the submission

queue (red SQ in VM space, a©). Our in-SoC runtime continuously polls this SQ in its address space

(red SQ in SoC’s DRAM, a©) and does so by only burning an ARM core. The runtime converts the

previous NVMe command, submits a new one to the submission queue in the runtime’s address

space (orange SQ in SoC’s DRAM, b©), and rings the SSD’s “doorbell”. The SSD controller reads

the NVMe write command that has been DMA-ed to the device address space (orange SQ in the

SSD, b©). Note that, all of these bypass both the host and the SoC OSes.

4.1.4 The Data Path (Address Translation Support)

Now we describe the most challenging goal: efficient data path. The problem is that in existing

SmartNIC or SmartSSD SoC designs, ARM cores are hidden behind either the NIC controller

or storage interface, thus ARM-x86 communication must be routed through NIC/storage con-

trol block and not efficient. Furthermore, many software/hardware components are involved in

the data path, hence we must minimize data copying, which we achieve by building an address

mapping/translation support using the aforementioned HW properties (4.1.1). Figure 4.4 walks
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through this most complicated LeapIO functionality (write path only) in the context of a VM

accessing a remote SSD over RDMA. Before jumping into the details, we provide high-level de-

scriptions of the figure and the legend.

Components: The figure shows different hardware components and software layers in data

and command transfers such as user application, guest VM, host DRAM (“hRAM”), SoC-level

device DRAM buffer (“sRAM1”), client/server runtime, rNICs, and the back-end SSD.

Command flow: Through these layers, NVMe commands (represented as blue◮) flow through

the NVMe queue-pair abstraction as described before. The end-to-end command flow is shown in

non-bold blue line. An example of an NVMe IO command is write(blkAddr, memAddr) where

blkAddr is a block address within the virtual drive exposed to the user and memAddr is the address

of the data content in the guest VM.

Data location and path: We attempt to minimize data copying (reduced ■ count) and al-

low various software and hardware layers access the data via memory mapping (2). The data is

transferred (bold red arrow) between the client and the server, in this context via RDMA-capable

NICs.

Address spaces: While there is only one copy of the original data (■), different hardware

components and software layers need to access the data in their own address spaces, hence the

need for an address translation support. Specifically, there are four address spaces involved (see

the figure legend): (1) guestAddr gA representing the guest VM address, (2) hostAddr hA denoting

the host DRAM physical address, (3) logicalAddr lA implying the logical address (SoC user

space) used by the LeapIO runtime and services, (4) socAddr sA representing the SoC’s DRAM

physical address. In our SoC deployment, the SoC and rNIC are co-located (HW4 in §4.1.1),

hence logicalAddr mode is the most convenient one for using RDMA between the client/server

SoCs.

Client-Side Translation: For the client side, we will refer to Figure 4.4 a©– d©.

1. sRAM denotes on-SoC DRAM, not static RAM.
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write path via RDMA (read path is similar).

In step a©, on-x86 guest VM allocates a data block, gets guestAddr gA and puts a write NVMe

command ◮ with the memAddr pointing to the guestAddr gA , i.e., write(blkAddr, gA ). The data

is physically located in the host DRAM (■ at hostAddr hA ).

In b©, the LeapIO user-space runtime sees the newly submitted command ◮ and prepares a

data block via user-space malloc(), hence later it can touch the data 2 via logicalAddr lA in the

runtime’s address space. Because the runtime runs in the SoC, this lA is physically mapped to

the SoC’s DRAM (■ at socAddr sA ). Remember that at this point the data at socAddr sA is still

empty.

In step c©, we need to make a host-to-SoC PCIe data transfer (see notes below on efficiency)

and here the first address translation is needed (the first double-edged arrow). That is, to copy the

data from the host to SoC’s DRAM, we need to translate guestAddr gA to hostAddr hA because

the runtime only sees “gA ” in the NVMe command. This guestAddr-hostAddrtranslation is only

available in the host/hypervisor-managed page tables of the VM that submitted the request. Thus,

our trusted runtime must be given access to the host IOMMU (property HW1 in §4.1.1).
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Next, after obtaining the hostAddr hA , our runtime must read the data and copy it to socAddr

sA (the first bold red arrow). Thus, the runtime must also have access to the SoC’s DMA engine

that will DMA the data from the host to SoC’s DRAM (hence property HW2 in §4.1.1).

In d©, at this point, the data is ready to be transferred to the server via RDMA. The client

runtime creates a new NVMe command ◮ and supplies the client side’s logicalAddr lA as the

new memAddr, i.e., write(blkAddr,lA ). The runtime must also register its logicalAddr via the

ibverbs calls so that the SoC OS (not shown) can tell the rNIC to fetch the data from socAddr sA

(the SoC OS has the lA -sA mapping). This is a standard protocol to RDMA data.

We make several notes before proceeding. First, the host-to-SoC data transfer should not be

considered as an overhead, but rather a necessary copy as the data must traverse the PCIe boundary

at least once. This transfer is not done in software, it is performed by enqueueing a single operation

to the PCIe controller that does a hardware DMA operation between the two memory regions.

Second, LeapIO must be fully trusted to be given host-side page table access, which is acceptable

as LeapIO is managed by the cloud provider. A malicious VM’s attack surface is restricted to the

NVMe queue pairs. Whenever LeapIO detects illeagal NVMe commands, it fails the IOs directly.

Overall, LeapIO doesn’t expose extra attack surface compared to existing on-x86 hypervisor IO

interface.

Server-Side Translation: For the server side, we refer to Figure 4.4 e©– g©. LeapIO server

keeps monitoring data coming from the network and migrates data to SSD efficiently with direct

NVMe access and DMA data transfer between ARM and SSD.

In e©, LeapIO server runtime sees the new command ◮ and prepares a data buffer 2 at its

logicalAddr lA (a similar process as in step b©). The runtime then makes an RDMA command

to fetch the data from the client runtime’s logicalAddr lA provided by the incoming NVMe com-

mand. The server rNIC then puts the data directly in the SoC’s DRAM (■ at socAddr sA ). Now

LeapIO services can read the data via the logicalAddr lA and run any storage functions f () de-

sired. When it is time to persist the data, the runtime submits a new NVMe command ◮ to the
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SSD.

In f©, being outside the SoC, the backend SSD can only DMA data using hostAddr(server side)

, hence does not recognize socAddr sA . Thus, the server runtime must submit a new NVMe com-

mand that carries “hostAddr hA ” as the memAddr of the next write command, i.e. write(blkAddr,hA ).

This is the need for another address translation lA→sA→hA (the second double-edged arrow).

For sA→hA , we need to map the SoC’s DRAM space to the aggregate host address space,

which can be done with p2p-mem technology (property HW3 in §4.1.1). With this, the aggregate

host address space is the sum of the host and SoC DRAM. As a simplified example, the “hostAddr

hA ” that represents the socAddr sA can be translated from hA=hostDramSize+sA (details can vary).

For lA→sA , the runtime can obtain the logicalAddr to socAddr translation from the standard

/proc page map interface in the SoC OS. We use huge page tables and pin the runtime’s buffer

area so the translation can be set up in the beginning and not slow down the data path.

4.1.5 SoCV M

For fungibility, we design LeapIO to portably run on SoC or x86, such that LeapIO runtime and

services are one code base that does not fragment the fleet. To support LeapIO to run on x86, we

design “SoCV M” (a SoC-like VM) such that our overall design remains the same. Specifically, in

Figure 4.3, the “SoC’s DRAM” simply becomes the SoCV M’s guest address space. In Figure 4.4,

the socAddr essentially becomes the SoCV M’s guestAddr.

To enable SoCV M’s capability to access the host DRAM, our host hypervisor

hRAM

1G SoCVM

1G

trusts the SoCV M and performs the memory mapping shown on the right figure.

Imagine for simplicity that the SoCV M boots asking for 1GB. The hypervisor

allocates a 1G space in the host DRAM, but before finishing, our modified hypervisor extends

the SoCV M’s address space by virtually adding the entire DRAM size. Thus, any hostAddr hA

can be accessed via SoCVM’s address 1GB+hA (details can vary). To perform the user guestAddr

gA to hA translation, we write a host kernel driver that supplies this to the SoCV M via an NVMe-
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#lines Core SoCV M Emu

Runtime 8865 +850 +680

QEMU 1388 +385

Host OS 2340 +560 +360

Table 4.1: LeapIO complexity (LOC). (As described in §3.4)

like interface to avoid context switches. Finally, to share the guest VM’s NVMe queue pairs with

SoCV M, we map them into SoCV M as a Base Address Register (BAR) of a virtual PCIe device.

SoCV M also supports legacy storage devices with no NVMe interface. Older generation servers

and cheaper server SKUs that rely on SATA based SSDs or HDDs can also be leveraged in LeapIO

via the SoCV M implementation (via libaio), furthering our fungibility goal. Moreover, SoCVM

can coexist with the actual SoC such that LeapIO can schedule services on spare x86 cores when

the SoC is full.

4.2 Implementation

Table 4.1 breaks down LeapIO 14,388 LOC implementation. The rows represent the software

layers we add/modify, including LeapIO runtime, QEMU (v2.9.0), and the host OS/hypervisor

(Linux 4.15). In the columns, “Core” represents the required code to run LeapIO on SoC, “SoCV M”

represents the support to portably run on x86, and “Emu” means the small emulated part of an ideal

SoC (more below).

We develop LeapIO on a custom-designed development board based on the Broadcom StingRay

V1 SoC that co-locates an 100Gb Ethernet NIC with 8 Cortex-A72 ARM cores at 3 GHz. Our de-

velopment board appears to x86 as a smart RDMA Ethernet controller with one physical function

dedicated to the on-board SoC (and another for host/VM data), hence the ARM cores can commu-

nicate with x86 via RDMA over PCIe (e.g., for setting up the queue pairs).

Of the four HW requirements (§4.1.1), our current SoC, after a 2-year joint hardware develop-

ment process with Broadcom, can fulfill HW1, HW3 (SSD direct DMA from/to SoC DRAM) and
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HW4 (in-SoC NIC shareable to x86) fully and HW2 with a small caveat. For HW2 (IOMMU ac-

cess), we currently satisfy this via huge page translations (fewer address mappings to cache in SoC)

facilitated by the hypervisor, which bodes well with the use of huge pages in our cloud configu-

ration. Our software is also conducive to using hardware based virutal NVMe emulators [65, 74]

that can directly interact with the IOMMU.

For data-oriented services (e.g., caching and transaction) in LeapIO local virtualization and

remote server mode, peer-to-peer DMA (p2p-mem) [54] is used for direct SSD-SoC data transfer

to efficiently stage data in SoC DRAM (no x86 involvement). Computation intensive tasks such as

compression, encryption can be further offloaded to in-SoC hardware accelerators. Otherwise, we

bypass SoC’s DRAM (default SSD-host DMA mode) if data path services are not needed.

Despite lack of full HW2 support, we note that the LeapIO software design and implementation

are complete and ready to leverage newer hardware acceleration features such as hardware NVMe

emulation features when they are available. Therefore the system performance will improve as

hardware evolves while a full software-only (SoCV M) as well as SoC-only implementation allow

us to reduce resource/code fragmentation and hardware dependency. To the best of our knowledge,

LeapIO is the first comprehensive storage function virtualization stack that uses acceleration op-

portunistically. It enables cloud providers to expose identical storage services to VMs regardless

of server configurations.

4.2.1 NVMe over TCP and REST

Not all machines in the deployment have RDMA NICs and we must envision cases where some

deployments only want to add ARM SoC without NIC (e.g., for monetary reasons). Thus, we also

support passing NVMe commands (control and data) via TCP. Essentially this is similar to NVMe-

over-TCP [85]. This is also for our fungibility principle where NIC can be seen as an option but

not a necessity. Similar to TCP, we also provide support for REST APIs [63, 78] as some user

VMs interact with external cloud block services.
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In our NVMe over TCP implementation, we associate two sockets with each NVMe queue pair

over TCP transport, one for command transfer and the other one for data transfer. This design

greatly simplifies the overall implementation. Standard NVMeoF TCP implementations, e.g., as

in SPDK or Linux kernel, multiplex one socket for both command and data processing, they have

to maintain a complex state machine of current command/data transfer status along with extra

metadata information due to stateless nature of TCP connections. In LeapIO case, such complex

logic is not needed, we use the fact that NVMe commands and completions are of fixed size (64

and 16 bytes, respectively), so we always wait until we recv() or send() a complete comple-

tion/command entry before we go fetching data from the other socket. To improve performance,

we utilize non-blocking sockets and polling for immediate command/data processing. NVMe over

REST works in a similar manner.

Among the three implemented different communication mechanisms to interact with remote

storage devices and services: RDMA, TCP and REST, the performance is as expected – RDMA is

the most performant while REST is the slowest (not shown for space). We highlight that any cloud

provider can adopt LeapIO with our service that connects to cloud storage (converged or remote)

such as Azure Storage or Amazon EBS. This is important for seamless transition to large-scale

deployments of LeapIO; as we envision more IO services built in LeapIO, we still want users to

reap the benefits of existing full-fledged cloud services.

4.2.2 Polling

LeapIO works in polling mode to avoid hypervisor level guest/host context switches as well as opti-

mizing interrupt-induced software overheads (from physical SSDs). Polling brings the VM NVMe

queue pairs closer to SSD physical queues pairs, thus achieving optimal performance. Compared

to x86 polling which is power hungry and overkilling performance wise, ARM polling is cheap

and can handle requests in timely manner.

To quickly process IO submissions from guest VM, LeapIO polls on the vNVMe submission
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queue (SQ). It hands submission requests to LeapIO runtime, which goes through various layers of

services and eventually passed to physical SSD through RDMA/TCP/REST/PCIe.

To rapidly check request completions, LeapIO runtime continuously polls the SSD’s comple-

tion queue (CQ in SoC’s DRAM) burning the same ARM core above. When the runtime sees a

completed request, it puts the notification in the VM’s completion queue (CQ in VM) and sends an

interrupt to the VM (more in §4.2.3). Thus, the NVMe commands bypass both the host and the

SoC OSes, without involving extra software overhead.

4.2.3 Virtual Interrupt

While the internals of LeapIO are based on polling for speed, LeapIO runtime needs to send virtual

interrupts to the user VM to notify guest OS about IO completions (when guest OS uses kernel

interrupt-driven storage stack for the virtual NVMe drive).

We can utilize what SR-IOV does and deliver the interrupts from the SoC directly [74]. For this

to work, the SoC needs to advertise virtual Message Signaled Interrupt (MSI) capability to user

VMs. The host hypervisor enumerates the MSI vectors supported by the SoC and then associates

them with the virtual NVMe controller. When LeapIO runtime completes an IO, it issues MSI write

to send an interrupt to the VM directly, bypassing host OS/hypervisor, thus introducing minimal

performance overhead (no host/guest context switches for injecting interrupts).

This also can be done from the SoC itself without SR-IOV like hardware interrupt support, it

requires LeapIO to use software emulated interrupts and inject them to the core-id that the guest

is on. If the guest core to physical core mapping changes at runtime then we need to use Inter-

processor Interrupt (IPI). A simple driver running at the host level that listens to interrupts from

the SoC can do the job. Accounting wise these are basically cycles spent on behalf of the VM so

we charge them to the customer, so its not really a first-party overhead. We utilize this method in

LeapIO since our SoC doesn’t support SR-IOV hardware interrupts to VMs. Optimizing virtual

interrupt caused software overhead is out of the scope of this paper.
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4.3 Evaluation

We thoroughly evaluate LeapIO with the following questions: §4.3.1: How much overhead does

LeapIO runtime impose compared to other IO pass-through/virtualization technologies? §4.3.2:

Does LeapIO running on our current ARM SoC deliver a similar performance compared to running

on x86? §4.3.3: Can developers easily write and compose storage services/functions in LeapIO?

To mimic a datacenter setup, we use a high-end machine with an 18-core (36 hyperthreads)

Intel i9-7980XE CPU running at 2.6GHz with 128G DDR4 DRAM. The SSD is a 2TB data-center

Intel P4600 SSD. The user/guest VM is given 8 cores and 8 GB of memory and LeapIO runtime

uses 1 core with two loops, one each for polling incoming submission queues, and SSD completion

queues.

As we mentioned earlier, modern storage stack is deep and complex. To guide readers in

understanding the IO stack setup, we will use the following format: A/B/C/... where A/B implies

A using/running on top of B. For clarity, we compare one layer at a time, e.g., A/B1-or-B2/...

when comparing two approaches at layer B. Finally, to easily find our main observations, we label

them with obs .

4.3.1 Software Overhead

This section dissects the software overhead of LeapIO runtime. To not mix performance effects

from our SoC hardware, we first run LeapIO inside SoCV M (§4.1.5) on x86.

(1) LeapIO vs. PT on Local SSD with FIO/SPDK. We first compare LeapIO with “pass-

through” technology (PT) which arguably provides the most bare-metal performance a guest VM

can reap. With pass-through, guest VM (“gVM”) owns the entire local SSD and directly polls the

NVMe queue pairs without host OS interference (but PT does not virtualize the SSD like we do).

We name this lower stack “gVM/PT/SSD” and compare it with our “gVM/LeapIO/SSD” stack.

Now, we vary what we run on the guest VM.
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Figure 4.5: LeapIO vs. Pass-through (PT) with FIO. The figure compares LeapIO and PT perfor-

mance as described in §4.3.1(1). From left to right, the figures show read-only (RR) and read-write (RW)

throughputs followed with latency CDFs.

First, we run the FIO benchmark [69] on top of SPDK in the guest VM to not wake up

the guest OS (FIO/SPDK). This setup gives the highest bare-metal performance as neither the

guest/host OS is in the data path. We run FIO in two modes (read-only or 50%/50% read-write

mix) of 4KB blocks with 1 to 256 threads. To sum up, we are comparing these two stacks:

FIO/SPDK/gVM/PT-or-LeapIO/SSD.

obs Figure 4.5 shows that we are not far from the bare-metal performance. More specifically,

Figure 4.5a-b shows that LeapIO runtime throughput drops only by 2% and 5% for the read-only

and read-write throughputs respectively. The write overhead is higher because our datacenter SSD

employs a large battery-backed RAM that can buffer write operations in <5µs. In Figure 4.5c-d,

below p99 (the 99th percentile), LeapIO runtime shows only a small overhead (3% on average). At

p99.9, our overhead ranges between 6 to 12%. LeapIO runtime is fast because of the direct NVMe

queue-pair mapping across different layers. For each 64-byte submission entry, LeapIO runtime

only needs to translate 2-3 fields with simple calculations and memory fetches (for translations).

In another experiment (not shown), we convert the 256 threads from 1 guest VM in Figure 4.5a

into 8 guest VMs each with 32 threads and obtain the same results. This demonstrates that LeapIO

scales well with the number of guest NVMe queue pairs managed.

(2) LeapIO vs. PT on Local SSD with YCSB/RocksDB. Next, we run a real application:

RocksDB (v6.0) [88] on ext4 serving YCSB workloads [139] (YCSB/RocksDB/gOS). YCSB is set
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Figure 4.6: Leap vs. PT (YCSB/RocksDB). The figure compares LeapIO and pass-through (PT) as

described in §4.3.1(2).
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Figure 4.7: Leap vs. other virt. technologies. The figure compares LeapIO with full virtualization

(FV) and virtual host (VH) as described in §4.3.1(3).

to make uniform request distributions (to measure the worst-case performance) across 100 million

key-value entries. We perform read-only or 50-50 read/write workloads. Figure 4.6 confirms the

low software overhead of LeapIO by comparing these two stacks: YCSB/RocksDB/gOS/gVM/

PT-or-LeapIO/SSD. Compared to Figure 4.5c-d, LeapIO latencies are worse than PT mainly

due to the software virtual interrupt overhead (VM-exits).

(3) LeapIO vs. Other Technologies on Local SSD. Now we repeat the above experiments but

cover other virtualization technologies. To make a faster RocksDB setup that bypasses the guest

OS, we run RocksDB on SPDK and run db_bench benchmark (db_bench/RocksDB/SPDK/gVM).

We switch to db_bench as YCSB workloads require the full POSIX API that is currently not sup-

ported by SPDK.

We now vary the technologies under the guest VM (gVM/FV-or-VH-or-PT-or-LeapIO/SSD).

Full virtualization (“FV”) [70] provides SSD virtualization but is the slowest among all as it must
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Figure 4.8: LeapIO vs. kernel/user NVMeoF. We compare LeapIO remote NVMe feature with kernel

and user NVMeoF (KNOF and UNOF). UNOF is unstable; with 32 threads, at p99.9 UNOF reaches 14ms

while LeapIO can deliver 1.4ms, and at p99.99 UNOF reaches almost 2000ms while LeapIO is still around

7ms.

wake up the host OS (via interrupts) to reroute all the virtualized IOs. Virtual host (“VH”) [59]

is a popular approach [48] that combines virtualization and polling but requires guest OS changes

(e.g., using the virtio interface and SPDK-like polling to get rid of interrupts.)

obs Figure 4.7 shows the results. While LeapIO loses by 3% to PT, when compared to popular

IO virtualization technologies such as virtual-host, LeapIO throughput degradation is only 1.6%.

At p99.99 latency LeapIO is only slower by 26µs (1%). This is an acceptable overhead considering

that now we can easily move IO services to ARM co-processors.

(4) LeapIO vs. NVMeoF for Remote SSD access. We compare LeapIO server-side run-

time with a popular remote IO virtualization technology, NVMeoF, which is a standard way for

disaggregating NVMe storage access over RDMA/TCP [38]. Once connecting the NVMeoF

client, the server continuously minotors and routes incoming NVMe commands to the backend

SSDs. There are two server-side NVMeoF options we evaluate: kernel-based one that works in an

interrupt-driven mode (“KNOF”) and user-space one that utilizes SPDK for polling (“UNOF”).

We use the YCSB/RocksDB client setup as before, but now with remote SSD. Thus, we com-

pare YCSB/RocksDB/gOS/gVM/client/–RDMA–/KNOF-or-UNOF-or-LeapIOServer/SSD,

where “client” implies the client-side runtime of either KNOF, UNOF, or LeapIO (TCP setup

omitted due to space limit).

obs Based on Figure 4.8, we make two observations here. First kernel-based NVMeoF (KNOF)
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Figure 4.9: Scalability experiment results. The figure is explained in Section §3.5.

is most stable and performant, but is not easily extensible as services must be built in the kernel.

However, our more extensible LeapIO only imposes a small overhead (6% throughout loss and 8%

latency overhead). Second, interestingly we found that user-space NVMeoF (UNOF) is unstable.

In majority of the cases, it is worse than LeapIO but in one case (64 threads) UNOF is better (after

repeated experiments). UNOF combined with RDMA is a relatively new and some performance

and reliability issues have been recently reported [93, 94, 95]. We also tried running UNOF over

TCP to no avail (not shown for space). With this, we can claim that LeapIO is the first user-space

NVMeoF platform that delivers stable performance for the VMs.

(5) LeapIO Scalability. Figure 4.9 shows LeapIO scalability under multiple SSD channels

and multiple VMs. In Figure 4.9(a), we use one user VM and assign different number of channels

from an OpenChannel-SSD to it, it shows that the VM is able to achieve bare-metal performance

under different channel setups. In Figure 4.9(b), we run multiple VMs on top of LeapIO, in each

VM, we run a single thread IO benchmark, by increasing the number of VMs, LeapIO is able to

maintain a linear growth in IOPS with near bare-metal performance.

4.3.2 SoC Performance

We now dissect separately the performance of LeapIO client- and server-side runtimes on an ARM

SoC vs. on x86.
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Figure 4.10: SoC vs. SoCVM Benchmarks. The figure compares the performance of LeapIO SSDs

(local and remote) running on a SoC vs. in a SoCV M as described in §4.3.2.

(1) Local SSD (realSoC vs. SoCV M). We reuse the FIO-on-local-SSD stack in §4.3.1.1 for this

experiment (specifically FIO/SPDK/gVM/SoCV M-or-realSoC/SSD). Figures 4.10a&c show re-

alSoC runtime is up to 30% slower than SoCV M . This is because in our current implementation, we

access the guest VMs’ and SoC-side queue pairs via SoC-to-host one-sided RDMA (§3.4), which

adds an expensive 5µs per operation. We are working with Broadcom to revamp the interface

between SoC and the host memory to get closer to native PCIe latencies. Another reason is that

the ARM cores run at a 25% lower frequency compared to the x86 cores.

(2) Remote SSD (realSoC vs. SoCVM). Next, to measure remote SSD performance, we

repeat the setup in §4.3.1.4 (YCSB/RocksDB/gOS/gVM/SoCVM/–RDMA–/SoCVM-or-realSoC/

SSD). Figures 4.10b&d show that realSoC on remote side (and SoCV M on client side) has a min-

imal overhead compared to the previous setting (only 5% throughput reduction and 10% latency

overhead at p99) because the remote runtime does not need to communicate with the remote host,

hence does not suffer from any overheads. However, we note that the overheads would be similar

to the previous experiment when both sides use realSoC.

obs Overall, although current realSoC-LocalSSD is up to 30% slower (will be improved in our

future SoC), our cost benefit analysis shows that using even 4× more cores in realSoC compared

to the number of cores in SoCV M to achieve performance parity still pays off. From the second

experiment, we show that x86 is an overkill for polling and ARM co-processors can easily take

over the burden when serving SSDs over the network.
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4.3.3 Composability

LeapIO runtime enables composing services in easy ways. Like filtering operations in networking,

LeapIO services get a command, process it, and then either send a completion back to the upstream

queue or forward sub-commands to many downstream queues (e.g., striping). Composability is

achieved by chaining and striping filters. For instance, one simple example we demonstrate later

is combining priority and snapshot services.

We build various storage services that compose local/remote devices as well as remote services

in just 70 to 4400 LOC each, all in user space on LeapIO runtime. In all the experiments below,

we use a “search-engine” workload trace containing read-only, user-facing index lookups. We take

1 million IOs, containing various IO sizes from 4K to 7M bytes with average and median size of

36K and 32K bytes respectively. We also co-locate the search workload with a background (“BG”)

workload that performs intensive read/write IOs such as rebuilding the index. The purpose of using

a real search-engine trace is as a case study of migrating latency-sensitive services from dedicated

servers to a shared cloud, thereby making latency-sensitive services more elastic with resources in

proportion to the load.

(a) Prioritization service. A crucial enabler for high cloud utilization is the ability to prior-

itize time-sensitive, user-facing queries over non-interactive background workloads such as index

rebuilding. For this, we build a new service that prioritizes interactive workloads while keeping

the batch processing workload make meaningful forward progress when hosts are under-utilized.

The “Base” line in Figure 4.11a shows the latency CDF of the search-engine VM without

contention. However, when co-located with batch workloads (BG), the search VM suffers long

latencies (“+BG” line). With our prioritization service, the search VM observes the same perfor-

mance as if there were no contention (“+BG+Prio” line). At the same time, the batch workload

obtains 10% of the average resources to make meaningful progress (not shown).

(b) Snapshot/version service. Another important requirement of search engines is to keep

the index fresh. The index-refresher job must help foreground jobs serve queries with the freshest
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Figure 4.11: Service features. The figures are described in §4.3.3(a)-(f). The experiments are done on

SoCV M for faster evaluation. In (a), we run one experiment on SoC “[SoC]” to show a similar pattern.

index. It is undesirable to refresh the index in an offline manner where the old index is entirely

rejected and a new one is loaded (causing invalidated caches and long tail latencies). A more

favorable way is to update the index gradually.

For this, we build two new services. The first service implements a snapshot feature (the

index-refresher job). Here, all writes are first committed to a log using our NVMe multi-block

atomic write command while a background thread gradually checkpoints them (while the fore-

ground thread serves consistent versions of the index).

We use a persistent linked list and hashtable to implement an ordered set of writes (ordered by

version number). Writers transactionally add versions to this ordered set. Once the publisher is

ready to advance, a background thread locks and writes the oldest version to the SSD and transac-

tionally deletes it from the log (this is a idempotent step to provide crash consistency).

The second service is a search VM that looks up the log and obtains blocks of the version they

105



need if they are present in the log and reads the remaining data from the SSD.

Figure 4.11b shows that this snapshot-consistent read feature adds a slightly longer latency to

the base non-versioned reads (“+Snap” vs “Base” lines). When combined with the background

writer, the snapshot-consistent reads exhibit long latencies (“+Snap+BG” line). Here we can easily

compose our snapshot-consistent and prioritization features in LeapIO (the “+Snap+Prio+BG” line).

(c) Remote rack-local SSD. Decoupling compute and storage is a long standing feature of

many storage services. We want to decouple the search service also from its storage. Figure 4.11c

shows the results the same workload used in Figure 4.11b (prioritization) but now the storage is

a remote SSD (in the local rack shared by multiple search VMs). The experiment shows that the

prioritization mechanism works end-to-end even with the network now in the data path.

(d) Agile rack-local RAID. Our servers that power search engines require disproportionately

larger and more powerful SSDs compared to traditional VM workloads. Currently, this means

we must overprovision SSD space and bandwidth to keep the fleet uniform and fungible. With

LeapIO, we propose not to overprovision the dedicated SSDs but rather build larger composable

virtual rack-local SSDs.

More specifically, in every rack, each server publishes the free SSD IOPS, space and available

network bandwidth that it can spare to a central known billboard every few minutes. Any server that

needs to create a virtual drive beyond the capacity of its free space consults the billboard. It then

sequentially contacts each server directly to find out if it still has the necessary free capacity until

one of them responds affirmatively. In such a case, they execute a peer-to-peer transaction with a

producer/consumer relationship and establish a direct data path between the two. The consumer

uses the additional space to augment its local SSDs to support the search VMs in the rack which

are interested in this partition of the index.

Figure 4.11d shows the same experiments in Figure 4.11c but now the backend drive is a

RAID-0 of two virtual SSDs (more is possible) in two machines, delivering a higher performance

and capacity for the workload.
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(e) Rack-local RAID 1. To protect against storage failures, one can easily extend RAID 0 to

RAID 1 (or other RAID protection levels). Figure 4.11e shows the results with RAID-1 of two

remote SSDs as the backend. Note that we lose the performance of RAID-0 but now get reliability.

(f) Virtualized Open Channel service for isolation. Another related approach to prioritization

is isolation – different VMs use isolated virtual drives within the same SSD. For this, we compose

a unique stack enabled by LeapIO: gVM/LeapIOClient/OC (where “OC” denotes OpenChannel

SSD [126, 228]). OC can be configured to isolate flash channels for different tenants [170]. Unfor-

tunately, OC cannot be virtualized across multiple VMs, because LightNVM must run in the host

OS and directly talks to OC.

With LeapIO, we can virtualize OC. Guest VM/OSes can run LightNVM not knowing that

underneath it LeapIO remaps the channels. As an example, a guest VM can ask for 4 channels

and our new OC service can map the requested channels to the local (or even remote) OC drives.

Hence, our new OC service is capable of exposing virtual channels and allow guest VMs to reap

OC performance isolation benefits. In Figure 4.11f, when a VM (running basic FIO) competes

with another write-heavy VM on a shared SSD, the FIO latencies are heavily affected (“Base” vs.

“+BG” lines). However, after we dedicate different channels for these two VMs, the search engine

performance is now isolated (“+Iso” line).

4.4 Summary

LeapIO is our next-generation cloud storage stack that leverages ARM SoC to alleviate taxing x86

CPUs. Our experience and experiments with LeapIO show that the engineering and performance

overhead of moving from x86 to ARM is minimal. In the shorter term, we will continue to move

existing host storage services to LeapIO, while our longer term goal is to develop new capabilities

that allow even the guest software stack to be offloaded to ARM.
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CHAPTER 5

FEMU: ACCURATE, SCALABLE AND EXTENSIBLE

NAND-FLASH BASED NVME SSD EMULATOR

In this chapter, we introduce FEMU, a storage research platform to foster future full-stack stor-

age research. First, we review the state-of-the-art research platforms that are available today for

researchers (§5.1, §5.2). Then, we describe FEMU designs in achiving scalability (§5.3) and accu-

racy (§5.4). We present FEMU evaluation results in §5.5 and describe its usability and extensibility

in §5.6 and §5.7, respectively. Lastly, we conclude in §5.8. The chapter is based on our paper “The

CASE of FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator” (FAST’18) [228].

5.1 SSD Research Platform Introduction

Cheap and extensible research platforms are a key ingredient in fostering wide-spread Solid-State

Drives (SSDs) research. Existing SSD research platforms can be categorized into three types: sim-

ulator, emulator and hardware based platforms, as shown in table 5.1. Since SSDs’ first debut as

server storage more than a decade ago, we have seen numerous SSD architecture designs and FTL

algorithms innovations. For example, software defined flash (SDF) which offloads NAND man-

agement tasks to the host, FTL algorithm innovations like wear leveling mechanisms for increasing

SSD lifetime, better IO scheduling / Garbage Collection (GC) algorithms to improve overall I/O

performance, etc. While simulation is a quick and easy way to evaluation new designs, it experi-

ences several drawbacks we discuss below.

SSD simulators such as DiskSim’s SSD model [101], FlashSim [162] and SSDSim [169],

despite their popularity, only support internal-SSD research but not kernel-level extensions. That

means, users can only run workload traces to verify new designs. Even today, SSD researchers

are still depending on IO workload traces which were published a decade ago retrieved from disk-
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Platform Pros Cons

Simulator Cheap; Easy; Time-saving Trace-driven; Internal research only

Emulator Cheap; Full-stack research support Poor scalability; Poor accuracy

Hardware Full-stack research support; Accurate Expensive; Complex; Wear-out

Table 5.1: SSD Research Platforms Comparison. SSD Research Platform Pros & Cons: Simulator

v.s. Emulator v.s. Hardware platforms

based systems. This imposes an embarrasing situation here as no new workload traces are open

sourced and researchers have to rely on those decade-old disk traces. On the other hand, hardware

research platforms such as FPGA boards [257, 279, 327], OpenSSD [46], or OpenChannel SSD

[126], support full-stack software/hardware research but their high costs (thousands of dollars per

device) impair large-scale SSD research. Also, hardware based platforms are complex to use

since the development environment is quite different from application development in the host. It

requires very low level knowledge about the System-on-Chip (SoC) to make viable modifications.

This would greatly lengthen the project development cycle. Wear-out issues would also jump in

when the device is not programmed carefully. As a return, we get the most accurate results since

everything is “real”.

This leaves software-based emulator such as QEMU-based VSSIM [325], FlashEm [330],

and LightNVM’s QEMU [45], as the cheap alternative platform. Emulators have the potential

to achieve benefits of both the hardware platforms in full system stack support and simulators in

easiness to use. Essentially, emulators are software, they simulate the hardware logic and expose a

“fake” device (emulated) to guest OS, thus enabling research at different levels. This also guaran-

tees that it’s flexible to use as users are free to propose device level innovations and experiment it

using application level benchmarks (real workloads).

Unfortunately, the state of existing emulators is bleak; they are either outdated, non-scalable,

or not open-sourced. Of the popular SSD Emulators we are aware of, VSSIM design is based on

IDE interface, which exposes performance constraints over utilizing high parallelism exposed by

today’s SSDs. Its simple whole-GC design where GC will lock down the whole device cannot
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represent today’s fine-granular GC algorithms where user and GC request can co-exist. FlashEmu

is no longer maintained and LightNVM’s QEMU is only designed for OS level FTL development.

It’s not a performance platform and only supports single channel configuration. The poor design

of LightNVM’s QEMU plus the virtualization overhead prevent it from being able to emulate

hundreds of microsecond level latencies in state-of-the-art NAND Flash.

We argue that it is a critical time for storage research community to have a new software-based

emulator (more in §5.2). To this end, we present FEMU, a QEMU-based flash emulator, with the

following four “CASE” benefits.

First, FEMU is cheap ($0) as it is an open-sourced software. FEMU has been successfully used

in several projects, some of which appeared in top-tier OS and storage conferences [164, 318]. We

hope FEMU will be useful to broader communities and accelerate research in broader areas.

Second, FEMU is (relatively) accurate. For example, FEMU can be used as a drop-in replace-

ment for OpenChannel SSD; thus, future research that extends LightNVM [126] can be performed

on top of FEMU with relatively accurate results (e.g., 0.5-38% variance in our tests). With FEMU,

prototyping SSD-related kernel changes can be done without a real device.

Third, FEMU is scalable. As we optimized the QEMU stack with various techniques, such as

exitless interrupt and skipping QEMU AIO components, FEMU can scale to 32 IO threads and still

achieve a low latency (as low as 52µs under a 2.3GHz CPU). As a result, FEMU can accurately

emulate 32 parallel channels/chips, without unintended queueing delays.

Finally, FEMU is extensible. Being a QEMU-based emulator, FEMU can support internal-

SSD research (only FEMU layer modification), kernel-only research such as software-defined flash

(only Guest OS modification on top of unmodified FEMU), and split-level research (both Guest OS

and FEMU modifications). FEMU also provides many new features not existent in other emulators,

such as OpenChannel and multi-device/RAID support, extensible interfaces via NVMe commands,

and page-level latency variability.

In the following sections, we first present an extended motivation (§5.2).
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Figure 5.1: Categorization of SSD research. The figure is explained in Section §5.2. The first bar

reaches 195 papers.

5.2 Extended Motivation

5.2.1 The State of SSD Research Platforms:

We reviewed 391 papers in more than 30 major systems and storage conferences and journals1

published in the last 10 years, and categorized them as follows:

1. What was the scale of the research? [1]: single SSD; [R]: RAID of SSDs (flash array); or

[D]: distributed/multi-node SSDs.

2. What was the platform being used? [C]: commodity SSDs; [E]: software SSD emulators

(VSSIM [325] or FlashEm [330]); [H]: hardware platforms (FPGA boards, OpenSSD [46],

or OpenChannel SSD [45]); or [S]: trace-based simulators (DiskSim+SSD [101] or FlashSim

[162] and SSDSim [169]).

3. What layer was modified? [A]: application layer; [K]: OS kernel; [L]: low-level SSD con-

troller logic.

Note that some papers can fall into two sub-categories (e.g., modify both the kernel and the

SSD logic). Figure 5.1 shows the sorted order of the combined categories. For example, the

most popular category is 1-S-L, where 195 papers target only single SSD (1), use simulator (S),

1. ASPLOS, EuroSys, FAST, MSST, OSDI, SOSP, SYSTOR, TECS, TPDS, TOC, TOS, etc..
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and modify the low-level SSD controller logic (L). However, simulators do not support running

applications and operating systems.

5.2.2 The Lack of Large-Scale SSD Research

Our first motivation is the lack of papers in the distributed SSDs category (D-...), for example, for

investigating the impact of SSD-related changes to distributed computing and graph frameworks.

One plausible reason is the cost of managing hardware (procurement, installation, maintenance,

etc.). is high, especially in large deployments, required for distributed storage experiments. The

top-8 categories in Figure 5.1, a total of 324 papers (83%), target single SSD (1-...) and flash array

(R-...). The highest D category is D-C-A (as highlighted in the figure), where only 9 papers use

commodity SSDs (C) and modify the application layer (A). The next D category is D-H-L, where

hardware platforms (H) are used for modifying the SSD controller logic (L). Unfortunately, most

of the 6 papers in this category are from large companies with large research budget (e.g., FPGA

usage in Baidu [257] and Tencent [327]). Other hardware platforms such as OpenSSD [46] and

OpenChannel SSD [45] also cost thousands of dollars each, impairing multi-node non-simulation

research, especially in academia.

5.2.3 The Rise of Software-Defined Flash

Today, research on host-managed (aka. “software-defined” or “user-programmable”) flash is grow-

ing [222, 257, 279, 284, 305, 327]. The idea is to have, not only the inflexible SSD firmware, but

also the software (e.g., the host OS or application) manage the flash devices, However, such re-

search is mostly done on top of expensive and hard-to-program FPGA platforms. Recently, a more

affordable and simpler platform is available, OpenChannel SSD [45], managed by Linux-based

LightNVM [126]. The SSD exposes all the internal physical page addresses (channels, chips,

blocks, and pages) to the host. Before its inception (2015), there were only 24 papers that per-

formed kernel-only changes, since then, 11 papers have been published, showing the success of
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OpenChannel SSD as a viable hardware platform for software-defined flash research.

However, there remains several issues. First, not all academic communities have budget to

purchase such devices. Even if they do, while prototyping the kernel/application, it is preferable

not to write too much to and wear out the device. Thus, replacing OpenChannel SSD (during

kernel prototyping) with a software-based emulator is desirable.

5.2.4 The Rise of Split-Level Architecture

While most existing research modify a single layer (application/kernel/SSD), some recent works

show the benefits of “split-level” architecture [47, 182, 211, 293, 307], wherein some function-

alities move up to the OS kernel (K) and some other move down to the SSD firmware (L) [175,

274, 285]. For example, page-level synchronization for preventing read-write data race should

move up because testing data-race free firmware is long and expensive2; garbage-collection (GC)

management should move up as it must be tied to user SLAs [199]; and some features such as

atomic writes, persistent trim, and deduplication should move down [285]. While these are just

a few examples, there is a vast research space to explore. So far, we found only 40 papers in

split-level K+L category (i.e., modify both the kernel and SSD logic layers), mostly done by

companies with access to SSD controllers [182] or academic researchers with Linux+OpenSSD

[189, 275] or with block-level emulators (e.g., Linux+FlashEm) [267, 330]. OpenSSD with its

single-threaded, single-CPU, whole-blocking GC architecture also has many known major limita-

tions [318]. FlashEm also has limitations as we elaborate more below. Note that the kernel-level

LightNVM is not a suitable platform for split-level research (i.e., support K, but not L). This is

because its SSD layer (i.e., OpenChannel SSD Controller & its firmware) is not modifiable; the

white-box part of OpenChannel SSD is the exposure of its internal channels and chips to be man-

aged by software (Linux LightNVM), but the OpenChannel firmware logic itself is a black-box

part.

2. Per our conversations with SSD engineers
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5.2.5 The State of Existing Emulators

We are only aware of three “popular” software-based emulators: FlashEm, LightNVM’s QEMU

and VSSIM.

FlashEm [330] is an emulator built in the Linux block level layer, hence less portable; it is

rigidly tied to its Linux version; to make changes, one must modify Linux kernel. FlashEm is not

open-sourced and its development stopped two years ago (confirmed by the creators).

LightNVM’s QEMU platform [43] is still in its early stage. Currently, it cannot emulate multi-

ple channels (as in OpenChannel SSD) and is only used for basic testing of 1 target (1 chip behind

1 channel). Worse, due to the virtualization overhead and excessive use of heavy syscalls in vir-

tual I/O path, LightNVM’s QEMU performance is not scalable to emulate NAND latencies as it

depends on vanilla QEMU NVMe interface (as shown in the NVMe line in Figure 5.2a). Later,

we show that FEMU can be used as a drop-in replacement of OpenChannel SSD with relative

accuracy, for prototyping purposes.

VSSIM [325] is a QEMU/KVM-based platform that emulates NAND flash latencies on a RAM

disk, and has been used in several papers. The major drawback of VSSIM is that it is built within

QEMU’s IDE interface implementation, which is not scalable. The upper-left red line (IDE line)

in Figure 5.2a shows the user-perceived IO read latency through VSSIM without any NAND-delay

emulation added. More concurrent IO threads (x-axis) easily multiply the average IO latency (y-

axis). For example from 1 to 4 IO threads, the average latency spikes up from 152 to 583µs. The

root cause is that IDE is not supported with virtualization optimizations.

When we add just a 50µs delay emulation in VSSIM (i.e., as if a page read takes 50µs), the

resulting average latency multiplies further, up to 5ms with 16 IO threads (although the IOs are

directed to different channels/chips). This is because VSSIM delay emulation is built within the

single-threaded IDE entry path. Thus busy loop creates queueing delays. In our setup, VSSIM’s

maximum user throughput is only 10 KIOPS and drops to 1 KIOPS with an ongoing GC.

With this drawback, emulating internal SSD parallelism is a challenge. VSSIM worked around
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the problem by only emulating NAND delays in another background thread in QEMU, discon-

nected from the main IO path. Thus, for multi-threaded applications, to collect accurate results,

users solely depend on VSSIM’s monitoring tool [325, Figure 3], which monitors the IO latencies

emulated in the background thread. In other words, users cannot simply time the multi-threaded

applications (due to IDE poor scalability) at the user level. When multiple applications run con-

currently, VSSIM monitor only reports the overall IO latency but cannot distinguish the timing of

each application.

Despite these limitations, we (and the community) are greatly indebted to VSSIM authors as

VSSIM provides a base design for future QEMU-based SSD emulators. As five years have passed,

it is time to build a new emulator to keep up with the technology trends.

5.3 FEMU Scalability

By scalability, we mean the ablility of the target system to handle concurrent I/Os within a certain

latency threshold without causing unintended queueing dealys. Scalability is an important property

of a flash emulator, especially with high internal parallelism of modern SSDs.

Modern SSDs are equipped with hundreds of indepedent NAND flash chips across dozens of

channels. Each NAND flash chip is an independent unit which can execute a NAND command

(e.g. Page Read, Page Program or Block Erase, etc.) at a time. This implies that modern SSDs can

process hundreds of inflight I/Os simutaneously without causing queueing delays. Exploiting this

massive amount of hardware levle parallelism has been a key research area for storage researchers.

However, as we will show later, stock QEMU/KVM is far from being able to provide similar par-

allelisms with concurrent I/Os even under the ideal case where there is no delay emulation at all.

Thus, to architect an accurate emulator platform which can deliver similar parallelisms and la-

tency timings as real hardware platforms do, we need to solve the scalability bottleneck of current

QEMU/KVM implementation. In this section, we first show experimental results demonstrating

QEMU/KVM is not scalable to deliver stable performance for low latency and parallelism emula-
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tion, then we focus on explaining where such scalabilty bottleneck comes from and how FEMU

takles this challenge.

5.3.1 QEMU I/O Scalabilty

QEMU supports various types of storage interface emulations, which can be categorized into three

types. The first one (type I) is fully virtualized interfaces, such as IDE/SATA and NVMe, where

QEMU emulates the device IO according to corresponding device specifications. In this mode,

guest OS can run out-of-box with vanilla device driver without modification, thus providing flex-

ible support to different operating systems. However, this flexibility comes at cost of low perfor-

mance as those interfaces are not optimized for virtualization. Existing popular SSD emulators,

such as VSSIM and LightNVM’s QEMU, are based on this type of I/O virtualization, thus they

cannot provide scalability we need to emulate high scalability in today’s SSDs. The second type

(type II) is para-virtualized storage interfaces, e.g. virtio. This is a special type of storage interface

designed to work with virtual machines only, which brings better perforamance than full virtualiza-

tion. However, even with virtio, we will show later that it’s still not scalable enough to support our

scalability needs. The third type is hardware assisted virtual I/Os, such as VT-d and SR-IOV. They

depend on hardware support to assign (partial) device to the VM and achieve close to bare metal

performance. Even so, due to QEMU software overhead in interrupt handling, it cannot deliver the

scalability we need neither.

This leaves us to use ramdisk (e.g. tmpfs or block ram device) as the backend storage device

and stack an emulated storage interface (type I or II) on top. Ramdisks are backed by DRAM,

whose access latency is at 100ns level and thus is negligle compared to the NAND latency we are

trying to emulate. In this case, we measure I/O latencies under different number of I/O threads

to see how scalable QEMU/KVM is. The results are shown in Figure 5.2a. Since the backend is

DRAM, the perceived latencies represent capability of QEMU/KVM in handling concurrent I/Os.

Unfortunately, stock QEMU exhibits a scalability limitation. For example, as shown in Figure
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Figure 5.2: QEMU Scalability. The figure shows the scalability of QEMU’s IDE, NVMe, virtio, and

dataplane (dp) interface implementations, as well as FEMU. The x-axis represents the number of concurrent

IO threads running at the user level. Each thread performs random 4KB read IOs. The y-axis shows the user-

perceived average IO latency. The storage is memory-backed, thus the IO latency represents the software

overhead. The experiments were run on a dual-thread (2x) 24-core machine, hence no CPU contention. For

Figure (a), the IDE and NVMe lines representing VSSIM and LightNVM’s QEMU respectively are discussed

in §5.2; virtio, dp, and FEMU lines in §5.3. For Figure (b), the “+50µs (Raw)” line is discussed in §5.4.1;

the “+50µs (Adv)” line in “Result 3” part of §5.4.2.

5.2a, the red line shows QEMU IDE cannot scale with number of increasing I/O threads at all

since it’s a two decade old interface designed to process one I/O at a time without parallelism.

When number of I/O threads doubles, we can directly observe that I/O latency doubles. Thus, it’s

not a good fit. With QEMU NVMe (although it is more scalable than IDE), more IO threads still

increases the average IO latency (e.g., with 8 IO threads, the average IO latency already reaches

106µs). This is highly undesirable because typical read latency of modern SSDs can be below

100µs, let alone we need to emulated tens to hundreds of parallel I/Os.

More scalable alternatives to NVMe are para-virtual interfaces, as shown by the virtio and

virtio-blk dataplane (dp) lines [32, 273]. (virtio/dp vs. NVMe lines in Figure 5.2a). virtio-blk

dataplane (dp) extends the basic virtio-blk interface with a dedicated thread working in polling

mode, thus it can achieve better scalalibty compared to virtio. However, these interfaces are not as

extensible as NVMe since they only support simple read, write and flush I/O commands. NVMe,

as a new standard storage interface designed for today’s fast NVM devices, is lightweight and
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Figure 5.3: QEMU latency breakdown under NVMe, virtio-blk (virtio) and virtio-dataplane

(dp). This figures show the latencies brought by each parts in I/O life cycle. It helps us analyze the

scalability of each part. “Guest OS” accounts for the time since the IO enters guest kernel until driver I/O

submission, “KVM” represents the time taken for I/O virtualization handling in the host kernel plus QEMU

post processing before entering corresponding device emulation layer, and “QEMU” shows the time of I/O

processing in QEMU I/O emulation.

more extensive, thus more popular now. Nevertheless, virtio and dp are also not scalable enough to

emulate low flash latencies. For example, at 32 IO threads, their IO latencies already reach 185µs

and 126µs, respectively.

5.3.2 QEMU I/O Scalabilty Problem Root Causes

As shown in §5.3.1, QEMU NVMe can only scale to 4 I/O threads, imposing severe scalability

challenge in achieving high parallelism emulation. In this section, we first go through how NVMe

protocol works and then introduce QEMU NVMe emulation. Finally, we identify the root causes

of QEMU NVMe scalability bottleneck.

QEMU/KVM is a full system emulator/hypervisor, which can emulate various types of hard-

ware. It supports running guest OS on top at near bare-metal performance for CPU/Memory in-

tensive workloads with the help of hardware assisted virtualization techniques (e.g. Intel VT and

EPT). However, I/O virtualization suffers significant overhead due to the necessacity to trap and

emulate I/Os in the QEMU process, instead of running it inside the guest OS (a different context).

To the Operating System, an I/O device can be abstracted as a set of registers either mapped
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to OS memory space (i.e., MMIO3) or can be accessed via PIO (Port I/O) operations. Accesses

to these registers are sensitive operations and needs to be babysitted by QEMU using a trap-and-

emulate method. Put it simple, QEMU monitors access to these areas and takes control of the VM

execution, in the meanwhile, vCPU is stalled until QEMU signals completion of above memory

access. Those register accesses are triggered during I/O submissions/completions and will fre-

quently interrupt VM execution by jumping back and forth. Once QEMU is done with emulating

I/O by serving it from correponding backend image file in the host, it will pause the VM execution

again to inject an interrupt to the guest OS (simulating the way how real interrupt works).

QEMU’s NVMe implementation uses traditional trap-and-emulation method to emulate I/Os,

thus the performance suffers due to frequent VM-exits. Each trap will cause an expensive VM-exit

to be executed, which usually takes several microseconds to save VM context and restore host

context. Under concurrent I/O workloads VM-exit delay will be queued up for inflight I/Os thus

cascadingly affect overall I/O latency.

Moreover, as shown in Figure 5.3, each guest I/O needs go through guest kernel stack, KVM

processing (host kernel) and QEMU (host user space). For QEMU/KVM, guest OS codes runs in

dedicated vCPU threads, which are introspected by KVM module, QEMU I/O emulation mainly

runs in an event loop thread. These are three major parts where I/O latency comes from. Compared

to para-virtualized interfaces (virtio and dp), QEMU NVMe shows a significant overhead in

“KVM” and “QEMU” due to its full-virtualization nature. For example, under 16 I/O threads,

the time taken in “KVM+QEMU” for NVMe is 150µs while it’s only 70µs and 45µs for virtio

and dp respectively. This shows QEMU NVMe virtualization is the main reason of its scalability

bottleneck. Detailed root causes is below.

Root Causes: Collectively, all of the scalability bottlenecks above are due to two reasons: (1)

Software overheads caused by frequent VM-exits. For each NVMe I/O, the Guest OS’ NVMe

driver first “rings the doorbell [44]” to the device (QEMU in our case) that some IOs are in the

3. Memory Mapped I/O, which enables device register accesses via volatile memory reads and writes
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device queue. This “doorbell” write is an MMIO operation that will cause an expensive VM-exit

(“world switch” [294]) from the Guest OS to QEMU. Such VM-exits have been well-known as I/O

virtualization performance bottlenecks for years. Worse, a similar doorbell operation must also be

done upon IO completion to update completion queue head position, this doubles the number of

VM-exits for each I/Os (corresponding to step 2 and 7 in Figure 2.2). Under concurrent I/Os, the

VM will be frequently interrupted so as to leaving limited vCPU resource for inflight I/O handling.

This is one reason why QEMU NVMe scale to even 4 I/O threads in Figure 2.2. (2) QEMU AIO

processing overheads. QEMU uses asynchronous IOs (AIO) to perform the actual read/write

(byte transfer) to the backing image file. This AIO component is needed to avoid QEMU being

blocked by slow IOs (e.g., on a disk image). However, the AIO overhead becomes significant

when the storage backend is a RAM-backed image. According to our evaluations, QEMU AIO

may take more than 20µs to finish while accessing data directly from the ramdisk backed image

file only takes less than 1µs. Although QEMU uses a thread pool to distribute I/Os evenly, they

don’t help here since the overhead comes from QEMU’s single threaded block I/O layers where

I/O submissions are sequentialized. To be specific, upon receiving MMIO signal for I/O arrival

notification, QEMU needs to go through NVMe device emulation layer, block driver layer, image

format driver and raw device driver before I/Os can be put into QEMU’s global AIO queue. This is

already a long I/O path. Further, worker threads need to process these AIOs by submitting them to

the host OS by traversing the whole host I/O stack. While QEMU/KVM depends on these different

layers for features implemented in QEMU block layer, such as I/O throttling, VM migration, etc.

These features are not needed in our case.

5.3.3 Scalability Solutions

Our solutions: To address these problems, we leverage the fact that FEMU purpose is for research

prototyping, thus we perform the following modifications:

• Polling based QEMU NVMe Design: In order to overcome the excessive VM-exit overhead,
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we transform QEMU from an interrupt-driven (trap) to a polling-based design and disable the

doorbell writes in the Guest OS (just 1 LOC commented out in the Linux NVMe driver). We

create a dedicated thread in QEMU to continuously poll the status of the device queue (a shared

memory mapped between the Guest OS and QEMU). This way, the Guest OS still “passes” control

to QEMU but without the expensive VM exits. We emphasize that FEMU can still work and get

better performance without the changes in the Guest OS as we report later. This optimization can

be treated as an optional feature, but the 1 LOC modification is extremely simple to make in many

different kernels.

In details, our polling design is enabled by the Shadow Doorbell Buffer Support proposed in

NVMe Specification version 1.3[44, §7.10]. It introduces a set of shadow doorbell buffers which

are shared memory buffers between guest OS and QEMU. Upon I/O submission and completion,

corresponding shadow doorbell buffer will be updated for SQ/CQ tail/head updates and only when

necessary will the doorbell register be written. Essentially shadow doorbell buffer adds para-

virtualization capability to virtual NVMe controllers, like QEMU NVMe. Thus, it can used to

enhance QEMU NVMe I/O performance. Potentially it will reduce the number of VM-exits, thus

provide better scalability. Although Shadow Doorbell Buffer Support has been implemented in

Linux kernel, QEMU NVMe lacks support to this feature.

To reap the benefits brought by this feature, we first enhance QEMU with shadow doorbell

buffer capability. With this, we can observe obvious performance boost (Figure 5.4, +dbbuf line).

However, the performance is still not scalable enough to support 32 parallel I/Os (not shown).

The reason is that there still exits VM-exits caused by doorbell writes. While shadow doorbell

buffer mechanism greatly reduce number of doorbell writes needed, they are not eliminated. Thus,

I/O performance is affected under intensive workloads and show worse tail latencies. Moreover,

QEMU still depends on doorbell writes for new I/O arrivals. As guest OS will send multiple I/Os

before it rings the doorbell (thanks to shadow doorbell buffer support), QEMU is passively passed

the control at a longer intervall, which may hurt overall I/O latencies.
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Thus, to make QEMU NVMe more scalable, we use polling techniques. Polling works by

proactively querying new I/O arrivals instead of passively waiting for control transfer. This way,

polling can handle I/Os in a more timely manner. Our polling design leverage the fact that SQ/CQ

tail/head updates are updated to shadow doorbell buffer as well as doorbell registers, we can check

the shadow doorbell buffer peiriodically for latest I/O submissions or completions. If no updates

are made to the shadow buffers (i.e., no new I/O submission or completion), we can simply skip

QEMU I/O emulation logic and poll the status change again next time. In our current polling

design, we utilize QEMU’s timer APIs to setup a periodic event for this purpose. With polling,

we can see from Figure 5.4, +poll that can sustain 400K IOPS under 64 I/O threads. However,

from 32 to 64 threads, the aggregate IOPS only increase 19%, which implies we are hitting another

bottleneck, which we solve in next section.

• Customized QEMU AIO Path: As pointed out earlier, the long I/O path (many layers) in

QEMU’s AIO module bring much overhead and straggle I/O performance. An initial thought is to

figure out a way to shorten I/O path without hurting correctness. Considering FEMU purpose is

only for research prototyping and doesn’t care about rich features provided by QEMU, we compose

our own memory backend and skip QEMU AIO component completely.

To be specific, we do not use virtual image file (in order to skip the AIO subcomponent).

Rather, we create our own RAM-backed storage in QEMU’s heap space (with configurable size

malloc()). This way, we totally skip the QEMU block I/O layer and I/O path on the host stack, thus

I/Os can be handled immediately after it enter the NVMe device emulation layer. Another problem

arises when doing this is DMA correctness. Traditionally, QEMU emulate DMA operations are

tightly coupled with the block I/O layer to trasfer data between guest OS and backend image file

on the host. With our new memory backend, QEMU’s DMA engine doesn’t work. To tackle this

problem, we then modify QEMU’s DMA emulation logic to transfer data from/to our heap-backed

storage, transparent to the Guest OS (i.e., the Guest OS is not aware of this change). With these

changes, we achieve ultimate performance approaching 1 million IOPS as shown in Figure 5.4
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Figure 5.4: QEMU NVMe IOPS w/ FEMU optimizations. The figure shows the scalability of

QEMU’s NVMe implementation under our optimizations. nvme line represents stock QEMU NVMe, +dbbuf

represents QEMU NVMe with shadow doorbell buffer support, +poll adds polling based on +dbbuf, and

finally +heap applies our own heap storage backend on top of all previous optimizations. The x-axis rep-

resents the number of concurrent IO threads running at the user level. Each thread performs random 4KB

read IOs. The y-axis shows aggregate IOPS achieved.

+heap line.

5.3.4 FEMU Optimization Results

Latency: The bold FEMU blue line in Figure 5.2a shows the scalability achieved. In between 1-

32 IO threads, FEMU can keep IO latency stable in less than 52µs, and even below 90µs at 64

IO threads. If the single-line Guest-OS optimization is not applied (the removal of VM-exit), the

average latency is 189µs and 264µs for 32 and 64 threads, respectively (not shown in the graph).

Thus, we recommend applying the single-line change in the Guest OS to remove expensive VM

exits.

IOPS: Figure 5.4 shows the IOPS we can achieve after applying shadow doorbell buffer support,

polling design and our customized heap backend storage. It clearly demonstrates that our opti-

mizations can greatly improve overall IOPS by 10× under 64 I/O threads. This enables FEMU to

emulate 32 parallel channels/chips.

The remaining scalability bottleneck now only comes from QEMU’s single-thread “event loop”

[33, 166], which performs the main IO routine such as dequeueing the device queue, triggering

123



DMA emulations, and sending end-IO completions to the Guest OS. Worse, this thread must syn-

chronize with all the running vCPU threads, incurring additional performance loss. Recent works

addressed these limitations (with major changes) [121, 206], but have not been streamlined into

QEMU’s main distribution. We are exploring the possibility of integrating other solutions in future

development of FEMU.

5.4 FEMU Accuracy

We now discuss the accuracy challenges. To accurately emulate an SSD in QEMU, two problems

need to be solved: (1) NAND Flash Access Latency Emulation: since NAND reads are at 100µs

level, FEMU needs to be able to accurately delay an I/O for certain amount of time to emulate

NAND access and inter-firmware I/O queueing delays, without affecting other inflight I/Os coming

from guest OS. (2) SSD Performance Model: we need detailed knowledge about the controller

architecture and firmware logic to emulate I/O processings inside the SSD. In this section, we first

describe our delay mechanism (§5.4.1), and then dive into our basic and advanced performance

models (§5.4.2). Finally, we present FEMU accuracy results towards emulating an enterprise level

OpenChannel-SSD.

5.4.1 Delay Emulation

NAND Flash supports page read, page program and block erase operations, at the latency of 100µs,

1.5ms, and 6ms respectively4. That said, when a read is sent to the SSD, user will get the data

after around 100µs. Traditional SSD simulators don’t simulate such delays using wall clock time.

Instead, they usually maintain an internal state machine and advance it accordingly when handling

an I/O event. For example, with an incoming read, it would simply do +100µs to its state structure

and return the I/O immediately. Later, it reports the I/O takes (100+∆)µs, where ∆ is the extra

4. Latency numbers profiled from CNEX 2TB SSD using Micron L95B eMLC NAND
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latency due to queueing, GC, etc. As an emulator, FEMU needs to delay I/O completion using wall

clock time so as to emulate hardware latency behavior, giving guest OS/application an illusion that

I/O processing in the emulated device takes that amount of time to finish, just as hardware SSD

platforms do.

• “Unsuccessful” Delay Emulation Efforts: An intuitive way to do delay emulation is to use

busy-loops or sleep(). sleep() would stall the thread thus it’s not a good choice, especially

under the case that current simulators and QEMU use single thread for I/O handling. Busy-loops

can provide most precise delay emulation at the cost of CPU resource by constantly checking

if end timestamp has expired. Doing delay emulation inside QEMU is tricky as it needs to be

well incorporated with existing QEMU I/O processing framework, without affecting overall I/O

performance. Below, we first describe our prior unsuccessful delay emulation efforts and then

introduce our current endio-based delay emulation mechanism.

• “putback” method: This method utilizs the parallelism exposed by QEMU thread pool. We

let each QEMU request carry an ending timestamp, and when worker threads fetch an I/O,

they will check if request timestamp has expired, if not, they will put it back to the AIO

queue and wait for next time processing.

• “busyloop” method: While busyloop in QEMU’s single threaded submission path is not

feasible, we perform busy-loop in the worker thread (we can busy-loop 64 inflight I/O at the

same time which is limited by thread pool size of 64).

• “timer” method: For each I/O, we setup a timer event to delay it for certain amount of

time before submitting it into QEMU AIO queue. Timer event works in a similar manner to

sleep(), but it won’t block other I/Os (asynchronous manner).

Figure 5.5a shows the results achieved by using different delay emulation methods. For a guest

application I/O, the guest kernel stack overhead is 10-20µs in our platform. When we try to emu-

late a device latency of 50µs for each I/O, the expected I/O latency perceived by guest aplication
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Figure 5.5: Delay Emulation: 50µs and 100µs. Emulating 50µs and 100µs device access latency,

FEMU delay emulation doesn’t introduce tail latencies.

I/Os should be in the range of 60-70µs, as shown in the gray area. The putback, busyloop and

timer lines correspond to above mentioned delay emulation methods. However, all of them show a

20-30µs offset in the emulated latencies. The reasons are (1). These methods run deep in QEMU’s

block I/O layer and don’t consider QEMU overhead during I/O emulation. (2). These methods

lower QEMU AIO processing efficiency by hogging more CPU resources, thus preventing sta-

ble I/O latencies. With these experiences, we design endio based delay emulation technique to

overcome drawbacks in previous designs.

• Endio Delay Emulation: When an IO arrives, FEMU will issue the DMA read/write command,

then label the IO with an emulated completion time (Tendio) and add the IO to our “end-io queue,”

sorted based on IO completion time. FEMU dedicates an “end-io thread” that continuously takes

an IO from the head of the queue and sends an end-io interrupt to the Guest OS, once the IO’s

emulated completion time has passed current time (Tendio>Tnow).

• Endio Delay Emulation Results: The “+50us (Raw)” line in Figure 5.2b shows a simple (and

stable) result where we add a delay of 50µs to every IO (Tendio=Tentry+50µs). Note that the end-

to-end IO time is more than 50µs because of the Guest OS overhead (roughly 20µs). Important to

say that FEMU also does not introduce severe latency tail. In the experiment above, 99% of all the
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IOs are stable at 70µs. Only 0.01% (99.99th percentile) of the IOs exhibit latency tail of more than

105µs, which already exists in stock QEMU. For example, in VSSIM, the 99th-percentile latency

is already over 150µs. This shows that endio method is salable and efficient in emulate device

latencies.

Let’s take a closer look at the I/O latency distribution of this endio method. As shown in Figure

5.5a, endio line sits entirely in the expected gray area, proving its advantage over other methods

(to the right). Further, in Figure 5.5b, we also get similar results when trying to emulate 100µs

latency for each I/O.

5.4.2 SSD Performance Models

FEMU scalability and endio delay emulation have paved the way for FEMU to be able to emulate

an SSD. What’s missing here is the performance model of the SSD, which defines the internal

controller architecture and firmware (FTL) used to manage I/Os working around NAND limitations

and guaranteeing high performance.

Overview of an SSD controller architecture: Due to NAND Flash material level limita-

tions, such as asymmetric access granularity for read/program and erase, non-in-place updates,

limited P/E (program/erase) cycles and data retention time, today’s SSDs are usually made as a

SoC (System on Chip) with its own processor, SRAM/DRAM, and firmware/FTL (Flash Transla-

tion Layer). FTL is the soul of an SSD and it’s responsible for mapping table management, caching,

I/O scheduling, GC (Garbage Collection), background scrubbing, etc. NAND Flash chips are or-

ganized into channels (e.g. 16), with several (e.g. 8) chips mounted on one channel. Controller

communicates with NAND Flash chips by sending/receiving information through the channel,

which includes NAND commands, address and data transfer.

NAND Operations: Take NAND read process as an example. The controller first sends NAND

read command to the command register, put page address to the addr register, and then NAND

chip will go busy reading data from NAND cell array into its internal page buffer. At this time,
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the controller is free to do anything else as NAND chip is an independent operation unit. Con-

troller can query the NAND read progress by sending read status command, and this is usually

offloaded to a specific hardware module by proactive status polling without blocking the controller.

When NAND read operation is done (data in page buffer), the controller will send read data to

controller command, and transfer data to controller DRAM through the channel. The data is first

decoded by ECC engine to check if any error happens before returning it back to user. Otherwise,

read retry will kick in to try hard to read the data out without errors. NAND program operation

is similar, but needs to send command to transfer data to NAND page buffer first and then issue

NAND program command which will write store data into NAND cell arrays. Erase is simple, the

controller sends block erase and the NAND will become busy with erasing data in corresponding

block. Once operation is finished, NAND Flash chip will be in ready status again, meaning it can

accept new commands for processing.

Channel: All the NAND Flash chips on the same channel share one bus, which is multiplexed

for command, address and data transfer. When channel is busy with data transfer from/to a NAND

chip, it’s in busy status, and at this time, other pending operations which need to use channel

must wait for prior operation completion. Thus, the channel may be contentious and limit overall

parallelism among NAND chips mounted on the same channel.

Since command and address transfer only take several nanoseconds, In our performance mod-

els, FEMU only emulates the data transfer latency. Below we present two delay model aiming

for accurate emulation toward a commercial OpenChannel-SSD. With these delay models, FEMU

is also able to run a FTL inside QEMU (as prior project VSSIM does) taking I/O latencies from

various sources into account.

Basic Delay Model: The challenge now is to compute the end-io time (Tendio) for every IO

accurately. We begin with a basic delay model by marking every plane and channel with their

next free time (Tf ree). For example, if a page write arrives to currently-free channel #1 and

plane #2, then we will advance the channel’s next free time (Tf reeO fChannel1=Tnow+Tchannel,
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Figure 5.6: Single- vs. double-register model. (a) In a single-register model, a plane only has one

data register (D-Reg). Read of page P2 cannot start until P1 finishes using the register (i.e., the transfer to

the controller’s RAM completes). (b) In a double-register model, after P1 is read to the data register, it is

copied quickly to the cache register (D-Reg to C-Reg). As the data register is free, read of P2 can begin (in

parallel with P1’s transfer to the RAM), hence finishes faster.

where Tchannel is a configurable page transfer time over a channel) and the plane’s next free time

(Tf reeO f Plane2+=TusrW rt , where TusrW rt is a configurable write/programming time of a NAND

page). Thus, the end-io time of this write operation will be Tendio=Tf reeO f Plane2.

Now, let us say a page read to the same plane arrives while the write is ongoing. Here, we will

advance Tf reeO f Plane2 by Tread , where Tread is a configurable read time of a NAND page, and

Tf reeO fChannel1 by Tchannel. This read’s end-io time will be Tendio=Tf reeO fChannel1 (as this is a

read operation, not a write IO).

In summary, this basic queueing model represents a single-register and uniform page latency

model. That is, every plane only has a single page register, hence cannot serve multiple IOs in

parallel (i.e., a plane’s Tf ree represents IO serialization in that plane) and the NAND page read,

write, and transfer times (Tread , TusrWrt and Tchannel) are all single values. We also note that GC

logic can be easily added to this basic model; a GC is essentially a series of reads/writes (and

erases, Terase) that will also advance plane’s and channel’s Tf reeaccordingly. Similarly, queueing

delay can also be well emulated. If an incoming I/O finds target channel/chip with a free time-

stamp in the future, then it means corresponding channel/chip is busy and we will mark the I/O

latency as waiting time plus the time needed to serve this I/O when it’s scheduled for execution.

Advanced “OC” Delay Model: While the model above is sufficient for basic comparative
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research (e.g., comparing different FTL/GC schemes, some researchers might want to emulate the

detailed intricacies of modern hardware. Below, we show how we extend our model and achieve a

more accurate delay emulation of OpenChannel SSD (“OC” for short). OC is a new kind of SSDs

which expose its internal architecture to the host, thus allowing moving FTL management up to

the OS. Our OC is a CNEX Westlake PCIe SSD with 16 channels and in total 128 NAND chips.

Nowadays, Linux supports running OC with a kernel-level FTL named LightNVM. LightNVM

implements basic sector-based mapping table, data placement and GC functions.

The OC’s NAND hardware has the following intricacies. First, OC uses double-register planes;

every plane is built with two registers (data+cache registers), hence a NAND page read/write in a

plane can overlap with a data transfer via the channel to the plane (i.e., more parallelism). Figure

5.6 contrasts the single- vs. double-register models where the completion time of the second IO to

page P2 is faster in the double-register model.

Second, OC uses a non-uniform page latency model; that is, pages that are mapped to upper

bits of MLC cells (“upper” pages) incur higher latencies than those mapped to lower bits (“Lower”

pages); for example 48/64µs for lower/upper-page read and 900/2400µs for lower/upper-page

write. Making it more complex, the 512 pages in each NAND block are not mapped in a uniformly

interleaving manner as in “LuLuLuLu...”, but rather in a specific way, “LLLLLLuLLuLLuu...”,

where pages #0-6 and #8-9 are mapped to Lower pages, pages #7 and #10 to upper pages, and

the rest (“...”) have a repeating pattern of “LLuu”.

In addition, we built an efficient OC-extension to FEMU NVMe (based on LightNVM’s QEMU

base OC extension structures). With these, we are able to run LightNVM on top of FEMU.
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Sizes Latencies

SSD Capacity 128 GB Page Read 48µs; 64µs (MLC)

#Channels 2 (flash-to-register)

#Planes/channel 8 Page Write 900µs; 2400µs (MLC)

Plane size 8 GB (register-to-flash)

#Planes/chip 2 Page data transfer 60µs

#Blocks/plane 1024 (via channel)

#Pages/block 512 Block erase 6ms

Page size 16 KB

Table 5.2: FEMU emulated OpenChannel-SSD Parameters. We use the above parameters

for the emulated SSD. Latency numbers are profiled from a real enterprise OpenChannel-SSD. The laten-

cies are based on average values; actual latencies can vary due to read retry, different voltages, etc. Flash

reads/writes must use the plane register. We use 128 GB out of 256 GB physical memory to serve as the emu-

lated SSD backend storage. For the microbenchmark experiments, we change #Channels & #Planes/channel

combinations to verify the latency accuracy under different settings.

5.5 FEMU Accurary Results

5.5.1 Workloads & Experiment Setups

We use fio to stress test FEMU and OC under different configurations with direct=1 on raw

devices. We use filebench to compare FEMU and OC under real world application workloads,

including File Server, Network FS, OLTP, Varmail, Video Server and Web Proxy.

We assign our OC to a VM and access it from inside the guest OS for fair comparison with

FEMU emulated OC. Need to mention that assigned OC in VM doesn’t suffer performance drop

compared to OC running on physical machines. Our host machine consists of 2x Intel(R) Xeon(R)

CPU E5-2670 v3 running at a base frequency of 2.30GHz with 256GB DRAM. FEMU emulated

SSD takes up 128GB memory. HyperThreading, C/P-states and Intel Turbo Boost are turned off

for consistent and max performance. We also pin FEMU threads to physical cores to avoid latency

jitters caused by process migrations. Hugepage is used for minimum GPA-HVA (guest physical

addr to host virtual addr) address translations.

By incorporating this detailed model, FEMU can act as an accurate drop-in replacement of OC,

which we demonstrate with the following results.
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Figure 5.7: OpenChannel SSD (OC) vs. FEMU. X: # of channels, Y: # of planes per channel. The

figures are described in §5.5.2. The red line represents latency standard errors. For each configuration set

(X, Y), we run the same fio workloads on both FEMU and OC and collect latency numbers. This experiment

is to show FEMU can accurately emulate the queueing delay when multiple I/Os are sent to one NAND chip

and parallelism when multiple I/Os are served evenly by multiple NAND chips.

5.5.2 MicroBench Results

Result 1: Figure 5.7 compares the IO latencies on OC vs. FEMU. The workload is 16 IO threads

performing random reads uniformly spread throughout the storage space. We map the storage

space to different configurations. For example, x=1 and
√
=1 implies that OC and FEMU are

configured with only 1 channel and 1 plane/channel, thus as a result, the average latency is high

(z>1550µs) as all the 16 concurrent reads are contending for the same plane and channel. The

result for x=16 and
√
=1 implies that we use 16 channels with 1 plane/channel (a total of 16

planes). Here, the concurrent reads are absorbed in parallel by all the planes and channels, hence

a faster average read latency (z<130µs). Overall, Figures 5.7a and 5.7b exhibit a highly similar

pattern, showing the success of our queuing delay emulation. The latency difference (error) is only

between 0.8-11.6%; Error=(Lat f emu−Latoc)/Latoc.

5.5.3 MacroBench Results

Result 2: Figure 5.8a shows the results from running several macrobenchmarks with six filebench

personalities, with 16 IO threads of concurrent reads/writes on 16 planes across 4 channels. The
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Figure 5.8: Filebench on OpenChannel SSD (OC) vs. FEMU. The figures are described in the

“Result 2” segment of §5.5.3. The y-axis shows the latency difference (error) of the benchmark results on

OC vs. FEMU (Error=(Lat f emu−Latoc)/Latoc). D-Reg and S-Reg represent the advanced and basic model

respectively. The two bars with bold edge in Figures (a) and (b) are the same experiment and configuration

(varmail with 16 threads on 16 planes).

figure only shows the latency difference (Error) which contrasts the accuracy of our basic and

advanced delay models. With the basic model, the resulting latencies are highly inaccurate (12-

57%), but with the advanced model, the error drops to only 0.5-38%, which are 1.5-40× more

accurate across the six benchmarks.

We believe that these errors are reasonable as we deal with delay emulation of tens of µs gran-

ularity. We leave further optimization for future work; we might have missed other OC intricacies

that should be incorporated into our advanced model (as explained at the end of §5.2, OC only

exposes channels and chips, but other details are not exposed by the vendor). Nevertheless, we

investigate further the residual errors, as shown in Figure 5.8b. Here, we use the varmail person-

ality but we vary the #IO threads [T] and #planes [P]. For example, in the 16 threads on 16 planes

configuration (x=“16T16P” in Figure 5.8b, which is the same configuration used in experiments

in Figure 5.8a), the error is 38%. However, the error decreases in less complex configurations

(e.g., 0.7% error with single thread on single plane). Thus, higher errors come from more complex

configurations (e.g., more IO threads and more planes), which we explain next.

Result 3: We find that using an advanced model requires more CPU computation, and this

compute overhead will backlog with higher thread count. To show this, Figure 5.2b compares the
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Figure 5.9: Use examples. Figure 5.9a is described in the “FTL and GC schemes” segment of Section

5.6. Figure 5.9b is discussed in the “Distributed SSDs” segment of Section 5.6.

simple +50µs delay emulation in our raw implementation (§5.4.1) vs. advanced model. Here,

both cases simply add +50µs, but the advanced model must traverse many if-else statements (to

check register, plane, and channel next free time), hence the compute overhead. Further scalability

optimizations, as discussed at the end of §5.3 can help.

5.6 FEMU Usability

Being a software-based emulation platform, FEMU can be extended in many different ways. We

now describe existing features/usabilities of FEMU, briefly showcase successful extensions used

in our recent work [164, 318] as well as possible future work that FEMU features enable.

• FTL and GC schemes: In default mode, our FTL employs a dynamic mapping and a channel-

blocking GC as used in other simulators [101, 169]. One of our projects uses FEMU to com-

pare different GC schemes: controller, channel, and plane blocking [318]. In controller-blocking

GC, a GC operation “locks down” the controller, preventing any foreground IOs to be served (as

in OpenSSD [46]). In channel-blocking GC, only channels involved in GC page movement are

blocked (as in SSDSim [169]). In plane-blocking GC, the most efficient one, page movement only

flows within a plane without using any channel (i.e., “copyback” [26]). Sample results are shown
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in Figure 5.9a. Beyond our work, recent works also show the benefits of SSD partitioning for per-

formance isolation [126, 170, 199, 251, 292], which are done on either a simulator or a hardware

platform. More partitioning schemes can also be explored with FEMU.

Possible future research: Decades of FTL/GC research mainly uses simulators, but future

FTL/GC research can also be done with FEMU.

• White-box vs. black-box mode: FEMU can be used as (1) a white-box device such as Open-

Channel SSD where the device exposes physical page addresses and the FTL is managed by the

OS such as in Linux LightNVM or (2) a black-box device such as commodity SSDs where the

FTL resides inside FEMU and only logical addresses are exposed to the OS.

• Multi-device support for flash-array research: FEMU is configurable to appear as multiple

devices to the Guest OS. For example, if FEMU exposes 4 SSDs, inside FEMU there will be 4

separate NVMe instances and FTL structures (with no overlapping channels) managed in a single

QEMU instance. Previous emulators (VSSIM and LightNVM’s QEMU) do not support this. We

are not aware of any software-based emulator that can emulate a flash array. To setup an emulated

SSD array, one must assemble network block device connections to multiple machines running

QEMU. A nested virtualization is another alternative, but nevertheless, these methods add a sig-

nificant overhead to an already stringent latency requirement (§5.3).

• Disaggregated Flash: Disaggregation makes centralized resource management easier and helps

improve resource utlilization. Historically, iSCSI has been the dominating networking storage

protocol for remote block storage access. To keep up with fast speeds of today’s SSDs, a new

protocol named NVMe over Fabrics (NVMe-oF) has been standardized to support NVMe Flash

Disaggregation. To overcome the software overhead brought by context swithes, interrupts due

to operating systems management overhead, user space based I/O framework, such as SPDK is

a popular choice in conjunction with NVMe-oF. As a first step, we have identified FEMU’s full

support to run SPDK and FEMU emulated NVMe device supports NVMe-oF. Since NVMe-oF

requires RDMA to work, we use a software-based solution (SoftROCE) without using an expensive
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RDMA capable NIC. In our setup with two VMs, we can successfully access the NVMe SSD

exposed by the other VM through NVMe-oF.

5.7 FEMU Extensibility

• Extensible OS-SSD NVMe commands: (1) As FEMU supports NVMe, new OS-to-SSD com-

mands can be added (e.g., for host-aware SSD management or split-level architecture [274]). Cur-

rently in LightNVM, a GC operation reads valid pages from OC to the host DRAM and then writes

them back to OC. This wastes host-SSD PCIe bandwidth; LightNVM foreground throughput drops

by 50% under a GC. Our conversation with LightNVM developers suggests that one can add a new

“pageMove fromAddr toAddr” NVMe command from the OS to FEMU/OC such that the data move-

ment does not cross the PCIe interface. As mentioned earlier, split-level architecture is trending

[134, 188, 267, 300, 320] and our NVMe-powered FEMU can be extended to support more com-

mands such as transactions, deduplication, and multi-stream. (2) As mentioned earlier, split-level

architecture is trending; our NVMe-powered FEMU can be extended to support other commands

such as transactions, deduplication, and multi-stream [134, 188, 202, 246, 267, 300, 320]. (3) Tech-

niques that manage GCs across an array of SSDs, many were only done with simulators [209], can

also be supported by FEMU multi-device and NVMe supports.

Successful project: Combining FEMU’s NVMe and multi-device supports, we have built an

optimized Linux Software RAID-5 on an array of transparent SSDs. Specifically, if an SSD cannot

serve a read request because of a conflicting GC, the transparent SSD will return an EBUSY error to

the OS, which then will trigger our RAID-5 to reconstruct the non-available data from other SSDs.

Moreover, if our RAID layer receives multiple EBUSYs from more than one SSD (within a read

stripe), our RAID layer will resubmit the read with a new preemption flag turned on (via NVMe),

which will slightly postpone the GC.

• Page-level latency variability: As discussed before (§5.4), FEMU supports page-level latency
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variability. Among SSD engineers, it is known that “not all chips are equal.” High quality chips

are mixed with lesser quality chips as long as the overall quality passes the standard. Bad chips

can induce more error rates that require longer, repeated reads with different voltages. FEMU can

also be extended to emulate such delays.

• Distributed SSDs: Multiple instances of FEMU can be easily deployed across multiple machines

(as simple as running Linux hypervisor KVMs), which promotes more large-scale SSD research.

For example, we are also able to evaluate the performance of Hadoop’s wordcount workload on

a cluster of machines running FEMU, but with different GC schemes as shown in Figure 5.9b.

Since HDFS uses large IOs, which will eventually be striped across many channels/planes, there is

a smaller performance gap between channel and plane blocking across the three GC mechanisms.

We hope FEMU can spur more work that modifies the SSD layer to speed up distributed computing

frameworks (e.g., distributed graph processing frameworks).

Possible future research: Many out-of-core distributed graph processing frameworks were

recently proposed [234, 332]. This type of research modifies the frameworks to work well on

disks/SSDs. On the contrary, there is little work that modifies the SSD layer to speed up the

frameworks (§5.2). We hope FEMU can spur more work in this important area.

• Page-level fault injection: Beyond performance-related research, flash reliability research [245,

278] can leverage FEMU as well (e.g., by injecting page-level corruptions and faults and observing

how the high-level software stack reacts).

• Interface: FEMU supports all modern interfaces, NVMe and virtio. The GuestOS will read/write

through either of the interface. Inside FEMU, we have all the basic SSD internal functionalities

such as the FTL module, GC and wear-leveling algorithms, delay emulation, performance moni-

tor.
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5.8 Conclusion

As modern SSD internals are becoming more complex, their implications to the entire storage

stack should be investigated. In this context, we believe FEMU is a fitting research platform. We

hope that our cheap and extensible FEMU can speed up future SSD research.
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CHAPTER 6

DISCUSSION

6.1 MITTOS Limitations and Discussions

What are the limitations of MITTOS? First, tail latencies can be caused by software bugs; for ex-

ample, an IO path can hit a non-deterministic bug that triggers a long lock contention or inefficient

loops. Such slow and buggy paths are hard to foresee.

Second, while rare, hardware performance can degrade over time due to many factors [165,

§2], or the other way around, performance can improve as device wears out (e.g., faster SLC

programming time as gate oxide weakens [152, §3.3]). This suggests that latency profiles must be

recollected over time; a sampling runtime method can be used to catch a significant deviation.

With MITTOS, should other tail-tolerant approaches be used? We believe MITTOS handles a

major source of storage tail latencies (i.e., storage device contention). Ideally, MITTOS is applied

to all major resources including CPU and network, as we discuss below. If MITTOS is only applied

to a subset of the resources (e.g., storage stack only), then other approaches are still needed. We

want to emphasize that other techniques such as hedged/tied requests can co-exist with MITTOS.

In such a setting, MITTOS still delivers its benefits; applications can failover fast if the contention

is within the storage stack. Timeouts are used as the last resort.

How do users/applications set deadline values? So far, we use the p95 expected value, but

automating the setup of deadline/SLO values in general is an open research problem [187]. We

believe EBUSY signals can help applications set a more optimum deadline. For example, too many

EBUSYs imply that the deadline is too strict, but rare EBUSYs and longer tail latencies imply that the

deadline is too relax. The open challenge is to find a “sweet spot” in between, which we leave for

future work.

Can MITTOS principles be applied to other resources? We strongly believe MITTOS can
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be applied to many other resource managements such as CPU, runtime memory, and SMR drive

managements.

In EC2, CPU-intensive VMs can contend with each other. The VMM by default sets a VM’s

CPU timeslice to 30ms, thus user requests to a frozen VM will be parked in the VMM for tens of

ms [317]. With MITTOS, the user can pass a deadline through the network stack, and when the

message is received by the VMM, it can reject the message with EBUSY if the target VM must still

sleep more than the deadline time.

In Java, a simple “x = new Request()” can stall for seconds if it triggers GC. Worse, all threads

on the same runtime must stall. There are ongoing efforts to reduce the delay [240, 253], but we

find that the stall cannot be completely eliminated; in the last 3 months, we study the implemen-

tations of many Java GC algorithms (Yak [253], G1GC [144], CMS and PS [12]) and find that,

in the current architecture, EBUSY exception cannot be easily thrown for the GC-triggering thread.

MITTOS has the potential to transform future runtime memory management.

Similar to GC activities in SSDs, SMR disk drives must perform “band cleaning” operations

[99], which can easily induce tail latencies to applications such as SMR-backed key-value stores

[242, 264]. MITTOS can be applied naturally in this context, also empowered by the development

of SMR-aware OS/file systems [18, 100].

6.2 TEAFA Discussions

• Fine-grained time window: We can make our time-window implementation more fine grained.

Right now the time window is coarse grained, e.g., an SSD is not allowed to do GC for 1 second,

while the rest are allowed to.

Important to note is that concurrent GCs that delay pages in different stripes are tolerable. For

example, consider two full-stripe I/Os A and B that each will create seven parallel pages to seven

SSDs (A1..A7 and B1..B7). It is possible that a GC in SSD1 blocks A1 and another concurrent GC
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1 2 3 4 5 6 7 8

0N–1N × . . . . . . .

1N–2N . × . . . . . .

2N–3N . . × . . . . .

3N–4N . . . × . . . .

4N–5N . . . . × . . .

5N–6N . . . . . × . .

6N–7N . . . . . . × .

7N–8N . . . . . . . ×
Table 6.1: Fine-grained time window. This table shows an example fine-granular time window

mechanism based on SSD LBA ranges. Here, 1–8 on top row represents the 8 SSDs in the same RAID group,

and each [iN..(i+ 1)N] represents the LBA range from iN to (i+ 1)N. “×” represent BG operations are

allowed to happen in the SSD while “.” means BG operations are disallowed.

in SSD2 blocks B2. Let’s assume one parity per stripe (r=1). As long as parities A8 and B8 are

not blocked, TEAFA can tolerate the two GCs as they delay pages in different stripes. This is the

reason why TEAFA can tolerate r delayed pages per I/O stripe. So what we can do is to provide a

2 dimensional time window.

For example, SSD1 is allowed to do GC from LBA [0 to N), but other SSDs are not allowed

to GC on LBA [0 to N). At the same time window, SSD2 is allowed to do GC on from LBA [N

to 2N), but other SSDs are not allowed to do it. In other words in every time window we have

a 2-dimensional configuration where the x-axis is the SSD numbers and the y-axis is the logical

partitioning of the LBAs (which we can configure). For example, lets’ say we break the per-SSD

LBA into 4 logical partition, each with N bytes: 0−N, N −2N, 2N −3N, 3N −4N.

Thus the configuration for the first time window is like this for 8 SSDs , from 1 to 8 are like:

From Table 6.1, we can see that SSD1 is only allowed to do GC within 0N-1N LBAs, and so

on. In the next few time windows, we slide the configuration accordingly. The advantage of this

approach is that the SSDs are all still doing GC at the same time.

However, this more fine-grained approach is more challenging to implemenet. Let’s say to

utilization full parallelism, we say L1 are mapped to row #1, L2, mapped to row#2. well when we

GC data in L2, we can use a copyback mechanism where data in L1 and L2 does not leave, hence
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won’t have any contention. But these days GC copyback is not enabled, because during GC the

SSD piggyback ECC checking to check that data is valid. In this case, the controller must read the

data via the channel to the DRAM, hence the channel will be busy and contend with the user IOs.

We leave further exploration as future work.

• Why not handling writes: We do not address write latency because writes are buffered. In

addition, applications tend to do buffering by themselves, and with the prevalence of persistent

memory, foreground write are logged and are mapped to NVM to have deterministic performance.

On the other hand, NVM might not big enough to handle all reads. And internally in SSD, writes

can be flushed to free chips, while reads cannot be easily redirected.

• Scalability: While our evaluation is mainly done on RAID-5 with 4 FEMU drives, TEAFA can

be easily extended to more drives beyond RAID-5 (e.g., RAID-6, erasure coding, or RAID-1, etc.).

We have given the max RAID width (Nd) supported by TEAFA, and to do so, the SSD vendors

only need to adust the time window value accordingly based on our constraints. Moreover, TEAFA

does not harm the reliability of the flash array as TEAFA busy read are already distinguished from

normal failed IOs. Under device failure, TEAFA reconstruction busy reconstruction logics can be

dynamically disabled and later resumed when the RAID is back (e.g., by swapping out the old

drive and swap in new ones).

6.3 TTFLASH Limitations and Discussions

We now summarize the limitations of TTFLASH, TEAFA, and MITTOS and discuss their designs.

6.3.1 TTFLASH Limitations

First, TTFLASH depends on RAIN, hence the loss of one channel per N channels. Increasing N

will reduce channel loss but cut less tail latencies under write bursts. Under heavy write bursts,

TTFLASH cannot cut all tails Finally, TTFLASH requires intra-plane copybacks, skipping ECC
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checks, which requires future work as we address below.

• ECC checking (with scrubbing): ECC-check is performed when data pass through the ECC

engine (part of the controller). On foreground reads, before data is returned to the host, ECC

is always checked (TTFLASH does not modify this property). Due to increasing bit errors, it is

suggested that ECC checking runs more frequently, for example, by forcing all background GC

copyback-ed pages read out from the plane and through the controller, albeit reduced performance.

TTFLASH, however, depends on intra-plane copybacks, which implies no ECC checking on

copyback-ed pages, potentially compromising data integrity. A simple possible solution to com-

pensate this problem is periodic idle-time scrubbing within the SSD, which will force flash pages

(user and parity) flow through the ECC engine. This is a reasonable solution for several reasons.

First, SSD scrubbing (unlike disk) is fast given the massive read bandwidth. For example, a 2 GB/s

512-GB client SSD can be scrubbed under 5 minutes. Second, scrubbing can be easily optimized,

for example, by only selecting blocks that are recently GC-ed or have higher P/E counts and history

of bit flips, which by implication can also reduce read disturbs. Third, periodic background oper-

ations can be scheduled without affecting foreground performance (a rich literature in this space

[104]). However, more future work is required to evaluate the ramifications of background ECC

checks.

• Wear leveling (via horizontal shifting and vertical migration): Our static RAIN layout (§3.3.2)

in general does not lead to wear-out imbalance in common cases. However, rare cases such as

random-write transactions (e.g., MSNFS) cause imbalanced wear-outs (at chip/plane level).

Imbalanced wear-outs can happen due to the two following cases: (1) There is write imbalance

within a stripe (MSNFS exhibits this pattern). In Figure 3.3 for example, if in stripe S0 {012P012},

LPN 1 is more frequently updated than the rest, the planes of LPN 1 and P012 will wear out faster

than the other planes in the same group. (2) There is write imbalance across the stripes. For

example, if stripes in group G0 (e.g., stripe {012P012}) are more frequently updated than stripes in

other groups, then the planes in G0 will wear out faster.
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The two wear-out problems above can be fixed by dynamic horizontal shifting and vertical

migration, respectively. With horizontal shifting, we can shift the parity locations of stripes with

imbalanced hot pages. For example, S0 can be mapped as {12P0120} across the 4 planes in the

same group; LPN 1 and P will now be directed to colder planes. With vertical migration, hot

stripes can be migrated from one plane group to another (“vertically”), balancing the wear-out

across plane groups.

As a combined result, an LPN is still and always statically mapped to a stripe number. A

stripe, by default, is statically mapped to a plane group and has a static parity location (e.g., S0 is

in group G0 with P012 behind channel C3). However, to mark dynamic modification, we can add

a “mapping-modified” bit in the standard FTL table (LPN-PPN mapping). If the bit is zero, the

LPN-PPN translation performs as usual, as the stripe mapping stays static (the common case). If

the bit is set (the rare case in rare workloads), the LPN-PPN translation must consult a new stripe-

information table that stores the mapping between a stripe (Sk) to a group number (Gi) and parity

channel position (C j).

6.4 LeapIO Discussion

6.4.1 Threat Model

In LeapIO threat model, both ARM SoC and SoCVM are trusted and are allowed to access neces-

sary host resources to fulfill cloud storage stack offloading purposes for efficient data path. Our

ARM-SoC and SoCV M are first-party entities which are only accessed by us. They interact with

applications only via queues in shared memory and therefore, do not expose extra attack surfaces.

In LeapIO framework, SoC is owned and solely used the cloud provider, thus it is trusted. It

needs to prevent potential exploits from malicious users. Potentially malicious user VMs can only

interact with LeapIO runtime via the shared queue pair interface, which is under the guidance of

host hypervisor during creation phase, thereby revealing no security risks. All the NVMe com-
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Cloud Providers Alibaba Azure EC2 GCP

1 vCPU yearly price $400 $320 $364 $500

Table 6.2: TCO Analysis. Single vCPU yearly pricing calculated using the entry-level VM types

provided by major cloud providers [61, 62, 64, 71]. The price calculation is based on the 3-year commit-

ment plan which provides best cost savings for users. It also represents the minimum revenue achieved by

offloading cloud storage stack to ARM SoC and renting those released x86 cores to user VMs.

mands from user VMs carry guest information and LeapIO runtime will perform sanity check on

Logical Block Address (LBA) and data buffer addresses, thus VMs won’t be able to jump outside

of the controlled queue pair view. LeapIO directly fails the IO if illegal command opcode, LBA ad-

dress or data buffer address are found. Overall, we don’t expose extra attacking surface compared

to existing on-x86 hypervisor IO interface.

On the other hand, users want to keep their private data confidential, even from cloud providers.

In LeapIO, SoC is only granted limited set of host resource access capability but not allowed to

access resources beyond user VM IO scope. For instance, our runtime can only refer to host

IOMMU for registered guest IO buffer addresses, but not allowed to access other non-IO guest

memory regions. This makes sure that user data won’t be “stolen” by the cloud provider. In addi-

tion, hardware security features such as Intel SGX [119] is already being used by cloud providers

to guarantee user VM data safety, which can be deployed in conjunction with LeapIO.

6.4.2 Cost Analysis

We mainly focus on the TCO analysis related to CPUs since that’s the major resource we release

by offloading cloud storage stack to ARM SoCs. Moreover, CPU is the dominant resource for VM

pricing. More CPUs correspond to more service density, so revenue increase proportional to CPU

increase, e.g., increasing the number of CPUs by 10% will bring a 10% revenue increase. LeapIO

deployment is simply plugging the ARM SoCs into the server. Thus, the cost saving by LeapIO

design comes from the difference between revenues brought by selling those x86 cores originally

dedicated for cloud storage stack and the TCO of ARM SoCs, as shown in Figure 6.1.
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Figure 6.1: LeapIO Goal. By offloading storage services to ARM SoCs, we release more host CPU

resources for rented VMs.

Revenue Analysis: Overall, as shown in Table 6.2, the yearly price of 1 vCPU is $400 in

average. Considering a modern data center server with 2 Skylake 24-core CPUs [86], LeapIO

releases 2 × 24 × %10–%20 = 5–10 cores, which will convert to $2000–$4000 increased revenues

at slightly extra TCO (from ARM SoC).

The bill-of-material cost of an ARM SoC is cheap and the power consumed is 10W, making

an annual TCO of less than $100. Considering large volume purchase will significantly lower the

SoC price, more revenue gains can be achieved.

Cost Analysis: Costs include buying ARM SoC hardware and we refer to it as an inclusive

measure for TCO. The revenue comes from selling services, e.g., VMs, by renting cores to users.

And the profit comes from the difference between revenue and cost. According to public infor-

mation, Microsoft Azure has an operating margins of 28% [79]. That means for every dollar of

revenue, 72% goes to costs such as TCO, and 28% is the profit. So to calculate the overall cost

increase, we use the following analysis:

The estimated revenue that could be garnered from the x86 cores on one server is $20000. And

the estimated TCO for that revenue on another x86 machine will be $20000 × 72% = $14400.

Recall that the TCO of additional ARM SoCs installed to each server is roughly $100, thus, the es-

timated TCO increase is ($14400 + $100) / $14400 = 0.7%. As cloud operators both oversubscribe

and can’t always fill their data centers with customers, the sketch of the above analysis is com-

plete enough. We are not accounting for oversubscription and empty datacenters because that’s too

complicated.
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Overall, the cloud provider can potentially increase $2000 at only 0.7% extra TCO.

6.4.3 ARM Offloading Capability

As already demonstrated by a recent work [174], “Arm processor is powerful enough as the

NVMeoF target,” where they use a similar ARM co-processor as in our case. In our profiling ex-

periments (not shown), we compare ARM SoC vs. x86 performance when running the traditional

Linux block IO stack with different workloads (not in VMs), including microbenchmarks using

FIO and macrobenchmarks using YCSB+RocksDB. our results show that overall, the performance

on ARM SoC is within 2× that of x86 platform.

Our storage stack tasks (as listed in Table 1 in the main submission) are not data-intensive

tasks, thus ARM cores are capable to handle them quite well. Data intensive related features such

as compression, encryption can be easily implemented using accelerators in the ARM SoC or the

host. Finally, we would like to summarize ARM vs. x86 for clarity: For throughput parity at

acceptable tail-latency increase, roughly 1.8 ARM cores can replace a single x86 core. For tail-

latency parity, roughly 2.3 ARM cores are needed for replacing a single x86 core. Overall, our

8-core ARM SoC is enough to hit network line-rate as well as saturate local SSD.

Although current realSoC-LocalSSD is up to 30% slower (will be improved in our future SoC),

our cost benefit analysis shows that using even 4× more cores in realSoC compared to the number

of cores in SoCV M to achieve performance parity still pays off. x86 is an overkill for polling

and ARM co-processors can easily take over the burden when serving SSDs over the different

transports.

6.4.4 LeapIO Technical Novelties

We quickly summarize the design properties required in deployment (P1-P6) and recap our techni-

cal contributions (T1-T4) as stated in our main submission, so we can later articulate how LeapIO

differs from related works.
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(P1) Fungibility: Run the same storage-services on a variety of servers (i.e. ARM, RDMA,

NVMe, SR-IoV, +IOMMU are considered optional). (P2) Transparency: Unmodified guest

VMs/applications. (P3) Virtualizability: Simultaneously virtualize local/remote SSDs and local/

hyper-converged/remote storage-services. (P4) Composability: Multiple SSDs and local/remote

SW-services/HW-accelerators can be easily combined for richer virtual-drives. (P5) Performance:

Minimize data copies between different components along with polled IO-completions. (P6) Ex-

tensibility: Services run in user space regardless of hardware (ARM/x86, RDMA/TCP/REST, or

NVMe/SATA) with the encapsulation of all local/remote SSDs/services behind NVMe.

(T1): A new, complete set of hardware properties (see HW1-HW4 in Sec 2.2) to make ARMSoC-

to-peripheral communications as efficient as x86-to-peripherals. (T2): A uniform address space

across x86, ARM-SoC and other PCIe-devices to enable line-rate translations/data-movement.

(T3): A portable-runtime exploiting T1 and T2 to make offloading seamless. (T4): Several com-

plex services composed of local/remote SSDs/devices/services.

Existing commercial NVMeoF target adapters, such as Mellanox Bluefield [49] and Broadcom

Glass Creek [65] don’t satisfy P1, P5 and (partially) P3. Storage services cannot work without

Bluefield or Glass Creek hardware (no P1). They also don’t have T1 – the software won’t saturate

host-level SSDs and accelerators, and remote SSDs simultaneously at line rate because it lacks the

ability to help ARM (where portable services can run) bypass the NIC when talking to other PCIe

devices without taking PCIe lanes away from the NIC (compromising on P5 and P3). Moreover,

our T1-T4 can improve when better hardware is present, for instance, T2 can swap its translation

logic with an NVMe-SR-IOV when it is available. Further, Bluefield and Glass Creek adapters can

only be configured either as an initiator or target, but not both at the same time, making it more

complicated to provide rack-local storage where both local and remote drives must be virtualized

148



simultaneously. Unlike them, the LeapIO platform enables local and remote NVMe virtualization

simultaneously.

Existing in-network applications exploit SmartNICs to co-design networking applications for

performance and offload application logics, e.g. FlexNIC [192], Floem [262], NICA [150]. They

require application changes and software requires new hardware to work (no P1-P4, partial P6)

whereas LeapIO is transparent to guest-VMs/applications/hardware.

Existing user-space IO (SPDK/DPDK) [324] solutions cannot achieve extensibility (no P6)

easily in offloaded environment; they are not designed for managing peer PCIe devices from ARM

(lack of T1).

Regarding the use of P2P-DMA, existing peer-to-peer DMA techniques (SPIN [123], GPUnet

[204], GPUrdma [140], Morpheus [301], GPUDirect [72]) try to optimize the datapath between

SSD and GPU/FPGA/NIC, where application data is DMA’ed between PCIe device-buffers. How-

ever, P5 at line-rate cannot be fully realized without T1 and T2. Moreover, the aforementioned

works mainly depend on existing system/library support for P2P-DMA for performance, LeapIO

presents an ARM SoC centric design for general P2P DMA among multiple devices.

Existing OS/storage/network offloading systems (Solros [247], Caribou [172], GPUfs [291],

NICA [150]) will fragment code bases – one code base for legacy servers without accelerators

and one code base for servers with accelerators (no P1-P2). LeapIO is a principled approach

to tackling this problem where software components can be swapped with hardware components

while the storage-logic can freely move between x86 and ARM.

Regarding address translation support, our goal was to provide an offload-ready storage stack

that can opportunistically leverage hardware features when available rather than depend heavily on

hardware. The reason for this was to ensure fungibility of servers in our data center – a significant

portion of which do not have cutting edge hardware that is just about taking off. Developing

services that take a hard dependency on hardware then automatically fragments the servers where

we cannot offer all virtual drive types on all servers. For this purpose, we leverage hardware when
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available. And one such hardware is that of virtual NVMe and address translation. The part of the

paper concerning address translation is necessary for all of our server fleet to be able to run all of

our storage service innovations.

6.4.5 Deployment

Cloud infrastructure management simplicity is an important aspect for data center scale solutions.

LeapIO is a principled design to satisfy deployment requirements with a transparent software

model and plug-in hardware platform.

As pointed out in recent work, Harmony [122], existing offloading solutions “introduce a se-

mantic gap in existing, otherwise silo-ed, management techniques and complicates infrastructure

managment.” This aligns well with our observations. While Harmony [122] focuses on in-network

compute domain, LeapIO presents an end-to-end solution simplying the deployment and new ser-

vice development efforts.

On the other hand, cloud storage user requirements are evolving at the speed of months [146],

thus, how fast the offloading framework can react to new needs is of great importance. LeapIO

enables fast features/services development in a user-space x86-like environment, by abstracting

out the low-level hardware capabilities and differences between x86 and ARM. For instance, our

RAID-0/1 services are done in 2 developer days and block caching services in 7 developer days.

Compared to FPGA-based platforms, LeapIO’s choice of utilizing ARM for storage service of-

floading brings us great flexibility.
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CHAPTER 7

RELATED WORK

7.1 Storage Performance

• Storage tails: A growing number of work has investigated many root causes of storage latency

tail, including multi tenancy [170, 199, 244, 297], maintenance jobs [104, 127, 239], inefficient

policies [168, 238, 322], device cleaning/garbage collection [99, 141, 170, 199, 318], hardware

variability [165], and bursty workload behaviors [333]. MITTOS does not eliminate these root

causes but rather expose the implied busyness to applications.

• Storage tail tolerance: Throughout the paper, we already discussed existing solutions such as

snitching/adaptivity [8, 295], cloning at various different levels [105, 304, 313], hedged and tied

requests [141]. A growing number of works recently investigated sources of storage-level tail

latencies, including background jobs [104], file system allocation policies [168], block-level I/O

schedulers [322], and disk/SSD hardware-level defects [147, 159, 165]. An earlier work addresses

load-induced tail latencies with RAID parity [124]. Our work specifically addresses GC-induced

tail latencies.

• Performance isolation (QoS): A key to reduce performance variability is performance isolation,

such as isolation of CPU [329], IO throughput [157, 289, 297], buffer cache [244], and end-to-end

resources [108, 136]. QoS-enforcements do not return busy errors when SLOs are not met; they

provide “best-effort fairness.” MITTOS is orthogonal to this class of work (§3.1.3).

• OS transparency: MITTOS in spirit is similar to other works that advocate more information

exposure to applications [110, 225] and first-class supports for interactive applications [323]. MIT-

TOS provides busyness transparency by slightly modifying the user-kernel interfaces (mainly for

passing deadlines and returning EBUSY).
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• GC-impact reduction: Our work is about eliminating GC impacts, while many other existing

works are about reducing GC impacts. There are two main reduction approaches: isolation and

optimization, both with drawbacks. First, isolation (e.g., OPS isolation [199]) only isolates a tenant

(e.g., sequential) from another one (e.g., random-write). It does not help a tenant with both random-

write and sequential workloads on the same dataset. OPS isolation must differentiate users while

TTFLASH is user-agnostic. Second, GC optimization, which can be achieved by better page layout

management (e.g., value locality [163], log-structured [138, 218, 248]) only helps in reducing GC

period but does not eliminate blocked I/Os.

• GC-impact elimination: We are only aware of a handful of works that attempt to eliminate

GC impact, which fall into two categories: without or with redundancy. Without redundancy,

one can eliminate GC impact by preemption [133, 220, 309]. With redundancy, one must depend

on RAIN. To the best of our knowledge, our work is the first one that leverages SSD internal

redundancy to eliminate GC tail latencies. There are other works that leverage redundancy in flash

array (described later below).

• RAIN: SSD’s internal parity-based redundancy (RAIN) has become a reliability standard. Some

companies reveal such usage but unfortunately without topology details [13, 21]. In literature, we

are aware of only four major ones: eSAP [200], PPC[171], FRA [223] and LARS [221]. These

efforts, however, mainly concern about write optimization and wear leveling in RAIN but do not

leverage RAIN to eliminate GC tail latencies.

• Flash array: TTFLASH works within a single SSD. In the context of SSD array, we are aware

of two published techniques on GC tolerance: Flash on Rails [292] and Harmonia [209]. Flash on

Rails [292] eliminates read blocking (read-write contention) with a ring of multiple drives where

1–2 drives are used for write logging and the other drives are used for reads. The major drawback

is that read/write I/Os cannot utilize the aggregate bandwidth of the array. In Harmonia [209], the

host OS controls all the SSDs to perform GC at the same time (i.e., it is better that all SSDs are

“unavailable” at the same time, but then provide stable performance afterwards), which requires
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more complex host-SSD communication.

7.2 Storge Efficiency

We reviewed the growing literature in IO accelerator and virtual storage and did not find a single

technology that meets our needs. Below we summarize our findings as laid out in Table 7.1,

specifically in the context of the six dimensions of support (represented by the last six columns).

First, many works highlight the need for IO accelerators (the “Acc” column), e.g., with ASIC,

FPGA, GPU, Smart SSDs, and custom NICs. In our case, the accelerator is a custom ARM-based

SoC (§4.1.1) for reducing the storage tax.
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A ActiveDisks [98]
√

ActiveFlash [299]
√

iSSD [135]
√

ActStorage [268]
√

Biscuit [156]
√ √ √

BlueDBM [183]
√

Caribou [172]
√

FAWN [107]
√

Ibex [308]
√ √

IDISKS [194]
√

FlashShare [328]
√ √

GraFBoost [184]
√

HyperLoop [197]
√ √

INSIDER [271]
√

LightStore [137]
√ √

QsmartSSD [145]
√ √

SmartSSD [191]
√

SR-IOV [90]
√ √ √

Summarizer [212]
√ √ √

Willow [279]
√

YourSQL [181]
√ √

B AMF [222]

Decibel [251]
√ √

DiskCryptNet [243]
√ √ √

FlashBlox [170]
√ √

IOFlow [297]
√
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KAML [179]
√ √

LightNVM [126]
√ √

Malacology [280]
√ √

Moneta [130]
√

NOVA [315]

NVMeoF [38]
√ √ √

Orion [319]
√

SDF [257]
√

SPDK [324]
√ √

Strata [216]

C Arrakis [259]
√ √

BlueCache [316]
√ √

CIDR [103]
√ √

CORFU [113]
√

FlashNet [300]
√

FlatFlash [97]
√ √

Gordon [131]
√

Helios [254]
√ √

IX [120]
√ √

LegoOS [282]
√

M3 [111]
√ √ √

NBA [203]
√

QuickSAN [132]
√ √

Reflex [211]
√ √

Solros [247]
√ √

Transkernel [161]
√

VRIO [215]
√

D AccelNet [151]
√

Bluefield [49]
√ √ √ √

Catapult [129]
√

E3 [237]
√ √

Eris [230]
√

FlexNIC [192]
√ √

Floem [262]
√ √

IncBricks [236]
√

iPipe [235]
√ √

KV-Direct [226]
√

NetCache [177]
√ √

NetChain [176]
√ √

NICA [150]
√

SwitchKV [231]
√ √

UNO [217]
√ √

E ActivePointers [281]
√ √

Dandelion [270]
√

DUA [288]
√ √
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ExtraV [219]
√

GAIA [128]
√ √

GENESYS [303]
√ √

GPUfs [291]
√ √

GPUnet [204]
√

GPUrdma [140]
√

HeteroISA [116]
√ √

HEXO [255]
√ √

Morpheus [301]
√ √

NDPos [115]
√ √ √

OmniX [290]
√ √

Popcorn [117]
√ √

PortPerf [261]
√ √

pTask [269]
√

LeapIO
√ √ √ √ √ √

Table 7.1: Related Work (§7.2): The columns (dimensions of support) are as follow. Acc: Hardware ac-

celeration; Uni: Unified address space; Port: Portability/fungibility; vNVMe: Virtual NVMe abstraction;

Usr: User-space/software-defined storage functions; sVirt: Simultaneous local+remote NVMe virtualiza-

tion. The row (related work) categories are: A. Storage accelartion/offloading; B. Software-defined storage;

C. Disaggregated/split systems; D. Programmable NICs; and E. Heterogeneous system designs. We reviwed

in detail a total of 85 related papers.

When using accelerators, it is desirable to support a unified address space (Uni) to reduce data

movement. While most work in this space focus on unifying two address spaces (e.g., host-GPU,

host-coprocessor, or host-SSD spaces), we have to unify three address spaces (guest-VM/host/SoC)

with 2-level address translations (§4.1.4).

One uniqueness of our work is addressing portability/fungibility (Port) where LeapIO runtime

and arbitrary storage functions can run on either the host x86 or ARM SoC, hence our SoC de-

ployment can be treated as an acceleration opportunity rather than a necessity. In most of other

works, only specifically provided functions (e.g., caching, replication, or consensus protocol) are

offloadable.

We chose virtual NVMe (vNVMe) as the core abstraction such that we can establish an end-

to-end storage communication from guest VMs to the remote backend SSDs through many IO
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layers/functions that speak the same NVMe language (§4.1.3). With this for example, LeapIO is

the first platform that enables virtual SSD channels (backed by OpenChannel SSDs) to be compos-

able for guest VMs (§4.3.3).

All of the above allow us to support user-space/software-defined storage functions (Usr) just

like many other works. In LeapIO, user-level storage functions can be agnostic to the underlying

hardware (x86/SoC, local/remote storage). With this for example, LeapIO is the first to support

user-space NVMeoF with stable performance (§4.3.1).

Finally, to support “spillover drive” (Table 1.1), LeapIO is the first system that supports simul-

taneous local and remote NVMe virtualization (the sVirt column). Related work like Bluefield

with hardware NVMe emulation [49, 74] cannot achieve this because it can only support running

in either local or remote virtualization mode (e.g., initiator or target), but not both simultaneously

in composable ways.

Overall, our unique contribution is combining these six dimensions of support to address our

deployment goals. We also would like to emphasize that our work is orthogonal to other works. For

example, in the context of GPU/FPGA offloading, application computations can be offloaded there,

but when IOs are made, the storage functions are offloaded to our ARM SoC. In terms of virtual

NIC, its network QoS capability can benefit remote storage QoS. In terms of framework/language

level support for in-NIC/Storage offloading, it can be co-located with LeapIO to accelerate server

applications. In terms of accelerator level support for OS services or OS support for accelerators,

LeapIO can benefit from such designs for more general purpose application offloading.

Below we compare LeapIO with related works in detail.

• Storage Acceleration/offloading: The closest to LeapIO is the work that proposes offloading

storage computations and applications to programmable SSDs. LightStore [137], KAML [179],

LSM-SSD [306] and KV-SSD [89] offload key-value management in the storage controller, how-

ever, such solutions are tightly coupled with key-value interface design and limit their flexibility

and extensibility to support various types of storage services.
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IDISKS [194], ActiveDisks [98], ActiveFlash [299], iSSD [135], Willow [279], Summarizer [212],

SmartSSD [145, 191] and Biscuit [156] provide programming framework support to exploit free

cycles in storage controller for query processing, streaming processing, replication, and general

storage applications offloading. These works require non-trivial application changes and perfor-

mance benefits can be bounded by resource limitation due to contention with FTL tasks. In con-

trast, LeapIO provides VM storage transparently with close-to bare-metal performance. LeapIO

also differs from these works fundamentally in design principles to provide offload-ready storage

stack and simultaneous local and remote NVMe virtualization support.

While technologies such as SR-IOV (for local SSD virtualization [90]) and NVMeoF (for

remote SSD access [38]) can be combined to provide local/remote virtual SSDs, they are not com-

posable to provide richer services. SR-IOV bypasses the host/hypervisor and allows VM direct

control over storage devices, thus disabling storage services commonly implemented at the hy-

pervisor level. LeapIO not only reaps the benefits from today’s SR-IOV enabled SSD designs and

NVMeoF, but also combining them without taking away x86 resources along with seamless service

integrations.

INSIDER [271], GraFBoost [184] and Ibex [308] explore storage accelerations using FPGAs.

While FPGAs can provide better performance than ARM-based solutions, FPGA programming

is difficult and time-consuming, making it hard to satisfy the cloud storage development and de-

ployment speed. LeapIO is designed to tolerant hardware heterogeneity and enables a uniform

user-space software development environment.

BlueDBM [183], Caribou [172], Corfu [113], and FAWN [107] present a clustered design to

accelerate storage applications. While the hardware architecture and the design of LeapIO make

it conducive for such offloading, our main aim is to free the x86 cores so that they run customer

VMs while first party complex data paths run on ARM. Likewise, compared to approaches such as

Solros [247] where additional x86 cores are used for processing IO, LeapIO focuses on bringing a

degree of coherence and address space uniformity across host x86 cores, cheaper ARM processors,
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and RDMA NICs to help storage services achieve complex tasks.

Moreover, LeapIO is different from other works in terms of providing services with a uniform

interface of queues even when the hardware lacks those features, thus ensuring portability of ser-

vices (that always assume future-looking interfaces such as queue pairs) across servers that lack

RDMA NICs or NVMe SSDs or virtual-NVMe IP. Moreover, we also help data centers reduce cost

by implementing virtual NVMe SSDs in host or ARM memory without requiring complex SSD

firmware/logic that can support SR-IOV.

• Software-defined storage: Storage virtualization is a major component in software-defined

storage. The focus in this area has mainly been to reduce guest-host communications, avoid context

switches as much as possible, and reduce software overhead [42, 102, 125, 166, 258, 321]. LeapIO

minimizes such performance overhead via direct queue pair mappings across hardware boundaries

and cheap polling utilizing ARM co-processors.

SPDK [324] is a user-space polling based storage platform, burning precious CPU resources

for performance. While it aims to provide better storage performance than traditional kernel-level

block IO stack, it breaks application compatibility and only limited applications can run on top

of it whereas LeapIO works in a transparent manner. SPDK cannot achieve extensibility easily

in offloaded environment as they are not designed for managing peer PCIe devices from ARM.

IOFlow [297] and Malacology [280] present complex software defined cloud storage stack design

on traditional x86 centric server systems, and LeapIO aims to achieve similar features by offloading

them on cost-efficient ARM SoCs. LeapIO builds on these ideas and extends them to not only

access remote SSDs and complex storage services without any host intervention, but also compose

them in rich ways with minimum software overhead (such as interupts, context switches, multiple

data copies, etc.).

Other systems focus on isolation guarantees [170, 195, 199, 251, 287]. AMF [222], Flash-

Blox [170], and LightNVM [126] demonstrate the performance benefits of direct user management

of NAND Flash by moving FTL from SSD controller to the host. LeapIO extends similar ideas by
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running such management on ARM SoCs and exposing virtualized channels directly to VMs, thus

freeing x86 for more important VM tasks as well as guaranteeing performance QoS.

Recent software proposals and emerging hardware [51, 54] allow efficient access to remote

SSDs [38, 210, 211, 224, 251, 300]. These are point technologies purpose built for accessing

SSDs over a particular networking stack (e.g. RDMA). LeapIO strives to free the cloud providers

to choose any networking protocol in any stack (kernel/user space) while providing the ability to

run complex functions in the data path. The need for flexibility and transparency has motivated us

to implement NVMe over TCP, RDMA, REST, etc. with the ability to compose multiple transports

into one rich and complex data path without x86 involvement.

• Disaggregated/split systems: Several distributed/disaggregated system innovations [107, 113,

114, 132] have been proposed to leverage cutting edge storage and networking hardware. Le-

goOS [282] introduces a disaggregated data center operating system design based on fast net-

works. CORFU [113] and Tango [114] manage multiple Flash devices as a single log to sim-

plify distributed application development. FlashNet [300], Gordon [131], and QuickSAN [132]

present a software-hardware co-designed system for integrating storage and networking stack for

performance. These disaggregated designs are orthogonal to LeapIO designs. LeapIO provides a

platform for cloud providers to implement such techniques without taxing the valuable x86 CPUs.

LeapIO brings the ability to access a wide variety of accelerators from the ARM SoC, making it a

powerful platform for implementing first party distributed storage services.

Split systems like Arrakis [259] and IX [120] advocate to treat OS as control plane while uti-

lizing hardware support and kernel-bypassing for fast dataplanes. HeteroISA [116], Helios [254],

and M3 [111] provide software abstractions for heterogeneous systems with types of various co-

processors (GPUs, ARMs, FPGAs, etc.) and enable computation migration among them. LeapIO

builds on these ideas to provide a fast virtual storage dataplane and unified address space to ab-

stract out x86 and ARM co-processor differences and enable agile service development which can

move freely between x86 and ARM SoC.
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• Programmable NICs and Heterogeneous system designs: Utilizing programmable NICs for

application logic offloading has been explored in different dimensions. Existing commercial Smart-

NIC platforms, like Bluefield [49] services, cannot work without Bluefield-hardware (lack of fun-

gibility). It’s also challenging to saturate host-level SSDs and remote SSDs simultaneously at line

rate because it lacks the ability to help ARM (where portable services can run) bypass the NIC

when talking to other PCIe devices without taking PCIe lanes away from the NIC. LeapIO can

opportunistically utilize the hardware acceleration capability and achieve max performance for

virtual storage.

AccelNet [151] and Catapult [129] utilize FPGA based SmartNICs to offload Microsoft data

center networking functions. Various other types of applications are also explored, for exam-

ple, FlexNIC [192] allows user to install rules into DMA engine for efficient packet processing,

IncBricks [236] and NetCache [177] implement a key-value caching layer in the programmable

network dataplane, others target offloading KV stores like SwitchKV [231] and KV-Direct [226],

microservices like E3 [237]. Floem [262] and NICA [150] propose language/OS level framework

support to simplify writing offloaded applications. These in-network applications exploit Smart-

NICs to co-design applications for performance and offload logic, e.g. FlexNIC [192], Floem [262],

NICA [150]. They require application changes and software requires new hardware to work

whereas LeapIO is transparent to guest-VMs/applications/hardware.

Overall speaking, these in-NIC computing solutions can co-exist with LeapIO based storage

offloading framework. While LeapIO focuses on providing transparent NVMe storage to VMs,

the VM-level networking applications can still benefit from in-NIC offloading designs. LeapIO

differs from this existing work by designing and implementing a runtime that allows services to

be implemented in a hardware-independent manner. That is, high-level services such as rack-local

storage, multi-block atomic writes, tiered storage etc (are written once) will work regardless of

server configuration – SmartNIC or not, RDMA or not, SR-IOV or not. Every required data path

component such as address translation, network protocol used, encryption etc. are modularized
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such that the system can swap the underlying implementation depending on server configuration.

This is very important for us to ensure that all the servers in the data center run a uniform storage

service code to minimize development effort. We also want to introduce co-designed hardware

such that it will free up the most number of x86 cores depending on our workloads and not be

dictated by hardware designed by third parties.

Beside SSD and NIC based accelerators, past work on GPUs focus on easing GPU access to

OS services, such as GPUfs [291] for storage, GPUnet [204] and GPUrdma [140] for networking

accesses to GPUs, ActivePointers [281] for shared memory, and GAIA [128] for shared page

cache. Considering the rapid growth of a diverse set of accelerators, there is an increasing interest

in adding OS support to such new accelerators like NDPos [115], OmniX [290], Dandelion [270]

and pTask [269]. LeapIO shares similar goals with these systems, and propose a set of hardware

properties and software techniques to achieve shared address space and an ARM co-processor

centric storage offloading framework.
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CHAPTER 8

FUTURE WORK

The increasing adoption of specialized hardware poses tremendous challenges to application de-

velopment due to largely missing system-level support. An urgent problem is: How should we

structure system software to allow applications to effectively exploit a diverse collection of

specialized storage devices? Compute accelerators (e.g., GPUs, FPGAs) have spawned much ef-

fort to enable their use for a wide range of applications, such as ML, video processing, and even

some traditional database operations. Similarly, a diversity of specialized storage components has

been proposed in recent years. Unfortunately, they are held back by aged and inflexible storage

system interfaces and usage models.

Storage continues to rely on the rigid decades-old device interface that only allows read/write-

block, and even the file system (FS)-level is often limited to open()/read()/write()/close()

semantics. With the emergence of many new storage component characteristics, such as byte-

addressability, compute offload, direct transfer to/from accelerators, it is becoming extremely dif-

ficult to efficiently utilize these features through existing interfaces.

In more detail, there are many changes happening in today’s computing systems and they

bring many opportunities to systems research. Specifically, on the application side, emerging

application models/paradigms, such as data analytics, ML, and serverless computing are being

mainstream data center workhorse. On the hardware side, we see numerous new hardware springs

up due to the desire to mine intelligence from data faster, such as accelerators (GPU, FPGAs)

for fast computation on data, blazingly fast IO devices (NVMe, NVM, RDMA NIC) for fast data

movement and smart devices (SmartSSD, SmartNIC) for near-data acceleration. Thus, designing

proper systems level support for emerging hardware is very important to bring hardware-promised

performance benefits to applications. To tackle this problem, we believe a data-centric design to
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revisit the systems-software/hardware boundaries and responsibility divisions is needed.

System Support for New Storage Technologies: Storage controllers (SSDs, Intel Optane NVM)

are the frontline to deliver storage performance. These technologies are quickly evolving with

many new features built on top, such as Zoned Namespace (ZNS) for better host control to storage

device management, Key-Value (KV-SSD) interface for higher data throughput, IO Determinism

(IOD) for performance predictability. However, all these innovations cannot be easily reaped by

applications without proper systems level support or abstraction. The question we should look

at is how to design OS-level indirection layers and file system support to hide the complexity

of these device-level features. This will enable storage applications to take advantage of them

transparently. Another direction is to revisit existing applications designs and re-architect them to

exploit hardware benefits directly bypassing the OS.

Storage Specialization for Modern Application Paradigms: While we have seen a lot of ad-

vancement in accelerated data processing and frameworks for programming modern data intensive

applications, data management is still using the traditional general IO model and oblivious of appli-

cation level data access patterns. The question we want to ask here is how storage systems should

evolve to better support modern applications for performance? Since these applications have be-

come the major CPU cycle consumers in modern data centers, it’s time for us to specialize and

optimize the storage stack for them. One approach is to study the data access patterns during dif-

ferent phases of the applications (e.g., data shuffling in analytics, ML data processing pipelines, and

remote storage access in serverless) and design specific optimizations such as caching, prefetching

policies and better programming models to alleviate the IO bottleneck.

Near Data Computing: Emerging smart SSDs and NICs with computation capability (e.g., ARM,

FPGA) attached to them are attracting more attention these days. They provide a “look-aside” or

“on-path” computing subsystem to process data without requiring host level resources, thus helping

reduce the amount of data movement and provide potential high performance. However, with so

many different flavors of “smart” devices available, the lack of uniform software platform support

163



makes programming such devices challenging as it requires a lot of application level expertise to

understand how to offload certain logics and handle low level communication efficiency problems.

Worse, with today’s CPU centric design, file accesses from smart devices are inefficient and have

to be routed through host CPU. In this direction, it is extremely important to design high-level

interfaces for applications to easily push computation and file access semantics to the near-data

processors without major system architecture changes. This will potentially ease programmability

while achieving efficiency and performance.

Predictable Prediction Serving Systems: With ML models being increasingly used as major

workhorses for a wide range of applications, it is extremely important to achieve predictable in-

ference latencies for modern prediction serving systems. Prediction serving systems are typically

deployed across a cluster of machines, thus they are prone to slowdowns and failures and similarly

the tail latency problem exists. While recent works such as [213] start looking at “parity models”

to enhance reliability of the prediction serving systems, we argue that the design principles pro-

posed in this dissertation to cut storage-related tails can also be applied in the computing scenario

to guarantee low and stable prediction serving. For instance, we can “fast-fail” slow computations

and utilize the model redundancy to quickly “fail-over” to faster computing nodes for predictable

prediction latencies. More designs can be explored in this direction.

164



CHAPTER 9

CONCLUSION

This dissertation has shown how to build cloud storage stack with predictable latencies and cost-

efficiency as well as enabling new research platform designs to satisfy rising full-stack research

needs. First, to tackle the notorious tail latency problem in modern Flash-based storage stack,

we adopt a holistic approach to co-design software/hardware with determinitic IO latencies. We

build three systems across different layers of the storage stack for an end-to-end tail-tolerant stor-

age stack. Second, to reduce the heavy data center storage tax, we design LeapIO to offload

modern storage services and address a wide range of real data center deployment challenges.

Third, to enable full-stack software/hardware research, we design a new NVMe SSD platform

on top of QEMU. Collectively, we build three major systems to improve storage performance,

cost-efficiency and usability, which we summarize below:

TEAFA is a OS/SSD co-designed AFA system to deliver predictable IO latencies. TEAFA

adopts a simple yet powerful storage interface change to communicate device-side background

activities, and informs the host to react timely. TEAFA proactively reconstructs read IO data using

the redundant data widely avaialbe in modern storage systems and introduces a simple time window

based scheduling mechanism to guarantee low tail latencies even for high percentiles (e.g., p99.99).

Extensive evaluation results demonstrate TEAFA’s effectiveness when compared to state-of-the-art

techniques and deliver up to orders of magnitude latency improvement over baseline.

LeapIO is a Hypervisor/ARM-SoC co-designed cloud storage stack for efficient storage service

offloading and agile development in user space. LeapIO is designed to satisfy real-deployment re-

quirements such as fungibility, virtualizabilty, performance and compoasability. LeapIO employs

a unified address space across x86, ARM, and other IO devices to minimize data copies. We

demonstrate that LeapIO is able to achieve close-to bare metal performance and improve resource

utilization. LeapIO is being deployed in Microsoft data centers as of the writing which proves the
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success of its design.

FEMU is QEMU/software based NVMe SSD emulator which brings the “CASE” benefits:

cheap (open-sourced and successfully used in several projects which appeared in top-tier OS and

storage conferences), accurate (relateively low per-IO latency emulation error rate (i.e., 11% in

average) at microsecond level), scalable (being able to support high level channel/chip parallelism),

and extensible (drop-in replacement as OpenChannel- or regular Blackbox- SSDs).
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