
Fantastic SSD Internals and How to
Learn and Use Them

Nanqinqin Li
University of Chicago and

Princeton University

Mingzhe Hao
University of Chicago

Huaicheng Li
University of Chicago and
Carnegie Mellon University

Xing Lin
NetApp

Tim Emami
NetApp

Haryadi S. Gunawi
University of Chicago

ABSTRACT
This work presents (a) Queenie, an application-level tool that
can automatically learn 10 internal properties of block-level
SSDs, (b) Kelpie, the learning and analysis results of run-
ning Queenie on 21 different SSD models from 7 major SSD
vendors, and (c) Newt, a set of storage performance optimiza-
tion examples that use the learned properties. By bringing
numerous observations and unique findings, this work ex-
poses substantial improvement spaces for both SSD users
and vendors, enlightening possibilities of unleashing more
SSD performance potential and highlighting the necessity
of further exploring SSD internals.

CCS CONCEPTS
• General and reference→ Empirical studies; Measure-
ment; • Information systems→ Flash memory.

KEYWORDS
Solid-State Drive, Performance Characterization

ACM Reference Format:
Nanqinqin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami,
and Haryadi S. Gunawi. 2022. Fantastic SSD Internals and How
to Learn and Use Them. In The 15th ACM International Systems
and Storage Conference (SYSTOR ’22), June 13–15, 2022, Haifa, Israel.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3534056.
3534940

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SYSTOR ’22, June 13–15, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9380-5/22/06. . . $15.00
https://doi.org/10.1145/3534056.3534940

1 INTRODUCTION
Solid-State Drives (SSDs) are a cornerstone of modern stor-
age systems because of their competitive performance, relia-
bility, capacity, and cost [2, 13, 19, 33, 41, 46]. However, while
fulfilling user’s increasing demands on storage, modern SSDs
also bring their own challenges: it is difficult to optimally
utilize them as most of them show up as black-box devices,
with internal complexities such as FTL mapping, write buffer
management, and garbage collection mechanisms, hidden
and intangible from their users [21, 23, 26, 29, 49, 50].
These complexities, unfortunately, can bring non-

negligible side-effects, with performance inconsistency as
one of the notorious ramifications. For example, write buffer
flush can contend with reads on NAND resources and bring
long latency tails [10, 19, 39]; reads with inappropriate align-
ment can take extra overhead to process as SSDs apply mini-
mal unit of access [31, 32]; some SSDs are designed for certain
purposes, and when used inappropriately, can dramatically
downgrade the overall system performance [5, 30].
Motivated to resolve these negative impacts, multiple

pieces of prior work [12, 28, 30–32] try to extract crucial SSD
properties and propose coherent designs based on the ob-
servations. They have reasonably argued that probing SSDs
can help build more effective solutions and bring significant
performance improvement.

Based on these gains, we further ask: is there more knowl-
edge hidden in modern SSDs, waiting to be learned and uti-
lized, especially as modern SSDs have evolved rapidly over
the past decade? We found that there are many questions
unanswered in prior work. Do modern SSDs have favorable
sizes on reads and punish those that do not comply (§4.1,
§5.1)? Do components that were prevalent in SSDs previously,
such as read buffer, still exist in recent SSD models (§4.5)?
Do large-capacity SSDs, which are very common nowadays,
have write buffers of appropriate sizes (§4.2) and the capa-
bility to handle highly-parallel writes (§4.4)? Do SSDs apply
hybrid (externally and internally triggered) buffer flush poli-
cies (§4.3) that can be exploited for less contention and better
performance (§5.2)? Do SSDs really perform better when they
face less “stress” (§4.6)?

72

https://doi.org/10.1145/3534056.3534940
https://doi.org/10.1145/3534056.3534940
https://doi.org/10.1145/3534056.3534940

SYSTOR ’22, June 13–15, 2022, Haifa, Israel N. Li et al.

To answer those questions, we introduce Queenie, Kelpie,
and Newt.1 (a) Queenie is a holistic, application-level tool
that probes the SSDs with carefully tuned read/write mixed
workloads. By just measuring latencies observable at the
application level, Queenie learns and extracts 10 SSD internal
properties and can run on any block-device SSDs. Queenie
is open-sourced [3] as we are not aware of a similar tool
publicly available. (b) Kelpie represents our analysis results
of running Queenie on 21 different SSD models from 7 major
SSD vendors, from regular consumer-level ones to latest
enterprise-level ones. Kelpie brings numerous observations
and 6 unique findings, exposing substantial improvement
space for both SSD users and manufacturers. Part of Kelpie’s
raw data set is made public [3]. Finally, (c) Newt is a set of
I/O optimization examples that showcase how applications
can leverage this knowledge in real-world scenarios such as
aligning read sizes and exploiting write buffer knowledge.

2 GOALS
2.1 Properties and Advantages
To design Queenie, we must first decide the important SSD
internal properties to learn and extract. Below, we provide
the list, the definition of each of the properties, and the
advantages of knowing them, as summarized in Table 1.
P1 Page size is the minimal unit of read and write. Know-

ing the page size is the foundation of subsequent probing
techniques. Advantage: knowing the internal page size will
help applications align I/Os properly to avoid unnecessary
alignment overhead such as read-modify-write [31, 32].
P2 Page type represents the NAND cell type (SLC,

MLC, TLC, etc.) and how the page offsets are mapped to
low/medium/high bits of the MLC/TLC cells. A page offset
that is mapped to higher bits tend to have a higher latency.
Advantage: mapping hot data to low pages (lower latency)
can bring performance improvement [16] under a typical
static logical-to-physical page offset mapping at the NAND
block level [50].
P3 Chunk size reveals the striping unit inside the device

(similar to RAID chunk size). For example, if an SSD has 16
chips, it might spread incoming 16 pages evenly among the 16
chips (1-page chunk), or it could also split them into 2 groups
to 2 chips with 8 pages each (8-page chunk). Advantage: this
information can help applications understand the throughput
of sequential reads/writes.
P4 Stripe width is the number of chunks that can be par-

allelized internally without contention at the chip level (akin

1In the “Fantastic Beasts and Where to Find Them” movie, Queenie is a
character who can read other people’s minds, Kelpie is a shape-shifting
creature that can take any form, representing the many forms of our findings
which depend on the probed SSD models, and Newt is a wizard who help
solve crimes such as the crimes of Grindelwald in the second sequel.

ID Name Output Format
P1 Page size Size (e.g., 4 KB)
P2 Page type S/M/TLC + low/high
P3 Chunk size Size (e.g., 64 KB)
P4 Stripe width A number (e.g., 64)
P5 Channel/chip layout #Channels * #Chips
P6 Read perf. consistency ‘Good’(✓) or ‘Bad’(✗)
P7 Read buffer cap A size or none
P8 Write buffer cap A size or none
P9 Write parallelism A number (e.g., 4)
P10 Internal flush window A duration (e.g., 5ms)

Table 1: Properties covered by Queenie. The description
of the 10 SSD properties and their IDs (P1-P10) covered by our work

to RAID stripe width). Advantage: knowing this parallelism
level allows applications to exploit the internal bandwidth
better, e.g., how databases are redesigned to map better to
the SSD internal parallelism [12].
P5 Channel/chip layout represents the number of chan-

nels and chips per channel. Advantage: though sometimes
treated as a “boring” fact, this property can unearth unusual
findings (§6), e.g., a channel can exhibit more contention
(higher latency) with some channels than with the others.

P6 Read performance consistency is about whether the
SSDs have favorable read sizes and “punish” thosewho do not
follow, e.g., whether SSDs can process non-paged, sectored
reads with minimal alignment overhead and whether large
reads are broken into smaller ones and served simultane-
ously. Advantage: it is worth to double check these standard
expectations, as sometimes we find exceptional cases (§4.1)
that might require special handling (§5.1).
P7 Read buffer capacity is about determining howmuch

of the internal RAM or SLC is occupied for caching reads
(for cost-efficiency, some newer QLC drives use SLC as the
buffer instead of RAM). As NAND read speed grows faster,
we check whether vendors still employ read cache inside
the device. Advantage: caching is paramount to performance.
Knowing this information can hint of a better cache design
at a higher layer.
P8 Write buffer capacity is similarly about speculating

howmuch the internal RAM or SLC is used for buffering user
writes before flushing them to the NAND cells. Advantage:
knowing the buffer size, together with controlling/tracking
user write operations, can help predict the timing of flushes
and potential garbage collection activities [30].
P9 Write parallelism is the number of parallel writes

supported by the device. The issue here is that unlike read
operations, writes tend to be absorbed into a centralized
buffer first. This probing checks whether SSDs are able to
maintain high write parallelism regardless of the centralized
buffering. Advantage: the result here can bring insights on
how to apply SSD-specific optimizations for write workloads,
while revealing defects in write handling in some SSDs (§4.4).

73

Fantastic SSD Internals and How to Learn and Use Them SYSTOR ’22, June 13–15, 2022, Haifa, Israel

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
[31] 4 ✓ ✓ ✓
[12] 2 ✓ ✓ ✓
[30] 7 ✓
Q&K 21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Queenie vs. existing work. This table compares
Queenie and Kelpie (Q&K) with other related SSD probing work. ‘#’
stands for number of SSD models probed by each work. As we can see,
Queenie covers more SSDs and properties.
P10 Internal flush window is the amount of time the

device needs to softly dump the entire write buffer to the
underlying NAND without causing severe contention (e.g.,
background flushes under low load). Advantage: as this inter-
nal flush usually incurs less contention and shorter blocking
time, it can be further exploited to design a solution that
mitigates the buffer flush interference (§5.2).

Garbage collection (GC) is another crucial factor af-
fecting SSD performance. If the timing of GC is known, it
can be avoided by re-routing reads to other less-busy repli-
cas [18, 20]. We are not aware of prior work that successfully
and affirmatively unveiled this information. Some model GC
as a statistical distribution of #writes between adjacent GC
occurrences [30].We attempted probing GC by issuingwrites
to the same NAND chip, while performing background read
on all chips to examine when GC happened and which chips
are activated to accommodate the GC. However, ensuring
that writes are sent to a particular chip can be extremely
tricky, and frequent GC wore out our drives too quickly.

2.2 SSD Models
Our goal is to probe a wide variety of SSDs from different
major vendors such that we can contrast the probing results
from different devices. From our labs and our industry part-
ners, we have amassed 21 SSD models from 7 vendors, from
consumer-level ones (8 pieces) to enterprise-level ones (13).
The release year of these models ranges from 2008 to 2018.
Their interfaces vary: SATA (7), SAS (6) and NVMe (8). Their
sizes range from 64 GB to 2 TB, covering different NAND
technologies such as SLC (6), MLC (12), and TLC (3). The full
list of our devices can be found later in Table 4 in Section 6.
As mentioned, we are not aware of any other probing papers
with this scale of hardware being probed.

2.3 Related Work
We briefly discuss related work on SSD and storage probing,
SSD performance modeling, and host-managed SSDs.

SSD probing. There are existing papers that attempt to
probe SSD internals [12, 30, 31], but as shown in Table 2, our
work provides more contributions in terms of SSD probing.
First, Queenie and Kelpie cover more properties (P1 −P10),
catching more “fantastic” facts of modern SSD models. Sec-
ond, Queenie has been tested on 21 SSD models including

enterprise ones, while other papers only probe up to 7 con-
sumer models. Table 2 does not cite [28, 32] as they are
shorter workshop versions. We also do not directly com-
pare against [48] since their main focus is Intel Optane SSDs,
though they also performed some probing on flash-based
SSDs such as stripe width (P4) to contrast with Optane SSDs.

Storage probing. Pulling up one level higher, storage
probing in general has been a common area for decades such
as probing HDDs [43, 47], memory hierarchy [51], RAID [14],
SMR [4], and USB drives [8]. These areas of work produce
positive outcomes of better understanding the hardware in-
ternals. However, their mechanisms cannot be easily ported
to SSDs given the fundamentally different physical nature.

SSD performance modeling. A different, complemen-
tary way of direct probing is black-box performance model-
ing [9, 15, 24, 37, 38, 44]. Prior work in this area demonstrates
that modeling SSDs is feasible by just collecting external per-
formance metrics, but some do warn that the performance
models could be error-prone as they “may not necessarily
apply to other SSD models” [53].

Host-managed SSDs. We acknowledge the rise of
software-defined SSDs to increase controllability either via
extended interfaces [27, 34, 36] or full exposure of SSD in-
ternals [6, 7, 17, 40, 52]. Probing is only useful for black-box
commodity SSDs, which is our focus in this paper given the
larger scale of deployment of such SSDs.

3 QUEENIE (THE “MIND READER”)
3.1 Probing Methods
Queenie probes the 10 properties (P1 −P10) as follows. We
release the source code and pseudo code of Queenie [3].

Probing precondition. Properties P1–P7 require the SSD
drives to be fully erased (with secure erase) and then popu-
lated with a full sequential write (we call this a “refill” opera-
tion); For P8–P10, drives need to be properly erased such that
all writes can be sent to empty pages (i.e., no overwriting).
P1 Page size. Queenie extracts the smallest unit of read

by reading continuous 0.5KB sectors to detect the interval
between page boundaries. For example, assume an SSD has a
page size of 4KB and page boundaries at 0, 4 and 8KB. Then
a read of 2 sectors at offset 3KB would require the SSD to
read only one page, while the same read at 3.5KB will read
2 pages with higher latency (if the 2 pages are parallelized
inside the SSD, the latency would still be slightly higher due
to channel-level contention), indicating a page boundary at
4KB. By repeating this read at larger offsets, Queenie will
see the adjacent boundary at 8KB, confirming the 4KB page
size. The probing function is F1_pushRead (Alg. 1 in [3]).
P2 Page type. Queenie sends page reads one page at a

time and compares the read latency of each page. To elimi-
nate the side effects of internal readahead (if any), Queenie

74

SYSTOR ’22, June 13–15, 2022, Haifa, Israel N. Li et al.

reads from higher to lower page offsets (readahead usually
begins caching when seeing monotonically increasing back-
to-back offsets). For M/TLC drives, we will observe different
latencies as the offsets vary, as pages are mapped to differ-
ent lower/medium/higher bits of the cell. With this, Quee-
nie can retrieve the LPN (logical page number) positions of
low/medium/high pages. This page-wise layout can be fur-
ther divided by the stripe width (P4) to get the layout inside a
flash chip, assuming pages are evenly distributed to all chips.
The function is F2_rangeRead (Alg. 2 in [3]).

P3 Chunk size. Queenie reuses F1_pushRead to detect
chunk boundaries by reading consecutive pages. With an
SSD of a 16-page chunk size and chunk boundaries at 0, 16,
and 32 pages, a 2-page read at page 14 will go to only one
chip, while reading at page 15 would be served by two chips
in parallel with lower latency, indicating a boundary at page
16. Similarly, at larger page offsets, Queenie will see another
boundary at page 32 and infer a chunk size of 16 pages.
P4 Stripe width. Queenie issues concurrent chunk reads

with incremental offsets. For instance, for an SSD with a
stripe width of 16 chunks, issuing 4 reads with an offset
increment of exactly the stripe width would cause these
4 reads to be sent to the same chip, resulting in heavier
contention than those with smaller offset increments. The
function is F3_strideRead (Alg. 3 in [3]).
P5 Channel/chip layout. F3_strideRead also helps re-

veal channel-level contention when reads are sent to the
same channel but to different chips, with a specific offset
increment smaller than the stripe width. Such an offset in-
crement hints the number of channels.
P6 Read performance consistency. Queenie issues ran-

dom reads of increasing sizes with sector-level increments,
checks whether larger reads experience higher average la-
tencies than smaller ones, and then identifies “problematic”
size ranges. The function is F4_incRead (Alg. 4 in [3]).
P7 Read buffer capacity.Queenie issues a large read first

and then re-reads the very first page of the previous large
read. If the device has a read buffer large enough to contain
the large read, then the re-read latency should be much lower
than that of a regular page read because it is buffered. The
function is F5_reRead (Alg. 5 in [3]).
P8 Write buffer capacity. Queenie issues concurrent

non-overlapping writes. When the write buffer is flushed
(near full), it will cause a write-latency spike. The amount of
data written between the latency spikes hints the capacity of
the write buffer. The function is F6_conSeqW (Alg. 6 in [3]).
P9 Write parallelism. While running F6_conSeqW, the

distribution of write latencies reflects the number of writes
that can be supported at once. As a simple example, if 4 of 8
concurrent writes (issued at the exact same time, µs-level)
observe almost a 2x latency compared to the other 4 exactly

Results 4 KB 1KB 8KB
Confidence 0.99 0.70 0.39

Table 3: Automated analysis example output for page
size (P1). This table shows an example where there are 3 possible
answers for P1, with 4 KB as the final answer (0.99 confidence).

concurrent writes, then we can conclude the write buffer can
absorb 4 concurrent writes at a time (not per second).
P10 Internal flush window. After identifying the write

buffer capacity, function F7_seqwSleep (also Alg. 6 in [3])
slowly populates the entire write buffer by injecting sleep
(2ms to 5s in a “binary search” manner) to determine the min-
imal sleep length that eliminates the flush spikes completely.
This minimal length represents the internal flush window.

3.2 Probing Time and Automated Analysis
To ensure that our conjectures are highly consistent, for ev-
ery measurement, we repeat the I/Os for 5,000–10,000 times
and use the average, requiring 1-8 hours for each probing
experiment to finish (for all 21 SSD drives in our collection).
For read-only properties P1–P7, the drive only needs to be
“refilled” once at the beginning of the probing tominimize era-
sure times and prevent the drive from wearing out [21, 25].

We also developed a tool that automatically analyzes the
outputs of these probing functions and generates a final
result for the properties. The key to the automated analysis
is identifying latency abnormalities. For example, in probing
write buffer capacity (P8), latency spikes are considered an
indication of flush occurrences since their latencies are much
higher than the others; in probing stripe width (P4), latency
will be significantly higher if those concurrent reads are sent
to the same flash chip.
The tool uses the Jenks natural breaks algorithm [45], a

classification method optimized for one-dimensional data
(the latencies) to distinguish abnormal from normal latencies.
We configure Jenks to output two classes and take the one
with fewer data points as the abnormalities. Then, the most
common interval between neighboring abnormalities is cal-
culated to represent the probed property. For instance, the
interval between two neighboring spikes in P8 (see Figure 2
later) is the amount of data needed to trigger a buffer flush,
indicating the write buffer capacity.
For properties where different levels of abnormalities

might exist, specifying more than two classes might give
more accurate results (e.g., in P4 stripe width, latency spikes
could be lower when only half of the concurrent reads go
to the same chip). For such properties, we run Jenks several
times from two to five classes and use Silhouette score (range
from 0 to 1) to select the best classification result for gener-
ating the final probing results (Table 3). In other words, the
Silhouette score is considered the confidence score for the
analysis results generated from a certain number of classes.

75

Fantastic SSD Internals and How to Learn and Use Them SYSTOR ’22, June 13–15, 2022, Haifa, Israel

.2

.4

.6

.8

 100 200 300

Not multiple of 4KB

Multiple of 4KB

0
.4

m
s

3
x
 d

iff

R
e

a
d

 L
a

t.
 (

m
s
)

Read Size (KB)

(a) Read Latency on N1TI

.1

.2

.3

 20 40 60

17-20KB
33-36KB

49-52KB5
0

u
s

R
e
a

d
 L

a
t.

 (
m

s
)

Read Size (KB)

(b) Read Latency on N2TI

.2

.4

.6

.8

 100 200 300

20-260KB

300us - 650us

Read Size (KB)

(c) Read Latency on N1.6TW

Figure 1: Read size vs. performance (§4.1). Read latencies
(y-axis) observed when the read size is set to different values (x-axis).
In 3 models, read I/Os with different sizes (non-page-aligned sizes) can
result in up to 400µs or 3x higher latencies. Each dot is the average
latency of 5000 random reads.

4 KELPIE (MANY “FORMS OF FINDINGS”)
While later Section 6 shows all the findings, herewe highlight
6 main ones that we consider both “interesting” and “unique.”
Each subsection starts with a summary of the finding.

Labeling: These SSD models (symbols) are composed of
three parts: protocol (NVMe, SATA, SAS), size (e.g., 100G ,
1T), and vendor code (a letter between A..Z). For the last
item, a character represents a vendor, but the letter-to-vendor
mapping is not revealed for hiding the actual vendor names.
For example, “N1T I” is a 1 TB NVMe drive from vendor I ,
“T480GS” is a 480GB SATA drive from vendor S , and “A800GP”
is a 800GB SAS drive from vendor P .

4.1 Read Sizes vs. Performance
Observation: Enterprise-level drives, N1T I , N2T I , and
N1.6TW , show higher latencies (50-400µs or up to 3x higher
than the average) when the read size (a) is not a multiple of
the page size or (b) lies within certain size ranges.
SSDs have a minimal unit of read/write (“page”). Mak-

ing an I/O size multiple of the page size will avoid paying
the alignment overhead [31]. Modern SSDs are mostly well-
optimized to minimize this overhead to single-digit µs. How-
ever, this is not always the case even for the latest drives. One
recent enterprise-level SSD, N1T I , exhibits worse latencies
when the read size does not fit its expectation.

Figure 1a shows thatN1T I returns up to 400µs or 3x higher
latency (y-axis) when the read sizes (x-axis) are not multiple
of 4KB. To emphasize, the read offsets are page-aligned but
not the sizes, and the offsets are random. With this, N1T I

 0

 0.5

 1

 1.5

 2

 20 30 40 50

Buffer Flush

Interval
11.5M

Interval
11.5M

W
ri
te

 L
a

t.
 (

m
s
)

Data Written (MB)

(a) Seq Write on N2TI

.1

.2

.3

.4

.5

 0 2 4 6 8 10

3M 3M

Data Written (MB)

(b) Seq Write on N1TI

 0

 2

 4

 6

 8

 0 100 200 300

 First-Level
 2M

Second-Level
 256M

Data Written (MB)

(d) Seq Write on T480GS

 0

 0.5

 1

1k 2k 3k 4k 5k

1280 * 4/8/16/32/64k
 writes

W
ri
te

 L
a

t.
 (

m
s
)

#Writes Completed

(c) Seq Write on A200GH

Figure 2: Small write buffers (§4.2). Write latency (in y-
axis) after a certain size of data has been written (x-axis) to the SSD.
Buffered writes only take tens of µs, but the ms-level spikes suggest
buffer flushing to the NAND cells (programming time). The distance
between the two spikes hint on the write buffer size.

would have a downgraded performance under real industrial
SSD traces, including a database workload where 65% of the
reads are not multiples of 4KBs (§5.1).

Another interesting anomaly is latency spikes within cer-
tain size ranges. Figure 1b shows that drive N2T I responds
with 50µs higher latency (20-30% higher) when the read sizes
fall within certain size ranges (17-20KB, 33-36KB, and 49-
52KB). With this knowledge, by just increasing the read size
slightly to fall outside these ranges (e.g., change a 20KB read
to a 24KB read), one can gain a substantial improvement
(§5.1). Figure 1c shows a similar anomaly in drive N1.6TW
with a 2-3x latency (350-600µs) when read sizes fall within
the 20-260KB range but nowhere else up to 1 MB (the maxi-
mum read size in our experiment).
4.2 Small Write Buffer
Observation: 13 SSDs (mostly enterprise-level) have a rela-
tively small write buffer (≤ 64MB), while some older SSDs can
employ a large buffer as high as 800MB.

Surprisingly, most SSDs only employ a write buffer of tens
of MBs. Figure 2a hints that N2T I , a 2TB enterprise-level
drive, only uses 11.5MB for the write buffer; every 11.5MB of
write traffic results in a latency spike of up to 1.5ms, which
reflects the NAND programming time. Assuming the SSD
is handling a reasonable write workload of 100 MB/s, the
user would see roughly ten occurrences of a latency spike.
Similarly, Figure 2b shows that another 1TB drive, N1T I , can
employ a “partial” write buffer of only 3MB (see §6).

76

SYSTOR ’22, June 13–15, 2022, Haifa, Israel N. Li et al.

Intensive writes

 Buffer almost

full, flush!

Write

Buffer

Heavy contention

and high latency

(a) Forced Flush (b) Idle-time Flush

Sparse/Delayed writes

 Drive idle,

flush some.

Light contention

and low latency

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

0s idle

0.2s idle

0.5s idle
0.75s idle

1st batch 2nd batch 3rd batch 4th batch 5th batch

W
ri
te

 L
a

t.
 (

m
s
)

Data Written (MB)

(c) Seq Write on T200GM

Figure 3: Idle-time buffer flush (§4.3). (a-b) Buffer flush
triggered due to heavy incoming writes or idle time. (c) The longer the
sleep time in between the write batches, the lower the latency spike.

Another interesting observation is that write buffers on
some drives are not capped by MBs but rather the number of
write I/Os, e.g., in Figure 2c, A200GH issues a flush for every
1280 writes regardless of whether the size is 4/8/16/32/64KB.
We also observed that 5 models employ a two-level buffer
(i.e., RAM as the first level and SLC as the second [11, 22]).
In T480GS drive in Figure 2d, we see a write spike of almost
1ms every 2MB of write and another 7ms spike every 256MB
of write, while the latency of buffered writes is only 90µs.

4.3 Idle-Time Buffer Flush
Observation: For 14 out of the 21 SSDs in our collection, in-
ternal buffer flush is triggered during idle time, which can be
exploited by making the host send sparse/delayed writes.
Internal buffer flush can be triggered during highly in-

tensive writes (Figure 3a), which will cause a write backlog,
or during idle time (Figure 3b), which can be exploited to
reduce write delays by having the higher storage layers send
sparse/delayed writes.
Figure 3c shows this opportunity. Here, we use T200GM

(known to have a 64 MB write buffer) and send batches of
writes, where a batch is 64MB. In between the write batches,
we insert an increasing user-level sleep time that ranges be-
tween 0 to 0.75 seconds. Without an idle window (x=64MB),
the figure shows a high latency spike around the boundary
of the 1st and 2nd write batches, as expected. However, as we
increase the user sleep time between the subsequent batches,
we see a reduced backlog. For example, as we insert 0.75s idle
time between the 4th and 5th batch (x=256MB), the internal
write buffer is likely being flushed, and the user writes can
be absorbed by the buffer, resulting in low latencies.

(a) Regular Concurrency

Time

12 wIOs

Served
in

parallel

(b) "Serialized" Concurrency

Time

12 wIOs

Blocked
on first

then
handling

rest

Writes

arrive

Writes

arrive

W8

W1

W3

W10 W7

W11

W2

W5 W9

W6

W4

W12

N
o

 W
ri
te

s

W1

W11

W4

W2

80us

210us

...

Figure 4: “Serialized” concurrent writes (§4.4). (a) An
expected behavior of write parallelism with 4 concurrent completions
at a time, and (b) an anomalous behavior of write parallelism where
the concurrent I/Os of the same batch are serialized when the write
batch starts with an empty device queue.

Outcomes from the other 13 drives also show this preva-
lent design choice. For example, N1.6T S can empty its buffer
(40.25MB) in a idle window of 50ms and T480GS is capable
of doing the same for its second-level buffer (256MB) in 5s
(more details in §6).

4.4 “Serialized” Concurrent Writes
Observation: 4 out of 21 drives, A960GPT , A960GPS , A1.6T P ,
and N1.6TW , exhibit an anomalous concurrent write behavior
where the concurrent I/Os in a given batch are serialized when
the device queue is empty of pending writes.
Regarding property P9 (write parallelism), one of Quee-

nie’s functions sends continuous concurrent 32KB writes,
say w1...wz where 1 and z represent the first and last write
of this long-running experiment, respectively. For device
A960GPS , Figure 4a shows that this device returns 4 write
completions at a time, i.e., a write parallelism (P9) of 4.
However, we notice a consistent anomalous behavior in

the beginning of the experiment, which prompts us to con-
figure Queenie to run batches of concurrent writes and pause
in between until the device queue has no outstanding writes.
Figure 4b shows this anomalous behavior of “serialized” con-
current writes. Whenever concurrent writes are sent when
the device queue is empty, we notice that the first write (w1)
completes first after 80µs and the other concurrent writes
(w2-w4) of the same batch complete after 210µs. In other
words, if users send periodic concurrent writes, these writes
will be serialized as illustrated in Figure 4b.

4.5 The Disappearing Read Cache
Observation: Only 1 SSD model, A800GP , employs an inter-
nal read cache. Disappearing read cache is likely due to the
increasing NAND speed and DRAM buffer in higher layers.
An internal read cache, which was an essential part of

SSD years ago [31], is hardly seen in modern SSDs. As recent
NVMe drives deliver low read latency (30-150µs), using in-
ternal RAM for data caching might be deemed unnecessary.

77

Fantastic SSD Internals and How to Learn and Use Them SYSTOR ’22, June 13–15, 2022, Haifa, Israel

 60

 80

 100

 120

 140

1st 2nd 3rd 4th

R
e

a
d

 L
a

t.
 (

u
s
)

i-th Returned Reads

#C=1
#C=2

#C=4
#C=8

#C=16

Concurrent Reads on N2TI

Figure 5: Less load, higher latency (§4.6). In drive N2T I ,
less concurrent reads lead to higher latencies than higher concurrent
reads (e.g., compare the red × line for C=2 concurrent reads vs. the
blue # line for C=16). The y-axis presents the average latency of the
ith returned I/O in every batch of concurrent reads.

Nevertheless, drives with high NAND latency can still bene-
fit from caching. A800GP , for example, employs a 16MB read
cache and reduces re-read latency from 320 to 60µs, an 80%
reduction. This encouraging speed-up may motivate more
SATA/SAS flash storage to adopt read caching as these older
models still exhibit high read latency from 150 to 400µs.

4.6 Less Load but Higher Latency
Observation: In N2T I , fewer concurrent reads surprisingly
lead to higher latency: some drives may prioritize throughput.
Usually, less concurrency/load results in lower latencies.

However, we observe the opposite behavior in drive N2T I .
In Figure 5, we perform five additional experiments, each
with a different level of concurrency C from 1 to 16. Each
experiment sends C concurrent random page reads (as a
batch), waits until the completion of the batch, and then
sends another batch ofC concurrent reads. This loop repeats
for thousands of times. The y-axis shows the average latency
of the ith returned I/O within every batch.
Let us start with the single ■ point, which indicates that

there is only one I/O (1st) in the batches of “1-concurrent”
I/O, and the average latency is 82µs. However, in the 16-
concurrent I/Os experiment (the blue # line), we see that
the average latency of the 1st I/O (x=1) and the 4th one (x=4)
is only 59 and 72µs, respectively, significantly lower than
the ■’s 82µs value. Put simply, less-loaded experiments (less
concurrency) result in higher latencies than the more-loaded
ones. The root cause of this phenomenon remains a mystery.
Perhaps this drive is optimized for throughput.

5 NEWT (A “CRIME SOLVER”)
This section illustrates the benefits of Queenie and Kelpie for
storage designs and policies, that is, how storage architects
or users can leverage the extracted information to improve
storage performance. Please note that the case studies in this

P75

P90

P99

 0 1 2 3

Read Lat. (ms)

(a) Read Lat CDF
 DBA on N1TI

 0 1 2 3

Read Lat. (ms)

New
Orig.

(b) Read Lat CDF
 DBB on N1TI

 0 0.5 1

Read Lat. (ms)

(c) Read Lat CDF
 SearchEng on N2TI

Figure 6: Adjusting read sizes (§5.1). The CDF graphs show
a potential latency improvement when the I/O stack knows the SSD’s
read-size oddities, e.g., by mitigating the sub-optimal latency (the red
dashed “Orig.” CDF lines) by simply altering the read sizes, resulting
in lower latencies (x-axis) in high percentiles (y-axis), as shown by the
“New” blue lines. DBA, DBB , and SearchEng represent the industrial
SSD traces we use.

section are just initial proofs of concept. We believe that sub-
sequent studies can use the probed information extensively.
Below, we use real industrial block-level SSD traces that
represent a large company’s database (DB), search engine
(SearchEng), and cloud storage (CloudStore) workloads.

5.1 Read Size Alignment
Section §4.1 shows that some data-center SSDs interestingly
exhibit higher latencies when the read sizes fall into certain
ranges. In Figure 1, N1T I delivers higher latencies when read
sizes are not multiples of 4KB, N2T I has inexplicable 4KB-
size ranges (e.g., 17-20, 33-36, and 49-52KB sizes) that will
result in higher latencies, and N1.6TW ’s speed drops when
read sizes are in between 20-260KB.
Conceivably, such behaviors are ill-suited for real user

workloads. For example, in the industrial traces we use,
specifically the database traces, around 65% of the read sizes
are not multiples of 4KB but rather multiples of 512 bytes.
The latency-increasing size range on N1.6TW (20-260KB)
will also be an issue since even page-aligned I/O sizes can
easily fall within this problematic range (e.g., 24KB).

A straightforward rearrangement that higher storage lay-
ers can employ to mitigate this issue is to avoid those prob-
lematic size ranges by adjusting the read sizes. For example,
for N1T I , the OS can increase the read size to the next page-
size boundary (e.g., change a 7KB read to 8KB). Figures 6a-b
show that this very simple approach can speed up two data-
base workloads (DBA and DBB), specifically, 14-31% read
latency improvement at the 90th percentile, and 18-32% and
13-48% at the 95thand 99thpercentiles, respectively.

For the read-size oddities in N2T I , the OS can increase the
read size outside its problematic size ranges (e.g., change a
20KB read to 24KB).We use a search engine trace withmostly
page-aligned I/Os but now make sure the peculiar ranges
are avoided. Figure 6c shows that the latency is improved by

78

SYSTOR ’22, June 13–15, 2022, Haifa, Israel N. Li et al.

 0

 2

 4

 6

 0 1 2 3

R
e

a
d

 L
a

t.
 (

m
s
)

Time (s)

New

(a) Read Lat. Timing
 SearchEng on N2TI

 0

 5

 10

 0 1 2 3

Time (s)

Original

(b) Read Lat. Timing
 CloudStore on T200GM

P75

P90

P99

 0 1 2 3

Latency (ms)

New

(c) Read Lat. CDF
 SearchEng on N2TI

 0 1 2 3

Latency (ms)

Original

(d) Read Lat. CDF
 CloudStore on T200GM

Figure 7: Exploitingwrite buffer knowledge (§5.2). The
top figures show the read latencies (y-axis) across time (x-axis). With
our rate-limiting shim layer the high latency spikes (red dots) now
disappear (blue dots). The bottom figures show the corresponding read
latency CDF of the same experiments (New-vs-Original lines).

14–20% between the 90–99thpercentiles. Other than these,
open questions remain on what to do with N1.6TW where
the under-performing size range is up to 260KB. The root
cause could be factors like buggy firmware that seem more
appropriate for the manufacturer to fix.
The main side-effect of read alignment is that it incurs

more load on the SSD. However, as shown in Figures 1 and 6,
reading more data in aligned requests is better than read-
ing less unaligned data, especially for drives like N1T I that
has significant overheads with unaligned reads. Other side-
effects include cache pollution, read disturbance, etc.

5.2 Exploiting Write Buffer Knowledge
When the internal write buffer is full, an expensive flush is
triggered, causing write latency spikes (§4.3). What we did
not show is that such an expensive flush also causes a ripple
effect to read latencies for two reasons. First, large flushes
send more writes to the NAND cells and make incoming
NAND reads wait behind the longer writes due to the length
of the cell programming time. Second, flushing large amounts
of data will likely trigger concurrent GCs across many chips,
generating more read-write and erase contention compared
to periodically flushing smaller amounts of data.

This begs the question: is there a way to mitigate the nega-
tive impact of full-buffer flush? This is where the knowledge
about the internal write buffering becomes valuable (P8 write
buffer size and P10 flush window). This gray-box informa-
tion can be effectively used by the higher storage layers to

.2

.4

.6

.8

W
ri
te

s
 o

n
-h

o
ld

 (
G

B
)

Workload Progress

(a) Writes on hold - SearchEng on N2TI

.2

.4

.6

W
ri
te

s
 o

n
-h

o
ld

 (
G

B
)

Workload Progress

(b) Writes on hold - CloudStore on T200GM

Figure 8: On-hold data in the rate-limiting layer (§5.2).
A reasonable amount of writes (y-axis) on-hold across time (x-axis).

rate-limit the incoming writes accordingly to gain perfor-
mance but without delaying writes significantly, specifically,
by avoiding a full-buffer flush and allowing the underlying
SSDs to flush gradually at the rate of its internal flush speed.
To demonstrate the potential improvement, we design a

4-step algorithm that can be deployed as a block-level rate-
limiting shim layer. (1)We use Queenie to identify the write
buffer capacity and the internal flush window and then di-
vide these two values to get the average “flush speed,” e.g.,
in N2T I , we identified a 11.5MB buffer with 200ms flush win-
dow, implying a flush speed of 57.5 MB/s (11.5MB/200ms).
(2) The shim layer monitors the incoming write intensity in
a recent time period of configurable length, e.g., 5 MB write
data in a monitored period of 100ms implies a 50 MB/s inten-
sity. (3)We then introduce the “flush urgency” by dividing
this incoming write intensity by the flush speed, indicating
how intensive are the incoming writes with respect to the
internal digest speed. In this example, the flush urgency is
0.87 (50/57.5). (4) If the shim layer observes an urgency less
than 0.5, then it will allow all the incoming writes within
the current 100ms period to enter the SSD. Otherwise, the
incoming writes must be slightly delayed by T ms (e.g., 0.1-
1ms). The value ofT is calculated by a rate-limiting function
that incorporates the proportion of the recent read/write
intensity and the flush urgency.
To evaluate this mechanism, we run the SearchEng and

CloudStore traces onN2T I andT200GM , respectively. Figures
7a-b show our shim layer results in a dramatic shift from the
latency spikes (“Original”) to a much stable latency (“New”)
in both experiments. Figures 7c-d show that our rate-limiter
is able to reduce read latencies by 25-33%, 30-58%, and 64-
82% at the 90th , 95th , and 99th percentiles. We also show
in Figure 8 how much write data the shim layer needs to
hold. As shown, less than 64 MB are on-hold (y-axis) in every
period on average, with the exception of write bursts (near
the end of the time line) which require the shim layer to hold
up to 800 MB of writes for 100 seconds.

79

Fantastic SSD Internals and How to Learn and Use Them SYSTOR ’22, June 13–15, 2022, Haifa, Israel

The main limitation of the shim layer is that rate-limiting
can only be applied to writes not called under application-
level sync() since delaying writes can reduce data durability
enforced by such explicit sync. More exploration on the
design space including requirements for data persistence
and durability is open for future work.

5.3 Other Properties
Kelpie reveals many important SSD performance character-
istics, but we acknowledge that some of them may be hard to
leverage outside the FTL. For example, properties P1-P4 could
be leveraged to “pinpoint” user data onto low/high pages
(i.e., a sequential write workload issued to a freshly erased
drive would be striped into chunks and be spread onto flash
chips with certain page layouts as probed by P2), but would
be extremely difficult to keep track of the mapping once GC
kicks in. Findings in §4.6 hinted that heavier load can even
reduce single I/O latency on N2T I (Figure 5). To leverage
this, single user reads can be batched with dummy reads to
improve latency, but such a radical scheme requires precise
I/O control, might introduce non-trivial side-effects, and may
not be generally applicable. Property P9 and findings in §4.4
reveal that for some drives, writes can be serialized when
the device queue is empty, which seems a problem more
appropriate for the manufacturers to fix than an opportunity
for the users to leverage. We hope that our work can spur
more future exploration.

6 KELPIE (ALL FINDINGS)
This last section describes all of our findings. Kelpie’s raw
data set is 10 GB in size, which contains all results and graphs
of running Queenie on the 21 SSD models. We release part
of this data set that we can [3]. We now discuss each of the
properties probed. Table 4.X denotes column X of Table 4.
P1 Page size. 4KB is a general standard that applies to all

non-SLC drives (except A800GP). In contrast, SLC drives (ex-
ceptT200GM) mostly use a larger page size such as 8 or 16KB.
Also, in general, recent drives tend to employ a 4KB page
size. We also observed some models (e.g., N1.6T S , N128GS
and A960GPS) having a dual-plane structure where two par-
allel pages are mapped to two adjacent planes of the same
chip, hence can be simultaneously accessed in parallel. Here,
we keep the original page size but recommend to treat the
two pages as a whole entity for further probing.
P2 Page type. We categorize the SSDs into 3 classifica-

tions: SLC (with low pages only), MLC (low and high), and
TLC (low, medium, and high). Low/medium/high means
that the page is mapped to low/medium/high bits of the
MLC/TLC cells. Based on the latencies observed, we also
speculate the page-to-cell mapping pattern. For example,
“4L 4H” means that the first four pages of each NAND chip

are mapped to low pages and the next four to high pages
(hence higher latency), and this pattern repeats in subse-
quent pages. Table 4.P2 shows that MLC is the most popu-
lar type in our set. For MLC models, we further find three
patterns of page-to-cell mappings: 1L 1H, 4L 2H2, and 4L 4H,
which are more orderly patterns than non-commodity SSDs
such as OpenChannel SSDs that exhibit a complex pattern of
6L 1H 2L 1H 2L 2H...1H 2L 1H [1] (where “...” repeats the 2L 2H
pattern), as probed by a prior work [18, 4.3]. For TLC drives
(N2T I , N1T I , and A1.6T P), the page layout of L/M/H patterns
are too long to be put in the table. These drives employ a
complex “composite” mapping, e.g., on N2T I , the entire 0-
128KB range is mapped to L pages, while the 128KB-256KB
range follows an 2M 2H pattern. Finally, SLC is only seen in
the small-capacity, older non-NVMe SSDs (< 200 GB).
P3 Chunk size. For this property, Table 4.P3 uses KB (in-

stead of pages) as the unit of chunk size. For example, N2T I ’s
64KB chunk size implies that the drive maps 16 consecu-
tive 4KB pages into a chunk. Our findings show that all SLC
drives use one-page chunks. For non-SLC ones, every ven-
dor has its own configuration. For example, vendor S uses
one-page chunks, vendor P configures 4-page chunks, and
vendor I organizes large chunks of 16-64 pages. Here, the
chunk size can also reflects the difference in FTL mapping
granularity, e.g., drives with one-page chunks are more likely
to use a page-level FTL mapping. As a small note, T64GS’s
chunk size is marked with a “—” as the drive has only 1 chip.
P4 Stripe width. As expected, SSDs with larger capacity

tend to have larger stripe widths of up to 128-256 of parallel
chunks (chips or planes) within a stripe, showing a massive
parallelism for absorbing intensive workloads. In contrast,
smaller drives usually have a stripe width of ≤64 (except
T200GM and A200GH). Another note is that many numbers
in Table 4.P4 are not in the power of 2, includingN1.6T S (124),
N2T I (186), N1.6T I (122), T64G I (20), A1.6T P (247), A960GPT
(200), N1.6TW (124), A800GG (30), and A200GH (253). This
may indicate a couple of design choices such as parity spaces
in RAIN [42, 50] or reserved/back-up chips that are not ob-
servable externally. Finally, for TLC drive N1T I , we cannot
conclusively determine the stripe width due to its complex
composite mapping (“?” in Table 4).
P5 Channel/chip layout. We found that larger drives

prefer a “wide” setting – more channels but fewer chips
per channel. For example, N1.6T S has a 16×8 (#channels ×
#chips/channel) layout which is efficient for channel paral-
lelization but at the same time reduces the multi-chip band-
width contention on each channel, and A960GPS employs a
32×2 one. For smaller drives, the setting can vary. There is a

2Models with 4L 2H actually have a “3 bit” structure (e.g., the 3D NAND
technology). Kelpie’s results show that, however, two of the bits exhibit
very similar latency levels and thus we treat both bits as low pages.

80

SYSTOR ’22, June 13–15, 2022, Haifa, Israel N. Li et al.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
PgSz PgType ChukSz StripeW Layout ReadC RBuf WBuf WrPra FluWin

N1.6T S 4K MLC4L 2H 4K 124 16×8 ✓ — 40.25Mp 8 50ms
N500GS 4K MLC4L 2H 4K 64 4×16 ✓ — 2M 1 4ms
N128GS 4K MLC4L 2H 4K 32 16×2 ✓ — 1M 1 2ms
N2T I 4K TLC 64K 186 12×16 ✗ — 11.5M 4 200ms
N1.6T I 4K MLC1L 1H 128K 122 32×4 ✓ — 11.5M 2 10ms
N1T I 4K TLC 256K ? ? ✗ — 11Mp 2 3ms
N1.6TW 4K MLC1L 1H 64K 124 16×8 ✗ — NB+P 4✗ —
N1.6TM 4K MLC1L 1H 128K 128 16×8 ✓ — 15M 4 ∞

A1.6T P 4K TLC 16K 247 16×16 ✓ — NB+P 4✗ —
A960GPS 4K MLC4L 4H 4K 64 32×2 ✓ — NB+P 4✗ —
A960GPT 4K MLC1L 1H 16K 200 20×10 ✓ — 11.5Mp | 406M 4✗ 200ms | 2.5s
A800GP 8K MLC1L 1H 32K 128 16×8 ✓ 16M 2M | 512M 4 ∞

A800GG 4K MLC1L 1H 64K 30 8×4 ✓ — 3.75M 2 30ms
A200GH 8K SLC 8K 253 16×16 ✓ — 20M | 126.5M† 1 ∞

T480GS 4K MLC4L 4H 4K 16 8×2 ✓ — 2M | 256M 1 10ms | 5s
T200GS 8K SLC 8K 64 8×8 ✓ — 1M 1 35ms
T128GS 4K MLC4L 4H 4K 32 16×2 ✓ — 1M 1 2ms
T100GS 8K SLC 8K 8 8×1 ✓ — 512K 1 40ms
T64GS 16K SLC — 1 1×1 ✓ — 4M 2 ∞

T64G I 4K SLC 4K 20 10×2 ✓ — 10Mp | 810M 1 300ms | ∞
T200GM 4K SLC 4K 128 8×16 ✓ — 64M 1 1s

Table 4: All findings in Kelpie (§6). Every P column is described in the corresponding subsection of §6. In the first column, SSD models
are denoted with the protocol (NVMe, SAS, or SATA), size in GB, and the vendor code (S , I ,W ,M , P , G, and H). For example, “N1.6T S” is a
1.6TB NVMe drive from vendor S . We do not reveal the full names of the vendors. Other notes: In some columns, for brevity we omit “B” (bytes),
hence “K/M” means “KB/MB.” “—” means not applicable. “?” implies unsuccessful probing. For other specific labels in every column (such as ✓, ✗,
p, NB, P, †, |, ∞), please consult the corresponding subsection in §6.

“wide” setting similar as above (the 128GBN128GS with 16×2)
and a “deep” setting (the 500GB N500GS with 4×16); the deep
setting is prone to many-chip bandwidth contention on ev-
ery channel. We also see two drives with non-power-of-2
#channels:T64G I (10×2) and A960GPT (20×10). For N1T I , the
layout is labeled “?” in Table 4 due to the same reason – the
composite mapping issue. We found an interesting anomaly
in drive N1.6T S where the I/Os to separate channels seem to
be contending with one another. Upon further investigation,
we revealed a channel “grouping,” where the 16 channels on
N1.6T S are evenly divided into 4 pools, and I/Os to the same
pool will contend with one another (with an overhead of
10µs) even if the I/Os target different channels in the pool.
This contradicts the traditional view of channel parallelism.
The root cause remains unknown.

P6 Read performance consistency. As discussed in Sec-
tion 4.1, 3 enterprise-level SSDs (N2T I , N1T I and N1.6TW)
exhibit degraded performance under certain read sizes (la-
beled as ✗ in Table 4.P6). It could be a fact that applications
must live with or a bug/defect inside the SSD. With the for-
mer, OS/applications can take remedies such as altering the
read sizes (§5.1), but this requires a preliminary probing cost
to determine whether the SSDs have this problem. If this is a
bug/defect, then SSD vendors might want to adopt this kind
of test from Queenie to their device quality tests.

P7 Read buffer capacity: Our results show that read
buffers are becoming extinct in modern SSDs (almost all “—”
in Table 4.P7), with the exception of one SAS drive A800GP
which has a 16MB read buffer. This phenomenon can be
attributed to the increasing speed of NAND and the larger
DRAM caches in higher storage layers that make internal
read cache obsolete. However, for SATA/SAS drives with
higher read latencies (e.g., hundreds of µs), a read buffer can
still be beneficial (see §4.5).
P8 Write buffer capacity. (a) The first trend observed

is that write buffering is still prevalent but new drives only
provision a small buffer. TB-scale drives (e.g., N1.6T S , N2T I ,
N1.6T I , N1T I , and N1.6TM) use only a ≤64MB buffer, per-
haps for lower cost and because a small buffer forces fre-
quent small flushes, more favorable than large flushes that
can cause long blocking (§4.2 and §5.2) and trigger large GCs.
(b) Another trend we see is 2-level buffering (§4.2), found in
5 drives labeled with a pair of first and second level sizes in
Table 4.P8. For example,A800GP ’s “2M | 512M” implies a two-
level buffer with 2MB and 512MB for the first and second
levels, respectively. In one drive, A200GH , the second-level
write has two policies (marked with † in the table): flush
either after a threshold of 126.5MB or 1280 I/Os of writes
has been exceeded, where an “I/O” can be of any size. (c)
We found that 4 drives (N1.6T S , N1T I , T64G I , and A960GPT)

81

Fantastic SSD Internals and How to Learn and Use Them SYSTOR ’22, June 13–15, 2022, Haifa, Israel

can choose to flush their buffers partially even when they
are not idle. For example, under sequential writes, we see
N1.6T S constantly flushes 5.75MB of data out of its 40.25MB
full buffer capacity, N1T I 3MB out of 11MB, T64G I 4MB out
of 10MB, andA960GPT 7.5MB out of 11.5MB, labeled with “p”
in Table 4.P8. For SSDs, periodic partial flushes are a double-
edged sword: on the one hand they tone down the blocking
impact, on the other hand they can increase write amplifi-
cation (e.g., new overwrites to the same LPNs just recently
flushed). (d) Finally, we observed 3 drives (A1.6T P , A960GPS ,
and N1.6TW) that rarely showwrite latency spikes even with
a full write bandwidth experiment. Our assumption is that
these drives perform partial flushes and are able to optimize
them without blocking incoming I/Os. In such an optimized
design, we cannot conclusively probe their write buffer ca-
pacities and mark them with “NB + P” (non-blocking and
partial) in Table 4.P8.
P9 Write parallelism. Although many SSDs have a high

stripe width (P4) to support high read parallelism, this is
not the case for write parallelism. For example, N1.6T S , an
enterprise-level drive that is able to handle 124 concurrent
chunk reads, can only allow 8 concurrent writes. Indeed, 8
concurrent writes is the highest write parallelism that we
observe, while others only reach 2 or 4 as shown in Table
4.P9. However, we caution that read and write parallelism are
not directly comparable, mainly because read I/Os fetch data
from the NAND (with the absence of internal read cache)
while write I/Os are absorbed by the internal RAM. As pre-
sented earlier in Section 4.4, we found anomalies where 4
drives (A960GPT , A960GPS , A1.6T P , and N1.6TW) exhibit “se-
rialized” concurrent writes when the I/Os are inserted to the
device queue without any pending writes. These anomalies
are labeled with “✗” in Table 4.P9.
P10 Internal flush window. (a) Section 5.2 successfully

demonstrates that probing the internal flush speed can be use-
ful for rate-limiting optimizations. Flush speed is a function
of buffer size (P8) divided by the “flush window” (P10). In ear-
lier experiments in Figure 3 of Section 4.3, the flush window
is essentially equal to how much time the OS/user should let
the device remain idle to prevent write latency spikes. This
window value is shown in Table 4.P10 (e.g., mostly around
2 to 300ms). (b) The ∞ label in Table 4.P10 indicates the
worst-case scenario. For 5 devices (N1.6TM ,A800GP ,A200GH ,
T64GS , andT64G I), somewrites will experience latency spikes
regardless of the length of the idle period. This basically im-
plies that the write flush is never triggered unless the space
threshold (e.g., 90% full) has been reached. (c)We also found
that SSDs from the same vendor have different strategies.
N1T I , N1.6T I , and N2T I are three TB-scale drives from the
same vendor I with similar buffer sizes but use dramatically
different amount of times to clean their buffers; N2T I does
so lazily within a 200ms idle window, N1.6T I requires only

10ms, while N1T I is very aggressive and flushes within 3ms.
(d) For drives with two-level buffering, likewise, we use a
pair of first and second level time windows, which shows
that the drives apply different window policies for the two
levels. For example, T480GS’s “10ms | 5s” window value im-
plies that it aggressively flushes the first level buffer in 10ms
but only empties the second level buffer lazily in 5s. (e) Fi-
nally, “—” in Table 4.P10 highlights that the corresponding
devices (N1.6TW , A960GPS , and A1.6T P) perform the opti-
mized non-blocking, partial flushes discussed above. Here,
we cannot probe the flush window value.

7 VALIDATION AND CONCLUSION
To validate the probing methods and the analysis results, one
direct approach is via confirmation from the SSD vendors.
We contacted three major vendors: two were unwilling to co-
operate due to the sensitive proprietary nature of these black-
box SSDs; one vendor was willing to help, but with strict
limitations that make the process extremely slow. We were
given only one chance to verify with a simple “right/wrong”
feedback with no room for further discussion (because again
it is sensitive information). This makes troubleshooting hard:
a “wrong” answer could be due to misunderstanding of the
properties (i.e., the vendor may have different names and in-
terpretations of these properties) or inaccurate probing meth-
ods. After six months, we have only verified one property for
three of the SSDs, due to these communication limitations.

Because this method is not scalable, we pursued a different
method: we used our (old) open-channel SSD [1] and were
able to verify P1, P3, and P4 before it became erratic. We
recently moved to SSD emulators such as FEMU [35] and
were able to verify P8 at the time of writing.

Overall, our findings should be treated as empirically-driven,
user-observed conjectures, as the real truth is only known to the
vendors. Nevertheless, we believe this paper makes strong
contributions: a comprehensive set of SSD probing tech-
niques that learn black-box information, many interesting
forms of deep findings, and case studies that show how the
I/O stack can use the learned knowledge.

ACKNOWLEDGMENTS
We thank Gala Yadgar, our shepherd, and the anonymous
reviewers for their tremendous feedback and comments.
We also thank Anirudh Badam and Abhijeet Gole for their
helpful discussions and comments on this paper. This mate-
rial was supported by funding from NSF (grant Nos. CNS-
1526304, CNS-1405959, CCF-2028427, and CCF-2119184) as
well as generous donations from Facebook Faculty Research
Award, Google Faculty Research Award, NetApp Faculty
Fellowship, and CERES Center for Unstoppable Computing.

82

SYSTOR ’22, June 13–15, 2022, Haifa, Israel N. Li et al.

REFERENCES
[1] 2018. Open-Channel Solid State Drives Specification.

http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf.
[2] 2019. SOLID STATE DRIVE (SSD) MARKET - GROWTH, TRENDS,

AND FORECAST (2019 - 2024).
https://www.mordorintelligence.com/industry-reports/solid-state-
drive-market.

[3] 2022. Queenie GitHub Homepage.
https://github.com/ucare-uchicago/Queenie.

[4] Abutalib Aghayev and Peter Desnoyers. 2015. Skylight-A Window on
Shingled Disk Operation. In Proceedings of the 13th USENIX
Symposium on File and Storage Technologies (FAST).

[5] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,
Mark Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for SSD
Performance. In Proceedings of the USENIX Annual Technical
Conference (ATC).

[6] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In
Proceedings of the 2021 USENIX Annual Technical Conference (ATC).

[7] Matias Bjørling, Javier González, and Philippe Bonnet. 2017.
LightNVM: The Linux Open-Channel SSD Subsystem. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies (Santa
clara, CA, USA) (FAST’17). USENIX Association, USA, 359–373.

[8] Simona Boboila and Peter Desnoyers. 2010. Write Endurance in Flash
Drives: Measurements and Analysis. In Proceedings of the 8th USENIX
Symposium on File and Storage Technologies (FAST).

[9] Simona Boboila and Peter Desnoyers. 2011. Performance Models of
Flash-Based Solid-State Drives for Real Workloads. In Proceedings of
the 2011 IEEE 27th Symposium on Mass Storage Systems and
Technologies (MSST ’11). IEEE Computer Society, USA, 1–6.

[10] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean Hildebrand, and
Erez Zadok. 2017. On the Performance Variation in Modern Storage
Stacks. In Proceedings of the 15th Usenix Conference on File and Storage
Technologies (Santa clara, CA, USA) (FAST’17). USENIX Association,
USA, 329–343.

[11] Li-Pin Chang. 2008. Hybrid Solid-State Disks: Combining
Heterogeneous NAND Flash in Large SSDs. In Proceedings of the 2008
Asia and South Pacific Design Automation Conference (Seoul, Korea)
(ASP-DAC ’08). IEEE Computer Society Press, Washington, DC, USA,
428–433.

[12] Feng Chen, Rubao Lee, and Xiaodong Zhang. 2011. Essential Roles of
Exploiting Internal Parallelism of Flash Memory Based Solid State
Drives in High-speed Data Processing. In Proceedings of the 17th
International Symposium on High Performance Computer Architecture
(HPCA-17).

[13] John Colgrove, John D. Davis, John Hayes, Ethan L. Miller, Cary
Sandvig, Russell Sears, Ari Tamches, Neil Vachharajani, and Feng
Wang. 2015. Purity: Building Fast, Highly-Available Enterprise Flash
Storage from Commodity Components. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data
(SIGMOD).

[14] Timothy E. Denehy, John Bent, Florentina I. Popovici, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2004. Deconstructing
Storage Arrays. In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS XI).

[15] Peter Desnoyers. 2014. Analytic Models of SSD Write Performance. In
ACM Transactions on Storage (TOS).

[16] Laura M. Grupp, John D. Davis, and Steven Swanson. 2013. The Harey
Tortoise: Managing Heterogeneous Write Performance in SSDs. In

Proceedings of the 2013 USENIX Annual Technical Conference (ATC).
[17] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang.

2021. ZNS+: Advanced Zoned Namespace Interface for Supporting
In-Storage Zone Compaction. In Proceedings of the 15th Symposium on
Operating Systems Design and Implementation (OSDI).

[18] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha,
Riza O. Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S.
Gunawi. 2017. MittOS: Supporting Millisecond Tail Tolerance with
Fast Rejecting SLO-Aware OS Interface. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles (SOSP).

[19] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and Haryadi S. Gunawi.
2016. The Tail at Store: A Revelation from Millions of Hours of Disk
and SSD Deployments. In Proceedings of the 14th Usenix Conference on
File and Storage Technologies (Santa Clara, CA) (FAST’16). USENIX
Association, USA, 263–276.

[20] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S. Gunawi. 2020. LinnOS:
Predictability on Unpredictable Flash Storage with a Light Neural
Network. In Proceedings of the 14th Symposium on Operating Systems
Design and Implementation (OSDI).

[21] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2017. The Unwritten Contract of Solid State Drives.
In Proceedings of the 2017 EuroSys Conference (EuroSys).

[22] Seongcheol Hong and Dongkun Shin. 2010. NAND Flash-Based Disk
Cache Using SLC/MLC Combined Flash Memory. In 2010 International
Workshop on Storage Network Architecture and Parallel I/Os. 21–30.

[23] Xiao-Yu Hu, Robert Haas, and Eleftheriou Evangelos. 2011. Container
Marking: Combining Data Placement, Garbage Collection and Wear
Leveling for Flash. In Proceedings of the IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS).

[24] H. Howie Huang, Shan Li, Alex Szalay, and Andreas Terzis. 2011.
Performance Modeling and Analysis of Flash-Based Storage Devices.
In Proceedings of the 2011 IEEE 27th Symposium on Mass Storage
Systems and Technologies (MSST ’11). IEEE Computer Society, USA,
1–11.

[25] Xavier Jimenez, David Novo, and Paolo Ienne. 2014. Wear Unleveling:
Improving NAND Flash Lifetime by Balancing Page Endurance. In
Proceedings of the 12th USENIX Symposium on File and Storage
Technologies (FAST).

[26] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting Widely
Held SSD Expectations and Rethinking System-Level Implications. In
Proceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems (Pittsburgh, PA, USA)
(SIGMETRICS ’13). Association for Computing Machinery, New York,
NY, USA, 203–216.

[27] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, , and Sangyeun Cho.
2014. The Multi-streamed Solid-State Drive. In the 6th Workshop on
Hot Topics in Storage and File Systems (HotStorage).

[28] Jihun Kim, Joonsung Kim, Pyeongsu Park, Jong Kim, and Jangwoo
Kim. 2018. SSD Performance Modeling Using Bottleneck Analysis.
IEEE Comput. Archit. Lett. 17, 1 (January 2018), 80–83.
https://doi.org/10.1109/LCA.2017.2779122

[29] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo
Min, and Sam H. Noh. 2019. Alleviating Garbage Collection
Interference Through Spatial Separation in All Flash Arrays. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC).

[30] Joonsung Kim, Pyeongsu Park, Jaehyung Ahn, Jihun Kim, Jong Kim,
and Jangwoo Kim. 2018. SSDcheck: Timely and Accurate Prediction
of Irregular Behaviors in Black-Box SSDs. In 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-51).

83

http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf
https://www.mordorintelligence.com/industry-reports/solid-state-drive-market
https://www.mordorintelligence.com/industry-reports/solid-state-drive-market
https://github.com/ucare-uchicago/Queenie
https://doi.org/10.1109/LCA.2017.2779122

Fantastic SSD Internals and How to Learn and Use Them SYSTOR ’22, June 13–15, 2022, Haifa, Israel

[31] Jaehong Kim, Sangwon Seo, Dawoon Jung, Jin-Soo Kim, and Jaehyuk
Huh. 2011. Parameter-Aware I/O Management for Solid State Disks
(SSDs). In IEEE Transactions on Computers (TC).

[32] Jae-Hong Kim, Dawoon Jung, Jin-Soo Kim, and Jaehyuk Huh. 2009. A
Methodology for Extracting Performance Parameters in Solid State
Disks (SSDs). In Proceedings of the IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS).

[33] Pradeep Kumar and H. Howie Huang. 2017. Falcon: Scaling IO
Performance in Multi-SSD Volumes. In Proceedings of the 2017 USENIX
Annual Technical Conference (ATC).

[34] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and
Arvind Arvind. 2016. Application-Managed Flash. In Proceedings of
the 14th Usenix Conference on File and Storage Technologies (Santa
Clara, CA) (FAST’16). USENIX Association, USA, 339–353.

[35] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan
Sundararaman, Matias Bjørling, and Haryadi S. Gunawi. 2018. The
CASE of FEMU: Cheap, Accurate, Scalable and Extensible Flash
Emulator. In Proceedings of the 16th USENIX Symposium on File and
Storage Technologies (FAST).

[36] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, Gregory R.
Ganger, and Haryadi S. Gunawi. 2021. IODA: A Host/Device
Co-Design for Strong Predictability Contract on Modern Flash
Storage. In Proceedings of the 28th ACM Symposium on Operating
Systems Principles (SOSP).

[37] Shan Li and H. Howie Huang. 2010. Black-Box Performance Modeling
for Solid-State Drives. In Proceedings of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS).

[38] Yongkun Li, Patrick P. C. Lee, and John C. S. Lui. 2011. Stochastic
Modeling of Large-Scale Solid-State Storage Systems: Analysis,
Design Tradeoffs and Optimization. In Proceedings of the 2011 ACM
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS).

[39] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis.
2022. RAIL: Predictable, Low Tail Latency for NVMe Flash. ACM
Trans. Storage 18, 1, Article 5 (jan 2022), 21 pages.
https://doi.org/10.1145/3465406

[40] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. 2014. SDF: Software-Defined Flash for Web-Scale
Internet Storage System. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[41] Torben Kling Petersen and John Bent. 2017. Hybrid Flash Arrays for
HPC Storage Systems: An Alternative to Burst Buffers. In IEEE High
Performance Extreme Computing Conference (HPEC).

[42] Sergey Platonov. 2018. RAIN: Reinvention of RAID for the World of
NVMe. In Flash Memory Summit.

[43] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and
Gregory R. Ganger. 2002. Track-Aligned Extents: Matching Access
Patterns to Disk Drive Characteristics. In Proceedings of the 1st
USENIX Symposium on File and Storage Technologies (FAST).

[44] Benny Van Houdt. 2013. A Mean Field Model for a Class of Garbage
Collection Algorithms in Flash-Based Solid State Drives. In
Proceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems (Pittsburgh, PA, USA)
(SIGMETRICS ’13). Association for Computing Machinery, New York,
NY, USA, 191–202.

[45] Matthieu Viry. [n.d.]. Compute Natural Breaks in Python
(Fisher-Jenks algorithm). https://github.com/mthh/jenkspy.

[46] Brent Welch and Geoffrey Noer. 2013. Optimizing a Hybrid SSD/HDD
HPC Storage System Based on File Size Distributions. In Proceedings

of the 29th IEEE Symposium on Massive Storage Systems and
Technologies (MSST).

[47] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John
Wilkes. 1995. On Line Extraction of SCSI Disk Drive Parameters. In
Proceedings of the 1995 ACM Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS).

[48] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2019.
Towards an Unwritten Contract of Intel Optane SSD. In the 11th
Workshop on Hot Topics in Storage and File Systems (HotStorage).

[49] Suzhen Wu, Yanping Lin, Bo Mao, and Hong Jiang. 2016. Garbage
Collection Aware Cache Management with Improved Performance for
Flash-based SSDs. In Proceedings of the 30th International Conference
on Supercomputing (ICS).

[50] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong,
Swaminathan Sundararaman, Andrew A. Chien, and Haryadi S.
Gunawi. 2017. Tiny-Tail Flash: Near-Perfect Elimination of Garbage
Collection Tail Latencies in NAND SSDs. In 15th USENIX Conference
on File and Storage Technologies (FAST 17). USENIX Association, Santa
Clara, CA, 15–28.

[51] Kamen Yotov, Keshav Pingali, and Paul Stodghill. 2005. Automatic
Measurement of Memory Hierarchy Parameters. In Proceedings of the
2005 ACM Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS).

[52] Jianquan Zhang, Dan Feng, Jianlin Gao, Wei Tong, Jingning Liu, Yu
Hua, Yang Gao, Caihua Fang, Wen Xia, Feiling Fu, and Yaqing Li. 2016.
Application-Aware and Software-Defined SSD Scheme for Tencent
Large-Scale Storage System. In Proceedings of 22nd IEEE International
Conference on Parallel and Distributed Systems (ICPADS).

[53] Aviad Zuck, Philipp Guhring, Tao Zhang, Donald E. Porter, and Dan
Tsafrir. 2019. Why and How to Increase SSD Performance
Transparency. In The 17th Workshop on Hot Topics in Operating
Systems (HotOS XVII).

84

https://doi.org/10.1145/3465406
https://github.com/mthh/jenkspy

