MittOS: Supporting Millisecond Talil

rus Gewsrsiiy or - Jolerance with Fast Rejecting
C - A AW O S LO _ AW a r e O S Int e rf a C e ucare.cs.uchicago.edu
Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, ‘:;.‘

Center for Unstoppable Computing

ceres.cs.uchicago.edu

Riza O. Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gunawi

No Millisecond TT (Tail Tolerance) Ineffectiveness of Current TT Methods

Nowadays low and stable latency is a critical key to success of many Wait-then-speculate (e.g. Hadoop MapReduce)

services. Unfortunately, most NoSQL systems serve requests with * Focuses on coarse-grained jobs (tens to hundreds of seconds)
millisecond-level SLOs, but none is tail tolerant at this granularity. e Reacts too late for millisecond-level tails
Def. TO Fail- He(!ged/ Cloning (e.g. Riak)
TT Val. over Clone Tied
Cassanda . TR v . * Doubles/Triples IO intensity (cloning)
Gruclibase 52 75 » o ” Has to implement complicated revocation logics (tied requests)
HBase % 60s 4 v Must wait before retrying slow requests (hedged requests)
MongoDB X 30s X X X o
Riak . 10s X » u; Snltchlng (e.g. Cassandrfa)
3 AT S St By A W 5 May pick wrong metrics

* Does not work when noise is bursty

Table: Tail tolerance in NoSQL.

MittOS’ Principle & Use-Case

MittOS provides operating system support that helps data-parallel Leveraging MittOS interface is easy and only requires
applications cut millisecond-level tail latencies. applications to add tens of LOC.

* Accurately predicts the latency of an 10 based on white-box
20ms ; /9\ Disk queue

knowledge of resource managements
S
read(..,SLO); &0 i

* Promptly returns EBUSY when 10 SLO cannot be met
* Allows the application to failover to less-busy node without waiting

- ‘®_ __A_Jaii+20msTO?
\
Gt o

| Oms s : if (ret == EBUSY)
. . . // failover
Machine 1 Machine % Machine 3
Figure: M1TTOS Deployment Model Figure: MITTOS use-case illustration

Implementation & Experiment Results

We build MittOS within the storage stack: MittOS’ no-wait approach helps reduce IO completion time up to
* Disk: MittNOOP (noop scheduler) + MittCFQ (CFQ scheduler) 35% compared to existing approaches.

e SSD: MittSSD (Open-Channel SSD)
 Cache: MittCache (OS Cache)

(a) CDF of YCSB get() Latencies on 20-node MongoDB

P99-
MIttSSD = MittCache e
N Hedged Hedged
P95 i ase Base
MittCF Q= P90 r P90 - l ;
rleggec 8 B 4 6 95 2 3
o e Latency (ms) Latency (ms)
P90 l . l
0 10 13 20 30 40 Figure : MITTSSD vs. Hedged. & MITTCACHE vs. Hedged.
Latency (ms)
(b) % Latency Reduction in MittCFQ
s 1 l W I I Future Work
< 60| vs.Hedgedm=m vs. Clone =3 vs. AppTO ==
S 4o -7 _ * Automatic adoption of storage devices via ML/DL techniques
é 0) * |ncorporating settings of certainty/confidence for SLO
T 0 o I) [o _ﬂ— * Providing hints for applications to setup appropriate SLO deadline
Avg P75 P90 P95 P99 Extension of MittOS’ principle to CPU, VM and runtime memory

Figure : MITTCFQ results with EC2 noise. management, SMR drives, etc.

