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No Millisecond TT (Tail Tolerance) Ineffectiveness of Current TT Methods

Nowadays low and stable latency is a critical key to success of many  Wait-then-speculate (e.g. Hadoop MapReduce)

services. Unfortunately, most NoSQL systems serve requests with * Focuses on coarse-grained jobs (tens to hundreds of seconds)
millisecond-level SLOs, but none is tail tolerant at this granularity. e Reacts too late for millisecond-level tails
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* Does not work when noise is bursty

Table: Tail tolerance in NoSQL.

MittOS’ Principle & Use-Case

MittOS provides operating system support that helps data-parallel Leveraging MittOS interface is easy and only requires
applications cut millisecond-level tail latencies. applications to add tens of LOC.
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* Promptly returns EBUSY when 10 SLO cannot be met
* Allows the application to failover to less-busy node without waiting
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Figure: M1TTOS Deployment Model Figure: MITTOS use-case illustration

Implementation & Experiment Results

We build MittOS within the storage stack: MittOS’ no-wait approach helps reduce IO completion time up to
* Disk: MittNOOP (noop scheduler) + MittCFQ (CFQ scheduler) 35% compared to existing approaches.

e SSD: MittSSD (Open-Channel SSD)
 Cache: MittCache (OS Cache)
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Figure : MITTCFQ results with EC2 noise. management, SMR drives, etc.



