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Abstract
Cloud service providers heavily colocate high-priority, latency-

sensitive (LS), and low-priority, best-effort (BE) DNN infer-

ence services on the same GPU to improve resource uti-

lization in data centers. Among the critical shared GPU re-

sources, there has been very limited analysis on the dynamic

allocation of compute units and VRAM bandwidth, mainly

for two reasons: (1) The native GPU resourcemanagement so-

lutions are either hardware-specific, or unable to dynamically

allocate resources to different tenants, or both; (2) NVIDIA

doesn’t expose interfaces for VRAM bandwidth allocation,

and the software stack and VRAM channel architectures are

black-box, both of which limit the software-level resource

management. These drive prior work to design either conser-

vative sharing policies detrimental to throughput, or static

resource partitioning only applicable to a few GPU models.

To bridge this gap, this paper proposes SGDRC, a fully

software-defined dynamic VRAM bandwidth and compute

unit management solution for concurrent DNN inference

services. SGDRC aims at guaranteeing service quality, max-

imizing the overall throughput, and providing general ap-

plicability to NVIDIA GPUs. SGDRC first reveals a general

VRAM channel hash mapping architecture of NVIDIA GPUs

through comprehensive reverse engineering and eliminates

VRAM channel conflicts using software-level cache coloring.

SGDRC applies bimodal tensors and tidal SM masking to

dynamically allocate VRAM bandwidth and compute units,

and guides the allocation of resources based on offline pro-

filing. We evaluate 11 mainstream DNNs with real-world
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workloads on two NVIDIA GPUs. The results show that

compared with the state-of-the-art GPU sharing solutions,

SGDRC achieves the highest SLO attainment rates (99.0% on

average), and improves overall throughput by up to 1.47×
and BE job throughput by up to 2.36×.

CCS Concepts: • Information systems → Computing
platforms; • Computer systems organization→ Cloud
computing.

Keywords: Cloud computing; GPU; Virtualization

1 Introduction
With rapid technological advancements in machine intelli-

gence across various fields such as vision recognition [17, 19]

and natural language processing [10, 38, 45], an increasing

number of industries are deploying large-scale deep neural

network (DNN) inference services in cloud data centers to

support their businesses. The first-class citizens are latency-

sensitive (LS) services, which have high priority and strin-

gent requirements on tail latency (e.g., autonomous driv-

ing [18]). In contrast, other services running in the cloud are

typically throughput-oriented batch jobs served in a best-

effort (BE) manner due to their low priority, such as artificial

intelligence generative tasks [12].

To enhance GPU utilization, it is a common practice to

share GPUs among multiple LS tasks [7, 15, 26, 41, 56] or

between LS and BE tasks [47, 52, 57, 59] using NVIDIA’s

native support [35, 36]. One effective method is to employ

the Multi-Process Service (MPS) [36], which enables the con-

current execution of GPU kernels from different tasks on the

same GPU instance. Additionally, GPUs can be partitioned

into several distinct logical instances with guaranteed and

isolated resources using Multi-Instance GPU (MIG) [35].

Unfortunately, neither MPS nor MIG is perfect. For exam-

ple, MPS statically partitions GPUs at the thread slice level

and cannot isolate VRAM bandwidth, resulting in unman-

aged contention among colocated services. While MIG fully

isolates compute units and VRAM bandwidth, it is available

only in a few flagship GPUs (e.g., A100 and H100) but not

in other low-end GPUs (e.g., Tesla T4), which many IT gi-

ants use to deploy DNNs in order to reduce the total cost of

https://doi.org/10.1145/3710848.3710863
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ownership (TCO) [55]. Besides, its granularity is too coarse

(e.g., up to 7 instances of 10 GiB for A100) and can only

reconfigure the allocation when it is idle. This raises the

question of whether we can develop a widely applicable GPU
sharing scheme that provides strong performance isolation and
dynamic allocation of resources. Indeed, several studies have
explored this issue, as summarized in Fig. 1a∼d:
a) Temporal multiplexing (e.g., TGS [50]) allows only one

DNN to be executed exclusively on the GPU at a time [4, 15,

15, 50] to ensure low latency for LS tasks.

b) Spatial multiplexing (e.g., Reef [16]) uses MPS [9] or

kernel padding [16, 23, 48, 62] to enable concurrent execution

of multiple DNNs on a GPU and maximize throughputs.

c) Interference-awaremultiplexing (e.g., Orion [14]) is based
on spatial multiplexing, which predicts the interference among

colocated tasks and only allows the coexecution of mildly in-

terfering kernels. This ensures the low latency of LS services

while achieving higher throughput for BE tasks compared

to temporal multiplexing.

d) Software-controlled hardware partitioning (i.e., Fractional
GPU, FGPU [23]) eliminates inter-task resource interfer-

ence by statically partitioning the GPU’s compute units and

VRAM channels at the software level (§3.2).

Our characterization with realistic workloads (§3.1) indi-

cates that these approaches cannot achieve both low latency
for LS services and high throughput for BE tasks when they are
colocated. Although hardware partitioning (FGPU [23]) iso-

lates SMs and VRAM channels, it remains impractical for most
GPUs (including newer models) due to its strong assumptions

about the GPU’s VRAM channel mapping function (which

does not hold for most GPUs) and sensitivity to noise intro-

duced by black-box GPU cache policies (§3.2). Additionally,

its cache coloring is not suitable for newer GPU architectures

(§5.2).

To flip the status quo, we propose SGDRC
1
, a novel GPU

sharing solution for concurrent DNN inference generally

applicable to NVIDIA GPUs (Fig. 1e). Our key intuition is

to use software-defined dynamic hardware partitioning to

eliminate scheduling constraints of interference-aware mul-

tiplexing and achieve both responsiveness for LS services

and high overall throughput. To this end, we need to address

three fundamental challenges:

1) NVIDIA’s GPU architecture is opaque, and its VRAM

channel mapping is still publicly unknown.

2) NVIDIA doesn’t provide any interfaces to control VRAM

bandwidth assignment, and its proprietary library and dri-

ver disallow partitioning VRAM bandwidth among different

tasks.

3) NVIDIA GPU’s VRAM channel mapping is frozen in the

hardware, making it difficult to dynamically allocate VRAM

bandwidth to tasks during the GPU’s runtime.

1
SGDRC stands for Software-defined GPU Dynamic Resource Control, the

GPU equivalent of Intel CPU’s Dynamic Resource Control (DRC) [58].

SGDRC resolves these challenges by:

1) Conducting, to the best of our knowledge, the first full-

spectrum reverse engineering, unearthing the general VRAM
channel structure of black-box NVIDIA GPUs (§5.1∼5.2).

2) Leveraging DNNs to learn VRAM channel hash mapping
without any assumptions on hash function structure, which

is tolerant of the GPU cache noise (§5.3).

3) Reducing inter-task VRAM channel conflicts with low-
overhead, fine-grained page coloring at the software level,
which is generally applicable to NVIDIA GPUs (§6).

4) Dynamically allocating VRAM bandwidth and compute
units during runtime (§7).

Our experiments demonstrate that, compared with state-

of-the-art GPU sharing solutions, SGDRC achieves the high-

est SLO attainment rates (99.0% on average), and improves

overall throughput by up to 1.47× and BE job throughput by

up to 2.36×.

2 Background
2.1 A Primer on NVIDIA GPUs and Software Stack
Based on NVIDIA’s official documents [32, 37] and previous

work on reverse-engineering GPUs [1, 11, 23, 30, 60], Fig. 2

illustrates NVIDIA’s GPU architecture and software stack:

Software stack. User-space programs interact with NVIDIA

GPUs by calling APIs (e.g., cuLaunchKernel) from their

closed-source libraries (e.g., CUDA). These libraries forward

the requests to NVIDIA’s driver modules. Most modules

are closed-source, while a few are open-source, including

nvidia-uvm, a module that manages the GPU’s unified mem-

ory.

Compute units. A Streaming Multiprocessor (SM, ❶) is

the basic compute unit, containing multiple SM partitions
(SMP). A Texture Processing Cluster (TPC, ❷) contains two

SMs. Threads from kernels (GPU functions) are scheduled to

different SMPs.
Memory hierarchy. NVIDIA GPUs’ memory is divided

into three levels [30]: 1) L1 data cache and shared memory

(private to each SM); 2) L2 unified cache (shared by all SMs);

and 3) video RAM (VRAM, shared by all SMs). VRAM is

composed of multiple GDDR units. Each unit has a set of

Miss Status Holding Registers (MSHRs) and multiple DRAM

banks and maps to a set of L2 cache (referred to as a VRAM
channel [32], ❸). Within the Crossbar (❹), there is a direct

bus between each SM and each L2 cache controller. This

implies that the latency for any SM to access the L2 cache

on any channel is the same, making NVIDIA GPU a Uniform

Memory Access (UMA) architecture. Each physical address

is mapped to a VRAM channel, an L2 cacheline, and a DRAM

bank row through black-box hash mapping functions im-

plemented in gate circuits [23]. These functions ensure that

the physical VRAM addresses are evenly mapped to each

VRAM channel and thus maximize the VRAM throughput

when kernels read from / write to the global memory.
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Figure 1. Illustration of existing GPU sharing schemes and SGDRC. The gray (or colored) rectangles represent GPU resources

(or DNN kernels). The width (or height) of a colored rectangle represents the runtime (or resource utilization) of a DNN kernel.
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(a) Intra-SM con�icts (b) Inter-SM con�icts

Figure 3. Resource contention in GPU sharing. We measure

the p99 latency of the victim task to quantify the interference.

L1C (or Comp.) in (a) denotes the introduction of L1 cache
(or compute unit) interference. Testbed: RTX A2000.

2.2 Resource Contention in GPU Sharing
Colocating multiple DNN workloads on the same GPU leads

to contention for the following resources:

Intra-SM conflicts. Kernel block threads from different

tenants running on the same SM could contend for intra-SM

resources. For instance, when all Floating-Point Units (FPUs)

are actively processing, additional floating-point operations

experience delays, hindering the progress of other kernels. In

addition to computational units, warps (groups of threads) on

the same SM also compete for SM-local memory resources,

such as the L1 cache, shared memory, and instruction cache.

We colocate one victim task with multiple interference tasks

and concurrently execute them on the RTX A2000 to quan-

tify the interference. The victim task and the compute unit

interference tasks perform matrix multiplications. The L1

cache interference tasks repeatedly populate the L1 data

cache. All tasks share SMs to contend for intra-SM resources.

The results are presented in Fig. 3(a).

Inter-SM contention. As described in §2.1, different SMs

share all VRAM channels. Consequently, physical addresses

accessed by threads in different SMs may map to the same

(a) Temporal multiplexing (b) Spatial multiplexing

Figure 4. Limitations of GPU temporal and spatial multiplex-

ing. (a) Temporal multiplexing [15, 50] cannot achieve high

throughput for BE tasks; (b) Spatial multiplexing [62] can

achieve high throughput, but at the cost of sacrificing the LS

task’s SLO attainment rate (defined in §9.2) due to resource

contention; LS workload: MobileNet V3; BE workload:
DenseNet161; Testbed: RTX A2000.

VRAM channel. Simultaneous access to these addresses leads

to frequent contention for the limited L2 cache space and

MSHRs. Additionally, since a DRAM bank can only serve

one request in a clock cycle, memory requests from multiple

threads to the same DRAM bank must be processed sequen-

tially [23], increasing VRAM access latency. To demonstrate

these conflicts, we concurrently execute the victim task and

interference tasks on the RTX A2000. The victim task per-

formsmatrix multiplications, while interference tasks contin-

uously read from and write to VRAM addresses to create L2

cachemisses. SMs are divided into different tasks to eliminate

intra-SM contention using NVIDIA MPS [36]. The results

are presented in Fig. 3b.

3 Motivation and Related Work
3.1 Limitations of GPU Multiplexing Solutions
Temporal multiplexing eliminates contention in shared GPU

resources and meets the low-latency requirements of LS ser-

vices [4, 64], but cannot fully harness the GPU’s resources, as

BE tasks may be starved due to frequent LS task preemption,

leading to undesirable throughput [16] (Fig. 4a).

Spatial multiplexing leads to intra- and inter-SM conflicts

when co-executing LS and BE kernels (Fig. 4b) [53].

Compared to temporal multiplexing and spatial multi-

plexing, interference-aware multiplexing (e.g., Orion [14])

achieves a better trade-off between low latency of LS ser-

vices and high throughput. However, it is not perfect in all

scenarios. We take Orion [14] as an example. As the load
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: SM : Runtime: Res.

(a) (b)

Figure 5. Interference-aware multiplexing is not panacea.

(a) As the load increases, the LS service maintains high SLO

attainment rate. However, the throughput of BE task substan-

tially declines. LS Workload:MobileNet V3; BEWorkload:
DenseNet161; Testbed: RTX A2000. (b) Analysis of sched-
uling constraints of BE tasks (I ∼ K in Tab. 3, running on

RTX A2000). Res.: Constraints on SM or VRAM bandwidth

utilization; SM: Constraints on the required number of SMs;

Runtime: Constraints on kernel runtime.

of the LS service increases, the large number of executing

LS kernels poses challenges for Orion’s scheduler in select-

ing suitable BE kernels for co-execution. As a result, despite

the LS service maintaining a high SLO attainment rate, the

throughput of BE tasks decreases as the concurrency of LS

services increases (Fig. 5a).

This is because Orion imposes numerous constraints on

the co-execution of BE kernels to ensure low latency for LS

tasks, as it cannot avoid intra-SM and inter-SM interference.

These constraints limit the BE task throughput. For the BE

models listed in Tab. 3, 73.8% of their kernels are subjected to

at least one constraint (Fig. 5b). These excessive constraints

lead to decreased BE task throughput as the load of the

LS service increases. Furthermore, relaxing any constraint

increases the LS task’s latency, which means that they are

all indispensable for maintaining LS service responsiveness.

3.2 Limitations of GPU Partitioning
Although existing solutions all tried to work around GPU

resource partitioning, they result in either undesirable DNN

inference performance, low GPU utilization, or both (§3.1).

Unfortunately, software-controlled GPU hardware partition-

ing is also flawed. While there are numerous mature soft-

ware [16, 23, 31] or hardware-based [3, 8, 39] solutions for

partitioning computational units, VRAM channel allocation

remains challenging due to its close coupling with propri-

etary GPU hardware and driver implementations.

Fractional GPU (FGPU) [23] stands out as the only software-

based GPU sharing solution capable of statically partitioning

both compute units and VRAM channels on GTX 1080. It

isolates VRAM channels using cache coloring, a technique

employed in CPU last-level cache isolation.

FGPU is inapplicable to most commodity GPUs and
new GPU architecture. FGPU assumes that the GPU L2

cacheline and DRAM bank hash mapping functions are pure

Table 1.VRAM size, VRAMbuswidth, and # VRAM channels

of 3 GPUs. FGPU [23] is only compatible with GTX 1080.

Specifications GTX 1080 Tesla P40 RTX A2000
Architecture Pascal Pascal Ampere

VRAM size (GiB) 8 24 12

VRAM bus width (bit) 256 384 192

Bus width per GDDR unit (bit) 32 32 32

# VRAM channels 8 12 6

(a) GTX 1080 (b) Tesla P40 (c) RTX A2000

Figure 6. Disassembling GPUs: (a) GTX 1080 (8 VRAM chan-

nels), (b) Tesla P40 (12 VRAM channels), and (c) RTX A2000

(6 VRAM channels). The number of GDDR chips (dashed

yellow rectangles) in each GPU is equal to the number of

VRAM channels.

XOR functions. We attempted to reverse engineer other

GPUs using FGPU’s approach, but all failed because this

assumption does not hold for many NVIDIA GPUs. The key

issue lies in the nature of the XOR function: it is linear, map-

ping a VRAM space of size 2
𝑁
bytes to 2

𝑀
VRAM channels.

However, many GPUs use non-linear VRAM channel hash

mappings, which map a VRAM space of arbitrary size to

an arbitrary number of VRAM channels. This non-linearity

arises because the VRAM size and the number of VRAM chan-

nels are often not powers of 2 (Tab. 1). The number of VRAM

channels can be cross-validated by the number of GDDR

chips on the GPU (Fig. 6) and the theoretical calculation

(i.e., VRAM bus width divided by the bus width per mem-

ory unit). Furthermore, FGPU only supports page coloring

based on 4 KiB granularity, the minimum page size supported

by NVIDIA GPU’s Memory Management Unit (MMU) [37].

However, this is inapplicable to newer GPU architectures

(§5.2). Moreover, FGPU’s reverse engineering approach is

not tolerant to cache noise. Even one false positive sample

can pollute the equation system and the reverse-engineered

hash function. However, we find that in Pascal and Ampere

GPUs, around 1% and 5% sampled conflicted addresses are

false positives due to the black-box GPU cache policies.

FGPU cannot scale GPU resource allocation. When LS

tasks are inactive, FGPU cannot utilize idle compute units,

which adversely affects the throughput of BE tasks. Addi-

tionally, statically allocating a portion of VRAM channels to

tasks is not always the optimal choice, as the reduced and

fixed L2 cache size leads to an increase in L2 cache misses

(as verified in FGPU’s experiments [23]).
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Table 2. A comparison of mainstream GPU sharing solutions. Note:MPS [36] partitions compute units at the thread level.

Method GPU Sharing
Scheme Implementation

Support All
NVIDIA
GPUs

Computing
Unit

Partitioning

VRAM
Bandwidth
Partitioning

Compute Unit
Dynamic
Allocation

VRAM B.W.
Dynamic
Allocation

Reconfiguration
Overhead

MPS [36] Native Hardware ! ! % % % High

MIG [35] Native Hardware % ! ! % % High

FGPU [23] Hardware partitioning Driver % ! ! % % High

TGS [50] Temporal multiplexing User-space ! N/A N/A ! % Low

Reef [16] Spatial multiplexing Driver % ! % ! % Medium

Paella [31] Spatial multiplexing User-space ! ! % ! % Medium

Orion [14] Interference-aware User-space ! % % % % Low

KRISP [8] Spatial multiplexing Driver % ! % ! % Low

SGDRC (Ours) Dynamic partitioning User. + Driver ! ! ! ! ! Low

3.3 Related Work
§3.1 and 3.2 emphasize the bottleneck of GPU sharing. Here,

we summarize the most competitive GPU sharing solutions

for DNN inference in Tab. 2. Differing from these works,

SGDRC is the only solution simultaneously achieving the fol-
lowing goals:
Dynamic GPU compute unit partitioning. GPU compute

unit partitioning has been supported at both the hardware

and software levels. Both NVIDIA [3, 22] and AMD [39]

have exposed their hardware interfaces to control a ker-

nel’s SM placement. SGDRC is the first work that leverages
NVIDIA’s little-known official interface [22] to enable dynamic
GPU compute unit allocation. Reef [16] and Paella [31] use

kernel padding, a widely used software-based SM partition-

ing approach, to partition SM units. This technique merges

multiple kernels into one monolithic kernel for co-execution,

which severely limits concurrency because it requires the

colocated BE kernel’s runtime to be smaller than the LS ker-

nel’s. It can help SGDRC extend to other vendors’ GPUs

without official SM masking interface support.

GPU VRAM channel reverse engineering. Many works

have reverse-engineered the hash mapping function of CPU

last-level cache (LLC) [2, 13, 29] and partitioned LLC for

different tenants using cache coloring [13, 42, 54], which

is inapplicable to GPUs, because they leveraged the CPUs’

non-uniform cache access latency feature, while GPUs are

UMA models. FGPU [23] cracks the GPU’s VRAM channel

mapping function by assuming that this function is a pure

XOR function, which is inapplicable to most GPU models

(§3.2). SGDRC first reveals a general VRAM channel mapping
structure of NVIDIA GPUs without relying on the NUMA

(Non-uniform Memory Access) feature to mark the channel

IDs or assumptions about the hash function structure.

Dynamic GPU VRAM bandwidth allocation. Although
an existing work [61] proposed a new GPU architecture in

the simulator to support VRAM bandwidth allocation, GPU

VRAM bandwidth allocation is much more challenging than

compute unit partitioning on commodity GPUs, because

only NVIDIA has so far implemented static partitioning (i.e.,

MIG [25]) for VRAM channels on a few flagship server GPUs

(e.g., A100, H100). FGPU [23] only implemented static VRAM

channel isolation on the GTX 1080 and is inapplicable to new

GPU architectures (§3.2). Unlike these approaches, SGDRC

enables dynamic VRAM channel allocation for all NVIDIA

GPUs without hardware modifications and can be easily re-
configured by simply moving tensors to map them to other

VRAM channels.

It is essential to clarify that MIG [35] complements our

work, as SGDRC provides dynamic resource allocation for
low-end GPUs. Both Paella [31] and Reef [16] are orthogonal

to our work. Reef [16] primarily focuses on achieving fast

BE task preemption. The primary contribution of Paella [31]

lies in optimizing low-latency GPU kernel scheduling for

DNN inference based on spatial multiplexing. KRISP [8] is

an elastic compute unit allocator tailored for AMD GPUs

based on AMD’s open-source GPU driver. In contrast, SG-

DRC focuses on dynamic VRAM channel and compute unit
allocation for DNN inference tasks on NVIDIA GPUs.

4 SGDRC Overview
Based on the analysis of four GPU sharing approaches, SG-

DRC employs a completely different method compared to

previous works: enabling dynamic resource partitioning at

the software level to eliminate constraints for kernel coloca-

tion. We design SGDRC based on the following principles:

1) Fully software-defined, with no hardware modification.

2) High elasticity to maximize overall throughput.

3) Generally applicable to NVIDIA GPUs.
SGDRC serves user-submitted DNN models in two phases

(Fig. 7). 1) Offline phase: Users submit their models (e.g., in

ONNX or PyTorch format) to SGDRC. SGDRC leverages

DNN compilers (e.g., TVM [5], MLIR [24], and Triton [44])

to fuse and compile DNN operators, then transforms the

CUDA kernels to enable VRAM channel dynamic allocation,

and uses nvcc to generate cubin binaries. It offline profiles

kernels’ VRAM bandwidth consumption and the minimum

number of required SMs to make dynamic allocation deci-

sions. 2) Online phase: SGDRC eliminates resource conflicts

(§2.2) in the following ways:

i) Inter-SM conflicts. Through extensive reverse engi-

neering of the black-box GPU architecture, SGDRC finds a

general way to crack the VRAM channel mapping (§5). When
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LS and BE tasks are co-executed, SGDRC allocates 1 −𝐶ℎ𝐵𝐸
(or 𝐶ℎ𝐵𝐸 ) of VRAM channels to memory-bound LS (or BE)

tensors using shadow page table and bimodal tensors.𝐶ℎ𝐵𝐸 is

a tunable parameter. Memory-bound tensors are identified

through offline profiling (§6).

ii) Intra-SM conflicts. SGDRC schedules LS and BE tasks

based on spatial-temporal multiplexing to prevent intra-SM

conflicts. At any given time, only one LS kernel and one BE

kernel can be colocated on the GPU. LS (or BE) kernels from

different tasks are launched to the LS (or BE) kernel queue in

a round-robin manner. SGDRC enables LS tasks to preempt

compute resources occupied by BE tasks and dynamically

allocates compute units using tidal SM masking (Fig. 8a∼c).
As kernels running on different GPU models have diverse

resource sensitivities, SGDRC allocates 𝑆𝑀𝐿𝑆 TPCs to each

LS kernel, which is the minimum number of TPCs required

to achieve the lowest latency for LS kernels. This parameter

is also determined by offline profiling.

5 Reverse Engineering VRAM Channels
5.1 Labeling VRAM Channel IDs
Before reverse engineering VRAM channels, we need to

establish the mapping between a program’s virtual VRAM

addresses and GPU physical addresses, because a virtual

VRAM space is randomly mapped to a part of the physical

VRAM space and thus the mapping between virtual VRAM

addresses and VRAM channel IDs changes each time the

program restarts. We follow the practice of [60] to fetch

physical addresses by parsing the page table entries stored

in the VRAM.

After that, we label VRAM channel IDs in the physical

VRAM space. As GPUs adopt the UMA (Uniform Memory

Access) architecture, we cannot identify VRAM channels

by measuring the cache access latency, as commonly done

on CPUs. We observe that any pair of physical addresses

with a DRAM bank conflict or an L2 cacheline conflict must

belong to the same VRAM channel because a DRAM bank or

L2 cacheline is associated with only one VRAM channel (as

demonstrated in §2.1). Thus, we can identify all addresses

that reside in the same channel by populating all available

L2 cachelines in the channel, which requires two steps:

1) Generating a set of conflicted addresses belonging
to Addr’s VRAM channel. We find a series of addresses

DramConflictAddrs that have DRAM bank conflicts with

Addr. This is achieved by concurrently reading from Addr
and Addr’ and measuring the access latency (Algo. 1 in §A.1).

Then, we retrieve a series of addresses, CacheConflictAddrs,
that have cache conflicts with DramConflictAddrs by bi-

nary searching the minimum interval (Addr, Addr’] that
can evict Addr from the L2 cache (Algo. 2 in §A.1).

2) Identifying the VRAM channel ID of a given ad-
dress. After generating a set of addresses belonging to each

VRAM channel, we can now identify the VRAM channel ID

to which any given address Addr’ is mapped. This process

involves three steps: a) Reading Addr’ to populate it into

a cacheline; b) Reading CacheConflictAddrs belonging to
the 𝑖-th VRAM channel to refresh all cachelines in the 𝑖-th

VRAM channel; and c) Reading Addr’ again and timing its

latency. If the latency exceeds the threshold (determined by

micro-benchmarking [30]), it indicates an L2 cache miss, and

thus Addr maps to the 𝑖-th VRAM channel (Algo. 3 in §A.1).

5.2 Findings of VRAM Channel Mapping Structure
In a contiguous 10 MiB VRAM space, we mark VRAM chan-

nels for both the Tesla P40 and the RTX A2000. The marking

results (Fig. 9) show that each contiguous 1 KiB of physical

VRAM space belongs to the same VRAM channel (i.e., a chan-
nel partition). The mapped VRAM channel IDs of contiguous

channel partitions form an m-permutation (𝑚 is the number

of patterns in the permutation). For the Tesla P40, channels

A∼D, E∼H, and I∼L form 3 independently distributed 24-

permutations. For the RTX A2000, channels A∼B, C∼D, and
E∼F form 3 independently distributed 12-permutations.

All permutation patterns are uniformly distributed (Fig. 10),

and the occurrence frequency of each VRAM channel ID

among all permutation patterns is equal. This indicates that

VRAM channels are evenly distributed across the VRAM

space.We summarize the physical address structure in Fig. 11,

where bits 10 ∼ 34 serve as the input to the black-box hash
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(b) Permutations of Channels A&B (RTX A2000)
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Figure 9. VRAM channel permutations of Tesla P40 (chan-

nels A ∼ D) and RTX A2000 (channels A ∼ B). Note: ? denotes
VRAM channels not in A ∼ D (A ∼ B).

Figure 10. The frequency histogram of RTX A2000’s 12

permutation patterns of VRAM channels A & B. All patterns

are uniformly distributed across the 12 GiB VRAM space.

x34 x33 ... xn ... x12 x11 x10 x9 x8 x7 x6 ... x0
Physical

Address Bits 
Cacheline 

Offset 
(27B=128 Bytes)

DRAM Bank Row Offset & Offset in 
Channel Partition (210 B = 1024 Bytes) 

(234 B = 32 GiB)

The Minimal Page Size Supported by 
GPU's MMU (212 B = 4 KiB) 

2n-9 VRAM Channels 
Form a Permutation 

Input of the VRAM Channel's 
Hash Mapping Function 

Figure 11. Structure of NVIDIA GPU’s physical address bits.

mapping function that generates the VRAM channel ID as-

signed to a physical address. In each permutation of Tesla

P40 (or RTX A2000), at most 4 KiB (or 2 KiB) space shares

the same set of VRAM channels.

5.3 Cracking the VRAM Channel’s Hash Mapping
Most GPUs’ VRAM channel hash functions are not purely

XOR-based and thus cannot be cracked directly (§3.2), but

marking each address’s channel ID in the entire VRAM space

is also extremely time-consuming. For example, if the VRAM

size is 24 GiB, it would require marking 24 GiB/1024 B =

25 million VRAM channels, which would take more than 1

year to complete. Therefore, we need to crack the hash map-

ping of VRAM channels using a non-brute-force solution.

Although the mapping functions of VRAM channels in many

NVIDIA GPUs are non-linear, and the structure of these func-

tions is unknown, fortunately, we can use DNNs to offline

approximate them: DNNs have already been proven to be

theoretically capable of statistically meaningful approxima-

tion of any boolean function [46]. For each GPU model, we
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Figure 12. Illustrative comparison between FGPU’s [23] and

SGDRC’s reverse-engineering approaches.

spend one month collecting 15K samples of VRAM channel

mapping and training a DNN to fit this mapping function.

We then spend 1 hour using this DNN to make inferences in

batch and offline generate a lookup table, which stores the

VRAM channel ID of each 1 KiB channel partition across the

VRAM space. The results on the test set indicate that our

DNN can accurately label over 99.9% of VRAM channel IDs

when provided with an unseen physical address.

We compare FGPU’s and SGDRC’s reverse engineering

approaches in Fig. 12. In our practice, only around 5% of the

conflicted addresses obtained in step 1) of §5.1 are mapped

to other channels due to the cache noise. Once enough con-

flicted addresses are populated into the L2 cache, only the

target VRAM channel will be filled. Therefore, this approach

can tolerate the cache noise.

6 Enabling VRAM Bandwidth Partition
Once the VRAM channel mapping is available, SGDRC uti-

lizes cache coloring to isolate VRAM channel conflicts be-

tween LS and BE kernels. Since the physical address space

belonging to the same VRAM channel is not contiguous, we

need to remap the address space accessed by each task to the

given set of VRAM channels. An intuitive idea is to intercept

the VRAM allocation in nvidia-uvm and allocate pages with
the same color to the given task, as adopted by FGPU [23].

However, it only supports 4 KiB coloring granularity, which

is the minimal page size supported by the GPU’s MMU.

However, our reverse engineering results (§5.2) have re-

vealed limitations to this approach. In the VRAM channel

layout of the RTX A2000, the VRAM space is composed of a

series of paired VRAM channels, which means that on new

GPU architectures, the coloring granularity can only be 1

KiB or 2 KiB, and larger values are inapplicable (we discuss

how to decide this in §A.2). Thus, enabling cache coloring

with an 𝑛 KiB size (𝑛=1 or 2) must involve overheads brought

by extra address remapping, and the limited GPU register

size makes this problem more challenging.

SGDRC binds tasks to their corresponding VRAM chan-

nels by introducing the shadow page table (SPT, Fig. 13),

which includes: 1) Dividing each 4 KiB page into
4

𝑛
sectors

with IDs from 0 to 𝑛-1 (Fig. 13a ❶) and marking each sector’s
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4 KiB Page Frame (PFN: 0xADD)
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VPN: 0xBEEF

VPN: 0xDEAD

GPU Page Table

0xBEEF
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Chunk #0

...... ......
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A
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B
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1
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C
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0 ...

...

GPU Chunk Lists
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......
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Map
by

MMU

Sector #1
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3

(a) Driver-level page mapping. The coloring granularity is 2 KiB. Note: VPN:
Virtual Page Frame Number; PFN: Physical Page Frame Number.

__global__ void vectorAdd(float *A, float *B, float *C) { 
    int i = blockIdx.x * blockDim.x + threadIdx.x; 
    C[i] = A[i] + B[i]; // Directly access the i-th elements in A ~ C 
} 

(b) The original BE kernel in (a), which performs vector addition.

// Fetch the colored index (equivalent to offset + (offset/2048)*2048) 
#define translate(offset) ((offset) + ((offset)&0xFFFFFE00)) 
__global__ void vectorAdd(float* A, float* B, float* C) { 
    int i = blockIdx.x * blockDim.x + threadIdx.x; 
    C[translate(i)] = A[translate(i)] + B[translate(i)]; 
} 

(c) The transformed DNN kernel of BE task in (a). Virtual addresses of each
colored tensor should be adjusted by adding the sector index × sector size.

Figure 13. Illustration of the shadow page table (SPT).

color using the lookup table (§5.3); 2) Reserving a mem-

ory pool in the nvidia-uvm kernel module and maintaining

linked lists for𝑛 KiB chunks with different colors (Fig. 13a❷);

3) Writing the physical page frame number of each chunk to

the GPU’s page table (Fig. 13a ❸); and 4) Transforming array

indexes in DNN kernels to remap tensors to 𝑛 KiB sectors

with the same color and chunk ID (each re-indexing oper-

ation requires 2 integer operations, 8 GPU cycles, Fig. 13b-

13c). The addresses of arguments passed into the kernels

are also adjusted by adding the sector index × sector size
for alignments. SGDRC allocates 𝐶ℎ𝐵𝐸 and (1 − 𝐶ℎ𝐵𝐸) of
VRAM channels to BE and LS tasks, respectively. The color-

ing granularity and𝐶ℎ𝐵𝐸 are set to be 2 KiB and 1/3. Coloring

granularity and 𝐶ℎ𝐵𝐸 are tunable. However, there are only a

few valid values for Tesla P40 and RTX A2000. So SGDRC

chooses not to tune them. We leave this problem as a future

work for GPUs with more VRAM channels.

7 Dynamic Resource Allocation
7.1 Elastic SM Scaling
SGDRC uses libsmctrl [3], a library that manipulates Task

Meta Data (TMD [22], an NVIDIA-specific, little-known in-

terface), to control the set of TPCs to which each launched

kernel can be assigned. LS kernels can preempt SMs occu-

pied by BE kernels following the designs of FLEP [49] and

Reef [16]. Specifically, SGDRC checks an eviction flag stored

BE Kernel
#0

BE Kernel #1

LS #0 LS #1
LS
#2

LS
#3

LS #4BE
Kernel

#0
BE
#1

Read the eviction
flag. Receive a
TERM signal

BE #1
(Restart)

LS #0

Restart the
BE kernel

(a) An LS kernel preempts
the BE kernel

(b) LS kernels co-execute
with BE kernels 

Le
ge

nd : LS kernel’s actual SM allocation
: LS kernel’s minimum SM allocation calculated by SMLS

: BE kernel’s actual SM allocation

: Sliding window of LS kernel #0 : Sliding window of LS kernel #2

Tim
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SM

Tim
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ne
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Figure 14. Illustration of the tidal SM masking.

in global memory using ld.cv. LS tasks can write the evic-

tion flag to preempt a BE kernel. After that, the BE kernel

restarts and co-executes with LS kernels (Fig. 14a).

When LS and BE kernels are co-executed, SGDRC elas-

tically allocates SMs to LS and BE kernels to maximize the

SM unit utilization (Fig. 14b). SGDRC uses a binary search

during offline profiling to determine the minimum number

of SMs required by each LS kernel to achieve optimal latency.

Given that the runtime of BE kernels may be longer than

that of LS kernels, and that LS kernels waiting in the kernel

launch queue may consume more SMs than the currently

allocated ones, SGDRC determines the actual SM allocation

based on a sliding window. The number of SMs reserved

for the next LS kernel is the maximum number of SMs re-

quired by LS kernels in the sliding window. SGDRC also

transforms LS and BE kernels with a large number of thread

blocks into the persistent-thread style to reduce conflicts

caused by the GPU hardware scheduler. More details about

the persistent-thread-style GPU programming can be found

in the implementation described in [48].

7.2 Dynamic VRAM Channel Allocation
SGDRC uses bimodal tensors to enable dynamic VRAM band-

width allocation (Fig. 15). To reduce the overhead, SGDRC

identifies (through offline profiling) and isolates memory-
bound tensors (tensors accessed by memory-bound kernels).

A kernel is consideredmemory-bound if its runtime degrades

when L2 cachelines are intensively populated by a colo-

cated kernel. Each memory-bound LS tensor is mapped to

(1 −𝐶ℎ𝐵𝐸) of the VRAM channels. When no BE task is colo-

cated, LS tasks can fully utilize the VRAM bandwidth by

moving all memory-bound tensors to the reserved memory

pool mapped to all VRAM channels. To achieve fast VRAM

bandwidth scaling, for each memory-bound BE tensor, SG-

DRC maintains its 2 copies : 1) one mapped to all VRAM

channels; and 2) one mapped to 𝐶ℎ𝐵𝐸 of the VRAM chan-

nels. For each memory-bound BE kernel, SGDRC passes its

parameters based on two cases (Fig. 15):

a)Monopolization state (when the LS kernel queue is empty):

All input weight tensors and output tensors are mapped to

all VRAM channels.
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Figure 15. Illustration of bimodal tensors. Note: (i): Input
tensor; (o): Output tensor.

b) Colocation state (when LS kernels and BE kernels are

colocated):Memory-bound inputweight tensors andmemory-

bound output tensors are mapped to 𝐶ℎ𝐵𝐸 of the VRAM

channels.

For both cases and non-memory-bound kernels, SGDRC

decideswhether input intermediate tensors should bemapped

to 𝐶ℎ𝐵𝐸 of the VRAM channels based on the state of the last

kernel that accesses these tensors. To further minimize extra

memory usage introduced by tensor copies, SGDRC fully

reuses tensors storing intermediate results.

8 Implementation
SGDRC is implemented in C++ with ~12K LOC (~1K LOC for

reverse engineering, ~2K LOC for cache coloring in nvidia-uvm,
~2K LOC for the kernel transformer, and ~7K LOC for the in-

ference server and client). It utilizes TVM [5] and Ansor [63]

to generate and optimize CUDA kernels.

9 Evaluation
Having discussed how SGDRC reverse engineers VRAM

channel mapping (§5), partitions VRAM channels (§6), dy-

namically allocates resources (§7), and is implemented (§8),

we now evaluate it to answer the following key questions:

1) What are the gains and overheads of VRAM bandwidth

partitioning and dynamic resource allocation? (§9.1)

2) Can SGDRC effectively mitigate resource contention

among tasks and enable dynamic resource allocation? (§9.3)

9.1 SGDRC Performance Deep Dive
We begin by quantifying the performance gains and over-

heads of shadow page tables and bimodal tensors.

9.1.1 VRAMchannel isolation performance gains. We

conduct tests on both Tesla P40 and RTXA2000, usingNVIDIA

Nsight Compute to profile kernels. We randomly select some

kernels with high DRAM throughput from BE models to act

as the source of VRAM channel conflicts. All kernels from

LS models listed in Tab. 3 are incorporated to evaluate the

extent of interference caused by memory-bound BE kernels

and the overhead introduced by the shadow page tables.

The experimental group allocates 1 −𝐶ℎ𝐵𝐸 and 𝐶ℎ𝐵𝐸 of

the VRAM channels to the memory-intensive tensors of LS

and BE kernels, respectively (in our setting, 𝐶ℎ𝐵𝐸 is tuned

to 1/3). Then we coexecute each LS kernel with the selected

memory-intensive BE kernels in a closed loop. The control

group does not enable VRAM channel isolation. Both the

Tesla P40 RTX A2000

(a) Relative speedup (b) # extra registers

Tesla P40 RTX A2000

Figure 16. Evaluation of VRAM channel isolation. (a) CDF of

LS kernels’ runtime speedup after applying VRAM channel

isolation. Larger values are better; (b) CDF of extra registers

used by VRAM channel isolation (the # of registers used by

the transformed kernel minus the # of registers used by the

original kernel). Smaller values are better.

experimental group and the control group utilize libsmc-

trl [3] to evenly partition SMs for LS and BE kernels. We

compare the p99 latency of the LS kernel runtime between

the experimental group and the control group (Fig. 16a). The

results reveal that for all LS kernels, on Tesla P40 and RTX

A2000, SGDRC’s VRAM channel isolation reduces p99 la-

tencies compared with the non-isolated control group by

28.7% and 47.5% on average and by up to 135% and 106.3%,

respectively. Note that these results account for incorrect

VRAM channel predictions, as mispredicted VRAM channel

IDs are randomly distributed across the VRAM space.

9.1.2 Overheads ofVRAMchannel isolation. Although
SGDRC’s VRAM channel isolation exhibits outstanding per-

formance, the overhead introduced by SPTs remains a focal

point of concern, as it incurs extra register usage and cal-

culations for array re-indexing. Theoretically, each thread

requires only one additional register to store the intermedi-

ate value for array re-indexing. For real-world kernels, we

use nvcc -O3 to compile kernels and compare the register

usage between their transformed and original implementa-

tions. On Tesla P40 and RTX A2000, 80.4% and 80.0% kernels

do not use extra registers; 93.8% and 91.2% kernels use fewer

than 5 extra registers. We observe that a few transformed

kernels use more than 10 extra registers. Upon inspection,

these outliers are small kernels with runtime shorter than

0.01ms. Their register usage is influenced by nvcc compiler

optimizations and has little impact on a DNN’s end-to-end

performance.

Next, we allocate all VRAM channels to each DNN with

SPT. In the absence of colocated BE kernels, we compare the

p99 runtime of transformed kernels with that of the original

kernels. Across all DNN kernels on Tesla P40 and RTXA2000,

the overhead of SPT is 2.9% on average. After applying SPTs

to memory-bound kernels, the end-to-end DNN inference

time (including CPU-side operations) increases by ∼0.5% on

average.

9.1.3 VRAM footprints of bimodal tensors. We mea-

sure the VRAM footprints of bimodal tensors in Fig. 17. With-

out reusing the intermediate tensors, the VRAM footprints of

all DNNs nearly double. Reusing intermediate tensors (§7.2)



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Zhang et al.

: Bimodal Tensor (Reuse Disabled) : Bimodal Tensor (Reuse Enabled): Original Tensor (Reuse Disabled)

Tesla P40

RTX A2000

N
or

m
. V

R
A

M
 F

oo
tp

rin
t

N
or

m
. V

R
A

M
 F

oo
tp

rin
t

Model ID

Figure 17. VRAM footprints introduced by bimodal tensors.

Dark colors denote weight tensors, and light colors denote

intermediate tensors.

Table 3. Testing DNN models.

Class Model Name

LS MobileNetV3 (A), SqueezeNet (B), ShuffleNet (C), EfficientNet (D),

ResNet34 (E), MobileBert (F), MobileViT (G), EfficientFormer (H)

BE ResNet152 (I), DenseNet161 (J), Bert (K)

can significantly reduce the VRAM footprints, especially in

BEmodels I ∼ K, because they have larger batch sizes than LS
models and require more space to store intermediate results.

9.2 End-to-End Experimental Setup
Testbeds. We deploy and evaluate SGDRC on two GPUs: (a)

Tesla P40 (representing deprecated GPU architectures) and

(b) RTX A2000 (representing new GPU architectures). To

mitigate the impact of network latency, we follow Reef [16]

and deploy SGDRC’s server and clients on the same machine.

Workloads. We reference [14, 16, 27, 31, 43, 50, 66] and

select 12 representative LS and BE models as testing work-

loads (Tab. 3). To minimize the interference between LS and

BE tasks, we set the batch sizes of BE tasks to be the mini-

mum values that achieve maximum throughputs. LS services’

clients send requests by replaying Baidu’s Apollo trace [21], a

real-time DNN inference trace collected from Baidu’s Apollo

autonomous driving system. Both were adopted by Reef [16]

and Orion [14] to evaluate their systems. BE tasks run in a

closed-loop manner.

Testing scenarios. On two GPUs, we deploy LS models

A ∼ H and BE models I ∼ K in GPUs’ VRAM before serv-

ing requests. Given that dynamic batching is detrimental

to request latency as it requires early requests to wait for

batching with additional requests [31], we don’t incorporate

this feature into SGDRC and the baselines. To serve multiple

requests concurrently, each LS model has 4 instances. All

LS services are simultaneously colocated with a BE task at

all times. We evaluate all systems in two scenarios to mea-

sure their performance under varying workloads: 1) Light
workload: The Apollo trace is scaled to reduce the average

request rate to half of its original value; 2) Heavy workload:
Use the original Apollo trace.

Baselines. We select the following solutions as baselines:

1)Multi-streaming: To reduce interference, we deploy two

kernel launch streams (LS & BE) in Multi-streaming and

assign a higher stream priority to the LS queue. Requests

from LS and BE tasks are forwarded to these streams in a

round-robin manner.

2) TGS [50]: Since TGS inherently supports the colocation

of only one LS and one BE container, we forward requests

from each LS service and BE task to these two containers in

a round-robin manner.

3) MPS [36]: As the maximum number of instances sup-

ported by MPS is constrained, and too many MPS instances

concurrently executing on one GPU can lead to severe con-

tention, we evenly divide the GPU into two MPS instances,

use CUDA_MPS_ACTIVE_THREAD_PERCENTAGE to limit the com-

pute resource usage of each instance, and serve LS and BE

tasks on them separately in a round-robin manner.

4) Orion [14]: Considering that Orion’s code only supports
DNN inference on PyTorch’s backend with outdated cuDNN

libraries, we implement Orion’s scheduling policy within

SGDRC to ensure a fair comparison.

5) SGDRC (Static): A vanilla version of SGDRC that stat-

ically and evenly partitions resources between LS and BE

tasks.

Evaluation metrics. For LS services, we gather their p99
latency (including queueing delays) and the SLO attainment

rates. We follow the settings of [6, 8] and set the SLO to be𝑛×
p99 isolated execution runtime of each DNN model (where 𝑛

is the number of DNN services concurrently running on the

GPU). For BE tasks, we collect their throughput (number of

samples processed per second). We also measure the overall

throughput (LS services’ goodput + BE tasks’ throughput).

Since BE tasks are co-located with LS services in a round-

robin manner, we record both the overall throughput and the

throughput per BE task to better understand each system’s

performance.

9.3 Evaluation Results
We present the results in Fig.18. In both light and heavy work-
load scenarios, SGDRC achieves the highest SLO attainment

rate (99.0% on average). It demonstrates low p99 latency

(comparable to or lower than Orion) for all LS models. Its

throughput is lower than Multi-streaming in some cases. But

Multi-streaming sacrifices LS services’ tail latency and thus

have low LS service goodput. TGS exhibits both high p99

latency for LS services and the lowest throughput. This can

be attributed to: 1) the substantial overhead resulting from

frequent CUDA context switches between GPU containers,

and 2) the feedback-based dynamic sending rate control al-

gorithm, which fluctuates containers’ resource allocation.

The undesirable LS p99 latency and SLO attainment rates

of MPS can be attributed to the fact that MPS isolates SM
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Figure 18. End-to-end evaluation. Note:MPS is no longer supported on P40; Dark colors in (c) denote the LS service goodput.

resources at thread level without addressing intra-SM and

VRAM channel conflicts. Across Tesla P40 and RTX A2000,

compared to the state-of-the-art solution (Orion), SGDRC

improves the overall throughput by up to 1.47× and 1.32×,
BE task throughput by up to 2.36× and 1.79×, respectively.
This significant improvement can be attributed to the chal-

lenges faced by Orion in identifying suitable co-executed

BE kernels (as elaborated in §3.1). Compared with SGDRC

(Static), SGDRC achieves higher BE job throughput, which is

more evident in the light workload scenario. This can be ac-

credited to the dynamic resource management policy, which

maximizes the GPU resource utilization.

10 Discussion and Future Work
Integration with NVIDIA MIG. The objective of SGDRC
is to offer hardware resource isolation for DNN inference

services on mid-to-low-end GPUs that lack MIG support. In

the future, SGDRCmay integrate with MIG on NVIDIA A100

and H100, enabling dynamic resource partitioning within

eachMIG instance. However, it is crucial to acknowledge that

the L2 caches in A100 [33] and H100 [34] consist of multiple

separate caches, making their L2 caches a hybrid of UMA

and NUMA. Consequently, SGDRC’s reverse engineering

approach will require slight adaptation for NVIDIA A100

and H100.

Extending to transparent task colocation. Like Clock-
work [15], Reef [16], Paella [31], and StreamBox [51], SGDRC

utilizes TVM [5] to generate CUDA kernels for DNN infer-

ence tasks. However, CUDA kernels of other GPU tasks may

originate from closed-source vendor libraries (e.g., cuDNN,

Cutlass, and cuBLAS) and CUDA binaries, which are not

currently compatible with SGDRC. Previous research has

demonstrated the possibility of modifying CUDA kernel code

from closed-source libraries and binaries through GPU pro-

gram disassembly [28, 40, 65]. Therefore, SGDRC has the

potential to support colocating heterogeneous tasks in the

future.

Fault isolation. Like Reef [16], Paella [31], and Orion [14],

SGDRC aggregates multiple workloads into one CUDA con-

text to reduce task-switching overhead. However, SGDRC

and these solutions cannot isolate colocated DNNs’ GPU run-

time errors. We believe this is acceptable, as SGDRC relies on

TVM [5] to generate and check CUDA kernels, and runtime

errors due to incorrect kernel implementations are unlikely

to occur. In the future, SGDRC could isolate faults through

static analysis-based [28] or runtime-based [40] methods.

Supporting serverless ML services. Existing work [20]

leverages NVIDIAMIG [35] to eliminate resource contention

on serverless ML platforms. As SGDRC provides dynamic re-

source allocation for low-end GPUs, it could also be adapted

to serverless ML infrastructures in the future.

11 Conclusion
This paper presents SGDRC, a general, software-definedGPU

dynamic resource control solution for concurrent DNN infer-

ence on NVIDIA GPUs. SGDRC isolates inter- and intra-SM

conflicts through full-spectrum reverse engineering of GPU

VRAM channels, learning VRAM channel hash mapping

by DNNs, fine-grained software-level cache coloring, and

dynamic VRAM channel and compute unit allocation. SG-

DRC mitigates the degradation of BE throughput observed

in other GPU sharing techniques with conservative policies.

Compared with state-of-the-art GPU sharing solutions, SG-

DRC achieves the highest SLO attainment rates (99.0% on

average) and improves overall throughput by up to 1.47×
and BE job throughput by up to 2.36×.
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Algorithm 1 Find DRAM bank conflict addresses

function IsDramBankConflicted(Addr0, Addr1)

𝑣 ← [0, 1, 2, 3, ......] ⊲ Initialize the pointer chase array 𝑣

𝑅𝑒 𝑓 𝑟𝑒𝑠ℎ𝐿2(𝑣) ⊲ Use P-chase to refresh the L2 cache

𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ← 𝐶𝑙𝑜𝑐𝑘 ( )
𝐴𝑑𝑑𝑟0← 𝑣 [𝐴𝑑𝑑𝑟0]
𝐴𝑑𝑑𝑟1← 𝑣 [𝐴𝑑𝑑𝑟1]
𝐸𝑛𝑑𝑇𝑖𝑚𝑒 ← 𝐶𝑙𝑜𝑐𝑘 ( )
if 𝐸𝑛𝑑𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 > 𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 then

return True ⊲ Indicate the DRAM bank conflict

else
return False

end if
end function

GPU
Minimum
Coloring

Granularity

Maximum
Coloring

Granularity

# Contiguous
VRAM

Channels

# VRAM
Channels

GTX 1080 1 KiB 4 KiB 4 8

Tesla P40 1 KiB 4 KiB 4 12

RTX A2000 1 KiB 2 KiB 2 6

Table 4.Minimum and maximum coloring granularities, the

maximum number of contiguous VRAM channels, and the

number of VRAM channels of three GPUs.

by theNational Science Foundation under Grant CNS-2312785

and the CAREER Award CNS-2339901.

A Appendix
A.1 VRAM Channel Reverse Engineering

Algorithms
Here, we describe the algorithms used for reverse engineer-

ing the VRAM channel hash mapping, including: 1) Identi-

fying a series of physical addresses that have DRAM bank

conflicts with a given physical address (Algo. 1); 2) Identify-

ing a series of physical addresses that experience L2 cache-

line conflicts with a given physical address (Algo. 2); and

3) Assigning a VRAM channel ID to a given physical ad-

dress (Algo. 3). They use the GPU pointer-chase (P-chase)

algorithm to populate the L2 cache and detect L2 cacheline

conflicts. More details about the P-chase algorithm can be

found in [30].

A.2 Rules of Deciding the Coloring Granularity
Here, we conclude the rules deciding the maximum coloring

granularity for VRAM channel isolation. The minimum and

maximum coloring granularities, the maximum number of

contiguous VRAM channels of each GPU are listed in Tab. 4.

We have the following principles: 1) Minimum coloring gran-
ularity = Channel partition size; and 2) Maximum coloring
granularity = (Max # contiguous VRAM channels) KiB.

If we allocate 2
𝑁

(𝑁 = 0,1,2,...) channels to a task, the

coloring granularity should be min(2
𝑁
, Maximum coloring

granularity) KiB. If we want to allocate 𝑁 (not a power of 2)

channels to any tasks, the granularity can only be 1 KiB.

Algorithm 2 Find L2 cacheline conflict addresses

function IsCachelineEvicted(array, Addr0, Addr1)

Pointer-chase[𝑎𝑟𝑟𝑎𝑦 [𝐴𝑑𝑑𝑟0 : 𝐴𝑑𝑑𝑟1] ⊲ Use P-chase to read the

interval [𝐴𝑑𝑑𝑟0, 𝐴𝑑𝑑𝑟1] and populate the L2 cache.

𝑡 = 𝑇𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒 (𝑎𝑑𝑑𝑟 ← 𝑎𝑟𝑟𝑎𝑦 [𝐴𝑑𝑑𝑟0] ) ⊲ Measure the latency

of re-accessing the element 𝑎𝑟𝑟𝑎𝑦 [𝐴𝑑𝑑𝑟0]
if 𝑡 > 𝑇ℎ𝑟𝑒𝑠𝐿2 𝑀𝑖𝑠𝑠 then ⊲ Indicate an L2 cache miss

return True

else ⊲ Indicate an L2 cache hit

return False

end if
end function
function FindCacheConflictAddrs(Addr)

𝑎𝑟𝑟𝑎𝑦 ← [0, 1, 2, 3, ......] ⊲ Initialize the P-chase array

𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 ← []
for 𝑖 ← 0 to𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 do

𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 1

𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 𝑀𝐴𝑋_𝑈𝑃𝑃𝐸𝑅_𝐵𝑂𝑈𝑁𝐷 ⊲ The

next L2-cacheline-conflicting address should be in the range [𝐴𝑑𝑑𝑟 +
𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 , 𝐴𝑑𝑑𝑟 +𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑]

𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟 ← 𝐴𝑑𝑑𝑟

while 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 < 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 do
𝐸𝑛𝑑𝐴𝑑𝑑𝑟 ← (𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 +𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ) >> 1

if IsCachelineEvicted(array, Addr, EndAddr) then
𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 𝐸𝑛𝑑𝐴𝑑𝑑𝑟 − 1

𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟 ← 𝐸𝑛𝑑𝐴𝑑𝑑𝑟

else
𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ← 𝐸𝑛𝑑𝐴𝑑𝑑𝑟 + 1

end if
end while
𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 .insert(𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟 )

end for
return𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡

end function

Algorithm 3 Mark VRAM channel IDs in the VRAM space

functionMarkMemoryChannel(Addr)

𝐷𝑟𝑎𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝑠 ← [],𝐶𝑛𝑡 ← 0

for 𝐴𝑑𝑑𝑟 ′ = 𝐴𝑑𝑑𝑟 + 1;𝐶𝑛𝑡 < 𝑁𝑒𝑒𝑑𝑁𝑢𝑚;𝐴𝑑𝑑𝑟 ′ + + do
if 𝐼𝑠𝐷𝑅𝐴𝑀𝐵𝑎𝑛𝑘𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑒𝑑 (𝐴𝑑𝑑𝑟,𝐴𝑑𝑑𝑟 ′ ) then

𝐷𝑟𝑎𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝑠 .insert(𝐴𝑑𝑑𝑟 ′),𝐶𝑛𝑡 + +
end if

end for
𝐶𝑎𝑐ℎ𝑒𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝑠 ← [],𝐶𝑛𝑡 ← 0

for 𝐴𝑑𝑑𝑟 ′ ∈ 𝐷𝑟𝑎𝑚𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝑠 do
𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 ← 𝐹𝑖𝑛𝑑𝐶𝑎𝑐ℎ𝑒𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝑠 (𝐴𝑑𝑑𝑟 ′ )
𝐶𝑎𝑐ℎ𝑒𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝑠 .insert(𝐴𝑑𝑑𝑟𝐿𝑖𝑠𝑡 )

end for
𝑀𝑎𝑟𝑘𝑒𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐿𝑖𝑠𝑡 ← []
for 𝐴𝑑𝑑𝑟 ′ ∈ 𝑉𝑅𝐴𝑀 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑆𝑝𝑎𝑐𝑒 do

𝑡𝑚𝑝 ← 𝑎𝑟𝑟𝑎𝑦 [𝐴𝑑𝑑𝑟 ′ ]
for𝑀𝑎𝑟𝑘𝑒𝑑𝐴𝑑𝑑𝑟 ∈ 𝐶𝑎𝑐ℎ𝑒𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝐴𝑑𝑑𝑟𝑠 do

𝑡𝑚𝑝 ← 𝑎𝑟𝑟𝑎𝑦 [𝑀𝑎𝑟𝑘𝑒𝑑𝐴𝑑𝑑𝑟 ]
end for
𝑡 = 𝑇𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒 (𝑡𝑚𝑝 ← 𝑎𝑟𝑟𝑎𝑦 [𝐴𝑑𝑑𝑟 ′ ] )
if 𝑡 > 𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 then ⊲ L2 cache miss occurs

𝑀𝑎𝑟𝑘𝑒𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐿𝑖𝑠𝑡 .insert(𝐴𝑑𝑑𝑟 ′)
end if

end for
return𝑀𝑎𝑟𝑘𝑒𝑑𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐿𝑖𝑠𝑡

end function
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