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Abstract
Tiered memory systems often rely on access frequency (“hot-
ness”) to guide data placement. However, hot data is not
always performance-critical, limiting the effectiveness of
hotness-based policies. We introduce amortized offcore
latency (AOL), a novel metric that precisely captures the
true performance impact of memory accesses by accounting
for memory access latency and memory-level parallelism
(MLP). Leveraging AOL, we present two powerful tiering
mechanisms: Soar, a profile-guided allocation policy that
places objects based on their performance contribution,
and Alto, a lightweight page migration regulation policy to
eliminate unnecessary migrations. Soar and Alto outperform
four state-of-the-art tiering designs across a diverse set of
workloads by up to 12.4×, while underperforming in a few
cases by no more than 3%.

1 Introduction
Driven by the growing demands of memory-intensive work-
loads, such as graph processing and machine learning, tiered
memory architectures that integrate a fast-tier (e.g., DRAM)
and slow-tier (e.g., CXL memory) are becoming standard in
cloud datacenters [1–5]. While this approach improves mem-
ory capacity scaling, it also introduces significant performance
challenges. Effective data tiering is critical to mitigating the
2–3× performance disparity between tiers [6–12].

Existing tiering designs are grounded in the assumption that
frequently-accessed (“hot”) data is more performance-critical
than cold data and should reside in the fast-tier. Thus, tiered
memory management primarily focuses on hotness tracking,
memory allocation, and migration policies to detect, allocate,
and relocate hot data across tiers efficiently [4, 13–29].

We argue that hot data is not always performance-critical
and can reside in the slow-tier without degrading performance
(§2.1). In modern out-of-order CPU designs, latency miti-
gation techniques, such as memory-level parallelism (MLP),
obscure the true cost of memory accesses [13, 30–32]. Not all
memory accesses contribute equally to performance (vary by
4×, §3); overlapping requests (high MLP) often mask slow-tier
latency penalties, leading to less pronounced slowdowns.

Although MLP is a well-established concept within the
architecture community [30–32], its implications for tiered
memory management have been largely overlooked. Prior

classification efforts across objects, pages, and data structures
[13, 19, 33, 34] often implicitly reflect the effects of MLP
through coarse heuristics or indirect indicators of memory
access costs. However, they do not explicitly model or quantify
MLP impact. What remains missing is a principled, accurate,
and MLP-aware performance metric that enables more effec-
tive, performance-driven tiering policies across online and
offline scenarios, and generalizes to diverse workloads.

Existing tiering systems also suffer from heavyweight and
imprecise hotness sampling and page migration mechanisms.
Two key limitations are prevalent [1, 4, 16, 17, 19, 21–24, 35]:
(a) Suboptimal data placement. Existing coarse-grained
allocation policies prioritize fast-tier placement for newly
allocated data, but under fast-tier pressure, performance-
critical data is often displaced to the slow-tier, necessitating
costly migrations later to correct the placement errors; (b)
Excessive migration overhead. Existing systems often employ
aggressive migration policies, incurring substantial overhead
by frequently relocating non-critical pages. This overhead
can erode or negate the performance benefits of tiering (§2.1).

We propose Amortized Offcore Latency (AOL), a novel
performance metric that accurately quantifies the performance
impact of memory accesses by integrating memory latency
and MLP. While latency measures the impact of individual
memory requests, it does not capture the latency-masking
effects of MLP. By considering both factors, AOL, expressed
as “Latency/MLP” combined with CPU stalls, offers a more
precise representation of the true performance contribution of
memory accesses (validated across 56 workloads, §3).

We leverage AOL to redesign memory allocation and mi-
gration policies, introducing two novel tiering mechanisms: a
static memory allocation policy, Soar, and a dynamic page
migration regulation policy, Alto. Soar employs AOL-based
profiling to rank objects by assessing their accumulative contri-
butions to application performance. High-ranking objects are
placed in the fast-tier, achieving near-optimal placement while
eliminating runtime migration overhead. Alto adaptively
regulates page migrations based on AOL, ensuring that only
performance-critical pages are promoted, regardless of their
hotness. Alto seamlessly integrates with four representative
tiering systems with minimal code changes, including TPP
[4], Nomad [22], Linux NUMA Balancing Tiering (NBT)
[36–38], and Colloid [23].

We evaluate Soar and Alto across a range of realistic
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graph, cloud, and HPC workloads on both NUMA and real
CXL platforms, varying fast-to-slow tier ratios and bandwidth
contention levels. Soar outperforms Nomad, NBT, Colloid,
and TPP by 14–547%, 4–79%, -1–68%, and 31–1242%,
respectively; Alto improves performance by -2–81%, 1–31%,
-3–18%, and 2–471%. Negative improvements indicate that
Soar/Alto underperform relative to baselines in a few cases
(5 out of 182 in total). While Soar and Alto achieve strong
results broadly, their performance gains are less pronounced
under high bandwidth contention due to AOL inflation from
queuing delays. Raising AOL thresholds can restore their
performance gains but requires contention-aware tuning. We
highlight this to clarify the scope of our approach and leave
AOL tuning as future work.

In summary, we make the following contributions:
• We quantitatively demonstrate that hotness is an unreliable

proxy for performance-criticality: the performance impact
of memory accesses can vary by up to 4× across workloads.

• We introduce AOL, a performance metric that combines
memory access latency and MLP, and leverages CPU stall
cycles to accurately estimate tiered memory performance.

• We propose AOL-powered memory management policies:
Soar for near-optimal data placement and Alto for adaptive
migration control.

• We open-source Soar and Alto at https://github.com
/MoatLab/SoarAlto.
The rest of the paper is organized as follows: §2 covers

background and motivation, §3 introduces the AOL metric and
predictor, §4–6 present Soar, Alto, and evaluation, followed
by related work (§7) and conclusion (§8).

2 Background and Motivation
Hotness implicitly assumes that all memory accesses con-
tribute equally to application performance, ignoring variations
introduced by loaded latency and CPU-side latency-mitigation
techniques [39]. A key dimension behind this disconnect is
memory-level parallelism (MLP). MLP quantifies the num-
ber of outstanding memory requests awaiting completion by
the memory controller. It plays a critical role in reducing
CPU stall time [30]. Under high-MLP access patterns, such as
array traversals, the CPU can issue many concurrent requests
to minimize stalls. In contrast, serialized access patterns, as in
pointer-chasing with depedent requests, exhibit low MLP and
expose latency more directly, leading to greater slowdowns
[13, 40]. In tiered memory systems, this implies that placing
hot data in the fast-tier does not guarantee performance gains.

2.1 The Case Against Hotness-based Tiering

We design a microbenchmark to quantify the performance
impact of different memory access patterns and illustrate
how hotness-based tiering policies can lead to incorrect page
migration decisions and performance degradation. Later, we

0 20 40 60
Time (s)

0

1

2

3

4

Vi
rtu

al 
Ad

dr
es

s (
GB

)

[a] Heatmap

0

200

400

0

4

8

12

16

0 20 40 60

Sequential

Pointer-Chase

A
c
c
e
s
s
C
o
u
n
t
(K
)

Time (s)

[b] Hotness

0

.2

.4

.6

.8

1

N
o
rm
.
P
e
rf
o
rm
a
n
c
e

Sequential + Pointer-Chasing

A
ll
-o
n
-D
R
A
M

H
o
t-
o
n
-D
R
A
M

C
o
ld
-o
n
-D
R
A
M

C
X
L

N
o
T
ie
r

C
o
ll
o
id

N
o
m
a
d

T
P
P

[c] Hotness != Performance

Figure 1: Hotness vs. performance benchmark (§2.1). (a)
presents the heatmap. (b) shows the access rates over time. (c)
compares the performance of different tiering strategies (higher is
better), showing that placing hot pages in the fast-tier can degrade
performance when they are not performance-critical.

show these findings extend to real-world applications with
more complex memory access behaviors in §6.

The benchmark comprises two types of memory accesses:
one thread performs sequential reads (high MLP, “hot”, termed
as “seq”), while the other executes pointer-chasing operations
(low MLP, “cold”, termed as “pc”). Each thread operates on
a dedicated 2GB buffer. The “pc” thread issues 4 billion load
instructions, while “seq” thread issues 26 billion, resulting
in comparable runtimes for both (Figure 1a&b). This design
prevents either thread from dominating overall workload
performance in a tiered memory setup. The total runtime of
both threads serves as the application’s performance metric.

Figure 1a presents the heatmap highlighting the contrasting
behaviors of the two memory access patterns. The sequential
region (top half) demonstrates high memory access activity
due to parallel memory reads (measured MLP=7 precisely),
while the pointer-chasing region (bottom half) exhibits sparse
memory accesses, reflecting its serialized nature (MLP=1).
The difference is further quantified in Figure 1b, where “seq”
pages are 13.6× hotter than “pc” pages on average.

Hotness-based tiering policies prioritize placing hot pages
(in “seq”) in the fast-tier, while cold pages (in “pc”) are
relegated to the slow-tier. Figure 1c shows the limitations of
this approach. All the performance results are normalized to
the fast-tier-only configuration (All-on-DRAM), where higher
values represent better performance.
1 Placing “seq” pages in the fast-tier and “pc” pages in the
slow-tier (Hot-on-DRAM) degrades the performance to 52.4%
of All-on-DRAM, nearly doubling the runtime.

2 Placing cold “pc” pages in the fast-tier and hot “seq” pages
in the slow-tier (Cold-on-DRAM) achieves a 34% performance
gain over the “ideal” hotness-based placement in 1 .
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Figure 2: AOL-based performance prediction (§3). (a) shows that LLC-Stalls effectively captures workload performance slowdowns
on the slow-tier. (b) presents the base predictor (𝑃) based on LLC-Stalls, but tends to overestimate slowdowns for high-MLP workloads. (c)
reveals the average stalls per LLC-miss can vary by 4× across workloads. (d) models the workload-specific correction factor 𝐾 as a function of
AOL; the blue curve fits the observed hyperbolic relationship. (e) integrates 𝐾 into the base predictor, yielding an AOL-based predictor that
significantly improves prediction accuracy. (f) demonstrates that the AOL-based predictor generalizes to fine-grained time-series prediction.

3 When all pages are placed in the slow-tier (CXL bar), the
performance is 47.4%, only slightly worse than 1 . Despite
lower access frequency, the serialized nature of “pc” accesses
dominates workload performance.
4 State-of-the-art tiering designs such as Colloid, Nomad, and
TPP underperform the Cold-on-DRAM setup, despite employing
various optimizations.
5 State-of-the-art also underperforms NoTier, a baseline
that relies solely on the first-touch allocation policy without
proactive page migrations. They fall behind NoTier by 12–14%
and trail the ideal All-on-DRAM by 40%. This demonstrates
that tiering can degrade performance due to the migration
overhead and failure to identify truly performance-critical
pages, which is not uncommon in real-world (§6).

The results highlight the inherent limitations of frequency-
based hotness metrics and the corresponding hotness-driven
tiering policies, where both incorrect data placement and
migration overhead lead to suboptimal system performance.

3 Memory Performance Prediction
In this section, we define the Amortized Offcore Latency
(AOL) metric for estimating the performance impact of slow-
tier accesses, and demonstrate that AOL is accurate and
adaptive across workloads at fine granularity.

3.1 Relating Slow-tier Performance to CPU Stalls

We begin with an offline slowdown analysis of 56 workloads
from SPEC CPU 2017 [41] and GAPBS [42]. We measure
the slowdown of each workload on the slow-tier compared
to the fast-tier, and collect key CPU performance counters
(Table 1) for intra- and inter-workload analysis.

We find that performance degradation on the slow-tier
is predominantly caused by increased CPU stalls due to
LLC misses, which we refer to as LLC-Stalls (or 𝑠𝐿𝐿𝐶 for
simplicity) [11, 43]. The slowdown (𝑆) can be approximated
as: 𝑆 = Δ𝑐

𝑐
≈ Δ𝑠𝐿𝐿𝐶

𝑐
, where 𝑐 is the number of CPU cycles on

fast-tier, and Δ𝑠𝐿𝐿𝐶 is LLC-Stalls increase on the slow-tier.

Table 1: Intel PMU counters for AOL predictor (§3). ORO is
short for OFFCORE REQUESTS OUTSTANDING. Requests are demand reads.

𝑠𝐿𝐿𝐶 CYCLE ACTIVITY.STALLS L3 MISS, # of LLC stall cycles
𝑐 CPU CLK UNHALTED.THREAD, # of cycles
𝐴1 ORO.CYCLES WITH DEMAND DATA RD, cycles w/ pending requests
𝐴2 ORO.DEMAND DATA RD, # of pending requests per cycle
𝐴3 OFFCORE REQUESTS.DEMAND DATA RD, # of requests to uncore

It is important to distinguish LLC-Stalls from LLC misses.
While LLC misses count how often memory accesses reach
fast-tier/slow-tier, LLC-Stalls measure the actual stalled CPU
cycles waiting on such memory accesses. Thus, LLC-Stalls
offer a more direct and actionable signal of slow-tier impact
on application performance. Due to the 2–3× latency increase
of the slow-tier [8, 22], each LLC miss results in more stall
cycles, making LLC-Stalls a natural proxy for slowdown.
Figure 2a shows the CDFs of actual and predicted slowdowns
using Δ𝑠𝐿𝐿𝐶

𝑐
for all the 56 workloads. Estimated slowdowns

deviate by less than 4% from measured values, confirming
that the added CPU stalls induced by slow-tier accesses largely
explain workload slowdowns.

3.2 LLC-Stalls for Performance Prediction

While Δ𝑠𝐿𝐿𝐶

𝑐
accurately estimates slowdown, computing

Δ𝑠𝐿𝐿𝐶 requires measuring workload performance on both the
fast-tier and the slow-tier, limiting its use to offline settings.
To enable online prediction, we simplify it using the fast-tier
metric 𝑠𝐿𝐿𝐶

𝑐
based on the following observation.

Our analysis shows that Δ𝑠𝐿𝐿𝐶 and 𝑠𝐿𝐿𝐶 are strongly
correlated: workloads with high LLC-Stalls on the fast-tier
tend to incur proportionally more stalls on the slow-tier. This
allows us to approximate Δ𝑠𝐿𝐿𝐶 ≈ 𝑘 × 𝑠𝐿𝐿𝐶 , where 𝑘 is
a constant. Substituting into the slowdown formula, we
get 𝑆 =

Δ𝑠𝐿𝐿𝐶

𝑐
≈ 𝑘 × 𝑠𝐿𝐿𝐶

𝑐
. We define the base predictor

𝑃 as 𝑃 =
𝑠𝐿𝐿𝐶

𝑐
. Figure 2b shows that 𝑆 and 𝑃 are strongly

correlated across 85% of workloads, with a Pearson coefficient
of 0.869. The red line shows the fitted model; purple dots are
measured slowdowns offline.

3

https://perfmon-events.intel.com/index.html?pltfrm=skylake_server.html&evnt=CYCLE_ACTIVITY.STALLS_L3_MISS
https://perfmon-events.intel.com/index.html?pltfrm=skylake_server.html&evnt=CPU_CLK_UNHALTED.THREAD
https://perfmon-events.intel.com/index.html?pltfrm=skylake_server.html&evnt=OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DATA_RD
https://perfmon-events.intel.com/index.html?pltfrm=skylake_server.html&evnt=OFFCORE_REQUESTS_OUTSTANDING.DEMAND_DATA_RD
https://perfmon-events.intel.com/index.html?pltfrm=skylake_server.html&evnt=OFFCORE_REQUESTS.DEMAND_DATA_RD


3.3 AOL for Accurate Prediction

Amortized Offcore Latency (AOL). 𝑃 is accurate for low-
MLP workloads but fails to model high-MLP workloads
(outliers in Figure 2b). Upon further investigation, 𝑃 tends
to overestimate slowdown for high-MLP workloads (>4 on
our platform). This overestimation stems from its implicit
assumption that all LLC misses equally contribute to CPU
stalls, ignoring the latency-masking effect of MLP. Figure 2c
shows that the average LLC-Stalls per LLC miss vary signif-
icantly across workloads, ranging from 60 to 240 cycles (a
4× difference). High-MLP workloads exhibit fewer stalls per
miss, reflecting reduced sensitivity to slow-tier latency.

While MLP’s conceptual impact on performance is intu-
itive, its quantitative effect is much harder to model. Naively
integrating MLP into the predictor (e.g., 𝑃

MLP ) yields poor
correlation with slowdown. Moreover, MLP alone is insuffi-
cient for modeling slowdown. Its latency-masking benefits
diminish as memory latency increases. To address this, we
define AOL =

Latency
MLP and use it to enhance the predictor.

AOL-Based Prediction Model. We use AOL to refine the
base predictor 𝑃 by regulating its overestimation for high-MLP
workloads. Specifically, we model slowdown as 𝑆 = 𝑃 × 𝐾,
where 𝐾 is a function of AOL that quantifies how MLP
amortizes the base predictor’s overestimation. 𝐾-vs.-AOL
is derived via offline cross-workload modeling following an
empirical approach. For each workload, given the measured
slowdown 𝑆 and 𝑃 =

𝑠𝐿𝐿𝐶

𝑐
, we compute 𝐾 = 𝑆

𝑃
, resulting

in the purple data points in Figure 2d (X-axis is AOL and
Y-axis is 𝐾). The nonlinear relationship between 𝐾 and AOL
indicates that MLP does not scale down 𝑃 by a constant factor.
This aligns with intuition, doubling MLP from 2 to 4 does
not yield a 2× performance gain, as modern CPUs employ
various latency-hiding optimizations that complicate MLP’s
direct impact on slowdown.

Observing that 𝐾 follows a hyperbolic trend with asymp-
totic growth behavior [44], we fit the curve using 𝐾 =

𝑓 (AOL) = 1
𝑎+ 𝑏

AOL

, where 𝑎 and 𝑏 are constants. The resulting
fit is shown as the blue curve in Figure 2d. Importantly,
𝑎 and 𝑏 are hardware-dependent (e.g., CPU and memory)
but workload-independent. They can be calibrated offline
using microbenchmarks with extreme access patterns (e.g.,
sequential vs. pointer-chasing), which represent two ends of
the MLP spectrum, as discussed in §2.1. Users do not need
to repeat the extensive benchmarking process we performed
to profile and model 𝐾 = 𝑓 (AOL). This makes the model easy
to deploy across platforms, enabling fast and accurate online
prediction with minimal profiling overhead. Figure 2e shows
that AOL significantly improves prediction fidelity, achieving
a Pearson correlation of 0.951 (closer to 1 indicates stronger
linear relationship). While our model is not perfect, evidenced
by an outlier in the bottom right of Figure 2e, it generalizes
well across diverse workloads (§6). We leave more accurate
modeling to future work [43].

Lightweight Measurement. All components needed for
AOL and the AOL-based predictor are derived from just four
hardware counters (Table 1): 𝐴1, 𝐴3, 𝑐, and 𝑠𝐿𝐿𝐶 .
1 Latency =

𝐴2
𝐴3

, where 𝐴2 is the accumulative number of
inflight requests per cycle and 𝐴3 is total requests to uncore.
2 MLP = 𝐴2

𝐴1
, where 𝐴1 counts cycles with ≥1 inflight request.

3 AOL =
Latency
MLP =

𝐴1
𝐴3

.
4 Base predictor 𝑃 =

𝑠𝐿𝐿𝐶

𝑐
measures stall pressure.

5 We compute 𝐾 = 𝑆
𝑃

and model it with 𝐾 = 𝑓 (AOL) = 1
𝑎+ 𝑏

AOL

.
6 Final predictor is

𝑆 = 𝑃 × 𝐾 ≈ 𝑠𝐿𝐿𝐶

𝑐 × 1
𝑎+ 𝑏

AOL

Here, AOL captures how MLP and memory access latency
jointly shape performance.

AOL vs. Slowdown. We now present the properties of
𝐾 = 𝑓 (AOL) and how it relates to slowdown via 𝑆 = 𝑃×𝐾 , by
analyzing the (blue) curve in Figure 2d. The observed AOL
range spans mostly (0, 130] cycles, with 𝐾 values in mainly
(0, 1] on our testbed (§6). This formulation captures how
AOL reflects the impact of CPU stalls on slowdown: as AOL
increases (i.e., high latency or low MLP), 𝐾 approaches its
upper bound of 1, making 𝑆 nearly linear with 𝑃. Conversely,
small AOL values (e.g., high MLP) indicate that most stalls
are masked, yielding smaller slowdowns with 𝐾 closer to 0.

The curve also reveals diminishing returns at high AOL.
For 70% of workloads with AOL below 90 cycles, 𝐾 increases
steeply from 0.2 to 0.8, indicating that 𝑃 requires significant
correction only when AOL is low. A small 𝐾 (e.g., 0.5)
implies that 𝑃 must be scaled down by 2× to match observed
slowdown. In contrast, the remaining 30% of workloads with
higher AOL require less than 20% adjustment, suggesting
that raw stall time already tracks slowdown closely. When
memory bandwidth is unconstrained and latency is stable,
MLP becomes the dominant factor in AOL and thus drives 𝐾 ,
quantifying its direct influence on slowdown.

AOL remains effective even under bandwidth contention.
Under bandwidth pressure, queuing delays inflate latency,
which raises AOL. This behavior reflects the growing perfor-
mance cost, for both latency- and bandwidth-bound workloads.

Time-Series Prediction. Beyond workload-level modeling,
the AOL-based predictor supports fine-grained, time-series
slowdown prediction. This enables accurate performance esti-
mation over short execution intervals, essential for adaptive,
online/offline tiered memory management (§4–§5). Figure 2f
shows the prediction results for a graph workload (tc-twitter).
Compared to the base predictor 𝑃 (pink), which fails to capture
the dynamics, especially in the first ∼50s, the AOL-based pre-
dictor 𝑃 ·𝐾 (blue) closely matches the actual slowdown (black),
demonstrating its effectiveness for interval-level prediction.

Next, we show how AOL and its predictors can be used to
guide data placement and migration in tiered memory systems.
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4 Soar: Rank-based Static Object Allocation
Existing tiered systems rely on the first-touch policy, supple-
mented by LRU-based page reclamation to maximize fast-tier
usage [4, 45]. We argue tiered memory allocation should
prioritize performance-critical objects for fast-tier placement.

We seek a near-optimal initial object placement strategy,
eliminating the need for costly page migrations. Achieving
this requires capturing object-level performance contributions
across diverse object types and temporal dynamics. To this
end, we introduce Soar1, an AOL-driven profiling-guided
memory allocation policy based on object rankings according
to their accumulative contribution to workload performance.

While AOL-based prediction (§3) is effective at the work-
load level, it falls short for individual objects due to the
semantic gap between architectural events (Table 1) and
object-level memory accesses. We develop a novel object-
level profiling algorithm that refines AOL-based performance
prediction to operate at object granularity. The key insight is
to distribute CPU stalls across objects proportionally to their
relative access frequencies based on the observed MLP and
latencies, thereby approximating each object’s performance
impact to application performance accurately.

4.1 Object-Level Performance Profiling

Figure 3 ( 1 – 8 ) illustrates Soar’s profiling workflow, which
periodically collects and processes three types of metrics:
object metadata via object tracking, memory accesses via
PEBS-based LLC-miss sampling, and temporal performance
via AOL-based prediction. Soar’s key innovation lies in
associating these data streams to derive a quantified per-object
performance impact (a “score”) for ranking. Soar profiler
runs the workload once on the fast-tier to gather all required
metrics with minimal performance overhead.

4.1.1 Object Profiling
We now describe the three data flows used for Soar’s object
profiling in detail.

Object Tracking/Flow (𝐹𝑂, 1→ 2 ): We track object meta-
data to analyze usage patterns. Using LD PRELOAD, we intercept
(de)allocations via malloc()/free() and mmap()/munmap().
For each object, we record its lifespan ([𝑇alloc, 𝑇free]), virtual
address (vaddr), size, allocation type such as malloc() or
mmap(). We group objects by call chain via backtrace(),
treating those with identical call stacks as the same object
type, as they originate from the same code path and share
access patterns. (De)allocations are then matched by vaddr,
with each object represented as a five-element tuple, forming
the object flow (𝐹𝑂).

Memory Access Tracking/Flow (𝐹𝑀 , 3→ 4 ): We use Intel
Processor Event-Based Sampling (PEBS) to track the temporal
and spatial distribution of memory accesses. Specifically, we

1Soar stands for Static Object Allocation based on Ranking.

[T, obj, vaddr, size, frequency, access_ratio]

Output: [T, obj, vaddr, size, type, score]

Object Tracking Performance Prediction

LLC-Stalls,

Offcore events for AOL

Memory Access Tracking

Object Ranking

[T, vaddr]

Object Flow

[Talloc, Tfree, vaddr, size, type]
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malloc/free, mmap/munmap

(group by call chain)

LLC-miss sampling

using PEBS

   

[T, slowdown, AOL]

Performance Event Flow6Memory Access Flow

Figure 3: Soar profiling (§4.1). Soar tracks multiple flows of
information to derive object rankings based on performance impact.

sample LLC misses, recording the access timestamp (𝑇) and
virtual address (vaddr). High-fidelity sampling is unnecessary:
a low sampling rate (e.g., 3000) suffices, imposing negligible
overhead and avoiding timing skew, which is critical for
profiling short-lived objects. Each PEBS sample forms an
entry in the memory access flow (𝐹𝑀 ).

Performance Analysis/Flow (𝐹𝑃 , 5→ 6 ): We leverage AOL-
based prediction to estimate memory access performance im-
pact (§3). Performance is sampled periodically over workload
execution (e.g., every one second, configurable). Each sample
forms an entry in the performance flow (𝐹𝑃), including the
timestamp, predicted performance, and AOL.

4.1.2 Unifying Object Flows
Next, we unify the three flows (𝐹𝑂, 𝐹𝑀 , 𝐹𝑃) for analyzing
object characteristics and convert them into a comprehensive
per-object performance profile.

We first merge 𝐹𝑂 and 𝐹𝑀 to associate memory accesses
with objects. If the timestamp and address of a memory access
in 𝐹𝑀 fall within the lifecycle and address range of an object
in 𝐹𝑂, the memory access is attributed to the corresponding
object. All memory accesses in 𝐹𝑀 are examined and matched
to objects in 𝐹𝑂, constructing a memory access time-series
flow (𝑇𝑀 ) for each object (𝑂).

For each object, the time-series flow (𝑇𝑀 , 7 ) is generated
over its lifetime. Each entry in 𝑇𝑀 includes the timestamp, ID,
address, size, and access frequency between the current and
previous timestamps. After constructing all 𝑇𝑀 data flows,
the number of memory accesses (𝑐) to each object during
each profiling period can be computed. The memory access
ratio (𝑅) for each object is defined as 𝑅 = 𝑐∑

𝑖 𝑐𝑖
. It represents

the weight of an object’s memory accesses relative to the total
memory accesses, which will be used to assign object-level
performance slowdowns (§4.2).

We then merge 𝑇𝑀 with 𝐹𝑃 to associate the predicted
performance metrics with each object. The time-series pre-
dicted performance is derived from the performance events
flow (𝐹𝑃), where the predicted performance and AOL are
computed for each time interval, along with the timestamp,
forming the time-series performance flow (𝑇𝑃). By combining
𝑇𝑀 and 𝑇𝑃 (Algorithm 1, §4.2), the predicted performance
and AOL are associated with live objects during each time
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Algorithm 1 Object scoring (every profiling period)
Input: 1) Access ratio (𝑅); 2) Predicted perf (𝑝); 3) AOL (𝑙)
Output: Object score (𝑠).

1: factor = 𝐹 (𝑙) ⊲ Decide perf scale-factor based on AOL
2: if 𝑅 < 𝑅𝑚𝑖𝑛 and 𝑙 < 𝐿0 then
3: 𝑠 = 𝑅 × 𝑝 × factor ⊲ Low-MLP object
4: else if 𝑅 > 𝑅𝑚𝑎𝑥 and 𝑙 < 𝐿0 then
5: 𝑠 = 𝑅 × 𝑝 / factor ⊲ High-MLP object
6: else
7: 𝑠 = 𝑅 × 𝑝 ⊲ MLP=1, even hotness
8: end if

period. This process results in a comprehensive time-series
object flow/profile (𝑇𝑂, 8 ) constructed for each object.

4.2 Object Ranking

The object ranking process quantifies each object’s cumula-
tive contribution to workload performance over its lifetime.
For all active objects during a profiling interval, and given
the predicted workload performance (§3.3), the core chal-
lenge is attributing performance impact to individual objects.
This is non-trivial because modern hardware does not pro-
vide mechanisms to directly measure per-object performance
contributions. While the AOL-based predictor accurately
estimates slowdown at the workload level, it does not bridge
this granularity gap. Furthermore, current CPUs do not
expose per-access CPU stall information, making fine-grained
attribution infeasible. Soar employs a simple yet effective
heuristic: it estimates relative object contributions based on
MLP and access frequency, detailed in Algorithm 1.

In an extreme scenario with no memory overlapping ef-
fect during the time period (i.e., MLP=1), the predicted
performance slowdown can be distributed proportionally to
the memory accesses (𝑐) for each object. Let the predicted
performance slowdown for the period be 𝑝. The score for
each object is then computed as 𝑝 × 𝑅 (Lines 6–7). This is
true because each memory access contributes equally to the
overall predicted performance slowdown under MLP=1.

When memory overlapping effects are significant (high
MLP), objects with a higher number of memory accesses
dominate the memory overlapping behavior. Their perfor-
mance contributions (and scores) should be amortized to
account for their likely higher MLP compared to other objects.
This scenario corresponds to Lines 4–5 in Algorithm 1. Sim-
ilarly, for objects with lower MLP, their average per-access
performance contribution is higher than that of objects with
higher MLP. Therefore, their scores should be scaled up to
reflect this increased performance contribution (Lines 2–3).
𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are used to differentiate high- and low-

frequency accessed objects. The “hot” objects are more likely
to be affected by memory overlapping when AOL is low, while
the scores of “cold” objects need to be scaled up. For example,
Figure 1b illustrates an extreme case: the score of a pointer-

chasing object should be higher than that of a sequential object
due to the low AOL. 𝐿0 is the threshold used to determine
whether the current time period exhibits significant MLP. This
threshold is derived from our microbenchmark results, which
establishes the relationship between 𝐾 and AOL in Figure 2d.
For instance, when AOL is more than 100 cycles, 𝐾 stabilizes
to a constant, thus we set 𝐿0 to be 100.

The scale factor 𝐹 (𝑙) (Line 1) adjusts per-object perfor-
mance estimates based on access frequency (§3.3), analogous
to how 𝐾 in Figure 2d amortizes latency at the workload level.
We use AOL to determine this scaling factor. When AOL
is low, we set the factor to 8, corresponding to the MLP of
access patterns with high parallelism (e.g., the sequential mi-
crobenchmark in §2, which has MLP=7). Dividing an object’s
access count by 8 effectively cancels out the masking effects
of MLP. For objects with very low access frequency (e.g.,
pointer-chasing), we amplify their estimated performance
impact by multiplying their access count by a factor between
2 and 8, determined by a stepwise function of the observed
AOL (higher AOL corresponds to a larger factor). We later
show that a similar approach is also effective for regulating
page migrations in §5.

Aggregating per-interval scores across all time intervals for
each object is straightforward: Once a score (𝑠) is assigned
to an object at a given time interval, it is accumulated over
the entire lifecycle of that object type. This approach aligns
with the memory allocator’s primary objective, minimizing
performance degradation when allocating objects by ensuring
that all performance contributions are accounted for. This
contrasts with online tiering policies, which often prioritize
recent accesses by giving them more weight [17, 19].

After the entire process is complete, each object type is
assigned a score 𝑠. To account for varying object sizes, a unit
score is introduced as 𝑠′ = 𝑠

sizeof(𝑂) . When comparing two
objects with the same score 𝑠, the larger object is less valuable
to place on fast-tier due to its lower unit score.

4.3 Object Allocation

Soar allocation decision is based on the rank of objects by
their unit scores. It aims to place the top-𝑁 objects in fast-tier,
where it tries to maximize 𝑁 while ensuring that the total
size of the top-𝑁 objects does not exceed fast-tier size. Since
fast-tier size does not always match the total size of the top-𝑁
objects, we attempt to bind as many top-ranking objects to fast-
tier as possible from a sorted list of objects (𝑂1, . . . , 𝑂𝑛) with
unit scores (𝑠′1, . . . , 𝑠

′
𝑛) in descending order, where 𝑠′

𝑖
≥ 𝑠′

𝑖+1.
For short-lived objects that may be interleavingly allocated
with others, the sum of their occupied size on the fast-tier is
taken as the maximum of their individual sizes. If free space is
insufficient to fully accommodate the next top-ranking object
when the request arrives, Soar falls back to the first-touch
approach: the object is placed in the fast-tier first and spills
over to the slow-tier when the fast-tier becomes full.

6



The sorting order of objects by unit scores does not nec-
essarily correspond to the order of their allocation requests.
For instance, the (𝑘 + 1)th ranked object may be allocated
before some of the top-𝑘 objects. In such cases, pages of the
(𝑘 + 1)th object are demoted to the slow-tier until enough
space becomes available in the fast-tier for the top-𝑘 objects.
Page demotion is triggered only when space is insufficient
for objects that’s destined to stay in fast-tier, making the total
demotion overhead low as it occurs rarely. Objects that are
neither fully nor partially allocated to the fast-tier are allocated
to the slow-tier.

We use numa alloc() from libnuma to overload memory
allocation functions and bind allocations to the fast-tier/slow-
tier. Objects that can be flexibly placed on either tier retain
their original allocation path without being overloaded. This
approach requires no changes to application code, making
Soar non-intrusive and easy to use. To identify which
allocation should be redirected, Soar inspects the call chain
at each allocation site to distinguish object types. It supports
various languages (e.g., C/C++, Python) and does not depend
on specific memory allocators. For example, Soar can also
integrate with heterogeneous memory-aware allocators such
as memkind [46, 47], which mitigates potential fragmentation
for small objects, as numa alloc() operates at page granularity.

4.4 Use Cases and Limitations

Modern applications such as graph processing, ML/AI, and
HPC often pre-allocate objects that persist for extended pe-
riods, making them ideal candidates for Soar. Although
Soar adopts static allocation based on offline profiling, it
can be extended to support online profiling for long-running
workloads. One approach is to use past profiling data to
predict future object performance.

Although Soar requires a single run of the workload on the
fast-tier for profiling object scores, profile-guided optimiza-
tion is a widely adopted practice for improving datacenter
efficiency [48–50]. Another limitation is that the current Soar
ranking algorithm assumes uniform memory access distribu-
tion across each object, leaving room for future optimizations
for objects with heterogeneous access patterns.

5 Alto: AOL-based Adaptive Page Migrations
In this section, we show that AOL can also address a key bot-
tleneck in existing tiering designs: excessive page migrations
that disregard performance impact, leading to unnecessary
overhead and degraded performance. By prioritizing the
migration of performance-critical pages and filtering out less
impactful ones, AOL improves overall tiering efficiency.

5.1 Alto Overview

Existing tiering designs adopt aggressive page migration
strategies: when a “hot” page is detected, it is immediately
promoted to the fast-tier, either because space is available

or by demoting cold pages to make room. This policy has
several drawbacks. (a) Migrating hot but non-performance-
critical pages yields no benefit, as these accesses do not induce
CPU stalls. (b) Page migrations are long-latency, blocking
operations that impose substantial overhead. Per our measure-
ments, migrating a page takes on average 12µs, during which
application threads are stalled if they access the migrating page.
(c) This challenge is exacerbated on CXL, where the latency
and bandwidth gap with DRAM is narrowing, making tiering
overhead more pronounced. Consequently, many state-of-the-
art tiering systems underperform even naive first-touch-based
baselines due to excessive migration overhead. (d) Worse,
performance-critical cold pages are often ignored by access-
frequency heuristics, missing opportunities for performance
gains. These limitations call for a fundamental reassessment
of assumptions in current tiering policies.

Ideally, pages should be migrated only when they are truly
performance-critical, and unnecessary migrations should be
avoided when the workload is insensitive to slow-tier accesses.

To address these issues, we propose Alto2, an adaptive
tiering orchestration policy that dynamically regulates page
migration intensity. Alto leverages the AOL metric to detect
periods of high memory access overlap, during which slow-tier
accesses have minimal performance impact. By filtering out
non-critical migrations, Alto reduces overhead and improves
overall performance. Alto is lightweight and easily integrates
into existing tiering systems, enhancing efficiency without
requiring major architectural changes.
Non-Goal: While integrating AOL to track per-page perfor-
mance and design AOL-centric migration policies is promis-
ing, it presents unique challenges, particularly in estimating
page-granular performance using coarse-grained counters (out
of scope for this work). We plan to explore the broader tiering
design space enabled by AOL in future work.

5.2 Alto Design

Leveraging AOL, Alto regulates page migrations when the
overlapping effect of memory accesses (high MLP) is evident.
In other words, we can use AOL to identify non-performance-
critical periods and adjust the intensity of tiering operations
accordingly. The detailed Alto page migration regulation
scheme is shown in Algorithm 2.

Let us first consider the case where memory bandwidth is
not a bottleneck, so offcore latency remains stable and low,
making MLP the dominant factor in AOL.

(a) Low AOL: Low AOL indicates high MLP, meaning
memory latency is largely masked and potential slowdown is
minimal. In this case, there is less need for page promotions.
Alto limits the rate of hot page detection, page migrations,
or both, to reduce unnecessary overhead.

(b) High AOL: High AOL suggests serialized, latency-
sensitive memory accesses where correct page promotions

2Alto stands for AOL-based Layered Tiering Orchestration.
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Algorithm 2 AOL-regulated page migrations (e.g., every 1s)
Input: AOLlow ← 40, AOLhigh ← 100 ⊲ Profiled offline
Output: Adjusted page migration ratio (Scale).

1: Profile the current AOL (𝑙)
2: if 𝑙 ≤ AOLlow then
3: Scale← 0 ⊲ Disable page promotions
4: else if 𝑙 ≥ AOLhigh then
5: Scale← 1 ⊲ Enable all page promotions
6: else
7: Scale← 𝐹 (𝑙) ⊲ Partial page promotions
8: end if

can yield significant performance gains. Alto responds by
enabling more aggressive page detection and migration to
alleviate critical bottlenecks.

Based on the above observations, Alto employs two AOL
thresholds to guide page migration regulations: a lower bound
(AOLlow) and an upper bound (AOLhigh). When AOL falls below
the lower bound, Alto limits or disables tiering operations to
reduce overhead (Lines 2–3). When AOL exceeds the upper
bound, Alto enables full-speed tiering operations (i.e., no
change to the default tiering migration policy, Lines 4–5).

Since the impact of AOL on performance follows a hyper-
bolic curve (Figure 2d), where small changes near the lower
bound can lead to large performance differences (§3.3), a more
fine-grained approach could involve dynamically adjusting
tiering intensity based on the observed AOL value. This
enables more nuanced and adaptive tiering decisions to better
capture workload dynamics. We use a stepwise function to
adjust page migration intensity. Specifically, Alto gradually
reduces the page promotion rate as AOL decreases while
AOL falls within [AOLlow, AOLhigh] (Lines 6–7). The function
𝐹 (𝑙) (Line 7) mirrors the procedure used to determine the
performance scale factor 𝐹 (𝑙) in Algorithm 1 in Soar (§4).

The AOL thresholds in Alto are derived from the blue
curve in Figure 2d, modeled as 𝐾 = 𝑓 (AOL) = 1

𝑎+ 𝑏
AOL

. We
use an empirical approach based on two microbenchmarks
representing extreme MLP cases: a pointer-chasing workload
for low MLP and a sequential workload for high MLP (§2).
These benchmarks yield low/high AOL values of 40/100
cycles and 25/95 cycles on our two experimental platforms.
We conduct detailed sensitivity studies on these values in §6.

5.3 Alto Integration with Existing Tiering Systems

Alto can be seamlessly integrated into existing tiering sys-
tems, such as TPP [4], NBT [36, 37], Nomad [22], and
Colloid [23], to enhance their efficiency and reduce overhead.
This integration is straightforward as Alto builds upon their
existing policies. Below, we provide a brief overview of how
Alto can be incorporated into these systems.

Alto+TPP. TPP is a state-of-the-art tiering design for CXL,
which adopts page reclamations for pages demotions and
NUMA hinting faults for page promotions with a set of aggres-

sive heuristics to identify hot pages. We implement Alto+TPP
by constraining the page promotion rate proportionally to
AOL based on offline-profiled thresholds.

To gradually reduce page promotion rate as AOL decreases,
in our implementation, Alto+TPP periodically ignores certain
potential promotion candidate pages. For instance, if we
aim to allow 20% of TPP-identified candidate pages to be
promoted, we allow the first two pages of every 10 pages to
go through.

To monitor AOL, we utilize Linux perf to collect the CPU
counters periodically (Table 1), e.g., every 1s. Subsequently,
we calculate AOL based on these counters, enabling us to
dynamically adjust the page promotion rate based on the
observed AOL. Our user-level tool is lightweight and imposes
no additional overheads. The kernel side only involves ∼30
LOC changes to page migration policies in the Linux memory
subsystem. We use a default AOL sampling period of 1s for
Alto. While lower sampling period possibly enables more
fine-grained Alto-based migration regulations and better
performance, we find that 1s is sufficient to capture AOL and
workload dynamics.

Alto+NBT, Alto+Nomad, and Alto+Colloid. Unlike TPP,
NBT, Nomad, and Colloid adopt less aggressive page migra-
tion strategies. They rely on NUMA hinting faults for tracking
page accesses, which functions similarly to standard NUMA
balancing (i.e., AutoNUMA [51]). Their page scanning
mechanism sequentially examines all Virtual Memory Areas
(VMAs) in each process. During VMA scanning, the system
sets each page’s flag to PAGE NONE. Subsequently, when a page
is accessed, a minor page fault is triggered. If the page resides
on a node other than its preferred node, it is marked as a
candidate for migration to the preferred node.

In both NBT and Nomad, only pages located in the slow-
tier are scanned, with the fast-tier serving as the preferred
node for all pages. To optimize this process, we implement
Alto by limiting the number of pages set to PAGE NONE during
periods of significant memory access overlapping (low AOL),
effectively regulating promotions. Colloid samples pages in
both tiers following the same mechanism. For Alto+Colloid,
we only regulate page migrations from slow-tier to fast-tier.

6 Evaluation
Our evaluation seeks to answer three key questions: (1)
How do Soar (§6.2–§6.4) and Alto (§6.5–§6.7) compare to
state-of-the-art tiering policies? (2) How sensitive are their
performance gains to AOL threshold choices? (§6.8) (3) How
do they perform under bandwidth contention? (§6.9–§6.10)

6.1 Experimental Setup

We evaluate Soar and Alto on two platforms. The first is
a CloudLab dual-socket Intel Skylake server (“SKX”) with
two 10-core CPUs and 96 GB DDR4 DRAM per socket
[52]. We emulate CXL by lowering the uncore frequency and
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Figure 4: Soar on SKX/NUMA (§6.2). Soar consistently out-
performs all other schemes under bc-urand across various slow-tier
ratios, whereas state-of-the-art approaches frequently underperform,
even compared to NoTier, especially under higher slow-tier ratios.

disabling cores on one NUMA node, resulting in fast/slow-tier
latencies of 90/190 ns (2.1×) and bandwidths of 49/17 GB/s.
The second platform is a local Intel Sapphire Rapids server
(“SPR”), with a 32-core CPU per socket, 192 GB DDR5
DRAM, and an ASIC-based 128 GB CXL memory expander
(PCIe 5 ×8). Fast/slow-tier latencies are 114/271 ns (2.4×),
and bandwidths are 218/26 GB/s.

We compare Soar and Alto against TPP [4], Nomad [22],
NBT [36–38], Colloid [23], and a first-touch-only baseline
(“NoTier”). NBT is the successor to AutoNUMA in Linux,
with upstreamed optimizations from TPP. Colloid provides
three implementations built on top of HeMem [17], Memtis
[19], and TPP. We use the Colloid implementation built
on top of TPP, which includes CXL-specific optimizations.
Performance is reported as slowdown relative to fast-
tier-only (DRAM) performance, which provides a fair and
consistent comparison across various target systems. Lower
slowdown (closer to 0) indicates better performance. None of
the tiering systems outperform the fast-tier-only configuration.

Our workloads span graph analytics [42], machine learning
[53], caching [54], and HPC [41], running under various
fast/slow-tier ratios (mainly 10–90%, relative to workload’s
RSS). Each workload runs with 8 threads by default (unless
otherwise noted), with bandwidth usage of 2.3–21 GB/s
and RSS of 8–35 GB. We present detailed results for a few
representative graph workloads and summarize the rest later.

6.2 Soar for Graph Processing

bc-urand is a betweenness centrality workload from the
GAPBS benchmark suite [42], executed on a synthetic uni-
formly random undirected graph. We use the default config-
uration, which generates a graph with 134 million vertices
and 2147 million edges. The algorithm estimates centrality
by computing shortest paths from a subset of source vertices,
resulting in irregular and sparse memory accesses. Its memory
footprint is ∼20 GB. The combination of large working set
size (∼17 GB) and random access patterns makes bc-urand a
representative stress test for tiered memory systems. Figure 4
shows detailed Soar performance results compared to state-
of-the-art tiering systems across various slow-tier ratios.
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Figure 5: Object-level accesses and AOL in Soar (§6.2).
High object access frequency correspond to low AOL and cross-
object access frequency correlates with MLP, which can be used to
approximate object performance.

Table 2: Soar object statistics and rankings (§6.2). The
object information includes size, lifetime, access frequency, and
computed Soar score. Rankings are provided based on three distinct
criteria: First-touch (FT), Frequency (Freq), and Soar.

# Obj Size Time Freq Score Ranking
FT Freq Soar

𝑂1 5fb2 536MB 139s 4.7M 3.5𝑒−8 8 1 1
𝑂2 6d68 536MB 208s 201K 1.9𝑒−8 6 6 2
𝑂3 6fe7 536MB 60s 1.3M 1.8𝑒−8 10 2 3
𝑂4 6d27 1073MB 208s 1.2M 1.7𝑒−8 5 3 4
𝑂5 b69c 1073MB 208s 420K 1.4𝑒−8 3 4 5
𝑂6 6cc3 536MB 208s 20.3K 1.7𝑒−9 4 7 6
𝑂7 6db6 536MB 208s 309K 1.2𝑒−9 7 8 7
𝑂8 b62e 17GB 223s 313K 5.3𝑒−10 2 5 8
𝑂9 5c24 327KB 14s 0 0 9 9 9
𝑂10 b5fb 1073MB 139s 0 0 1 10 10

Takeaway #1: Soar outperforms all baselines under bc-urand
across all slow-tier ratios. Soar maintains less than 20%
slowdown even under 90% slow-tier memory, demonstrating
robust performance under aggressive tiering conditions.

In contrast, Nomad suffers up to 217% slowdown, and
both NBT and Colloid degrade steadily (>60% slowdown)
as the slow-tier ratio increases. Under high slow-tier ratios
(>80%), all tiering baselines underperform NoTier by 10–20%
due to excessive page migrations. Soar is the only system
that outperforms NoTier consistently. We defer a detailed
analysis of the inefficiencies in existing tiering designs to
§6.5. These results highlight the effectiveness of Soar’s
performance-criticality-aware object allocation in maintaining
good performance even under severe memory pressure.

Understanding Soar object rankings. Table 2 and Figure
5 summarizes the object-level statistics and rankings. The
left five columns report each object’s ID, address, size, life-
time, and access frequency. The “Score” column reflects
the per-object unit-score computed using Algorithm 1, which
determines Soar object rankings (Column 9). For compar-
ison, we also include rankings based on first-touch (“FT”,
Column 7) and frequency-only (“Freq”, Column 8) policies.
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Table 3: Soar object placement (50% slow-tier ratio).
Fast-tier Slow-tier

Soar 𝑂1–𝑂8 𝑂8–𝑂10
FT 𝑂10, 𝑂8 𝑂1–𝑂7, 𝑂9
Freq 𝑂1, 𝑂3–𝑂5, 𝑂8 𝑂2, 𝑂6–𝑂7, 𝑂9–𝑂10

Object information is as follows: 𝑂8 represents the graph
constructed after reading the input data. 𝑂5 is the index
generated for the graph. 𝑂1, 𝑂3, 𝑂4, and 𝑂6 are vectors used
by bc algorithm. 𝑂7 is a shared queue among all threads.
𝑂2 is a bitmap to record the successors of each node during
the back-propagation phase. The bitmap is shared by all
the threads, but since each thread accesses the entries of the
bitmap independently, its access exhibits high MLP.

Table 3 shows that under a 50% slow-tier setup, Soar places
the top seven ranked objects (𝑂1–𝑂8) in the fast-tier, while the
remaining (𝑂8–𝑂10) are assigned to the slow-tier (note that
𝑂8 spans both tiers). In contrast, “FT” and “Freq” produce
different object placement decisions. NoTier allocates𝑂10 and
part of 𝑂8 to the fast-tier, while the top six most performance-
critical objects are placed in the slow-tier. For frequency-based
tiering systems, 𝑂1, 𝑂3, 𝑂4, 𝑂5, and part of 𝑂8 are the likely
targets for page promotion (per “Freq” rankings in Table 2).
Meanwhile, some pages from 𝑂8 are also likely to be selected
for demotion. This simultaneous promotion and demotion of
𝑂8 across tiers incurs unnecessary performance overhead due
to the lack of object-level performance awareness.

The MLP characteristics of certain objects can mislead
frequency-based ranking and cause incorrect page selection,
resulting in additional migration overhead. Such effects are
ignored by prior tiering designs. In particular, several objects
that are ranked low by Soar but high by “Freq” exhibit high
MLP. For example, 𝑂2 ranks 2nd in unit score in Soar, but is
ranked much lower (6th) by “Freq” and “FT” due to low AOL
during its active periods ( Figure 5). Prior tiering systems will
incorrectly prioritize 𝑂3–𝑂5 and 𝑂8 over truly performance-
critical objects like 𝑂2, reducing the likelihood that these
more important objects are promoted to the fast-tier.
Takeaway #2: Performance-aware object placement in Soar
explains its advantage over state-of-the-art tiering designs,
whose overhead is exacerbated by ignoring MLP effects.

6.3 Soar on CXL

Figure 6 presents the performance of Soar and baselines on
CXL for bc-urand, and the trends mirror those observed on
the SKX/NUMA setup (Figure 4). Soar consistently delivers
the lowest slowdown across all slow-tier ratios. Nomad shows
severe instability with up to 588% slowdown and Colloid
experiences up to 92% slowdown, compared to the worst-
case slowdown of only 42% in Soar. Nomad, Colloid, and
NBT lose to NoTier almost uniformly across all slow-tier
ratios while Soar is strictly better than NoTier. These results
reaffirm that Soar is effective and robust across both emulated
and real CXL environments.
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Figure 6: Soar vs. others for bc-urand on CXL (§6.3).
Soar performance on CXL is similar to that on SKX/NUMA, with
Soar consistently outperforming all baselines across slow-tier ratios.

Table 4: Soar vs. others for more workloads (§6.4). Soar is
robust across workloads and consistently delivers better performance
compared to existing tiering designs.
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Soar 34% 16% 7% 18% 14% 7% 4%
Colloid 60% 58% 26% 40% 25% 6% 43%
NBT 58% 68% 13% 59% 18% 11% 13%
Nomad 58% 123% 61% 105% 29% 24% 18%
TPP 58% 875% 495% 792% 760% 38% 1246%
NoTier 46% 67% 63% 55% 39% 9% 9%

6.4 Soar for More Workloads

Table 4 shows that Soar consistently achieves the lowest
slowdown (up to 18%) across all realistic workloads under
a 50% slow-tier ratio. In contrast, state-of-the-art suffer
significantly higher slowdowns, with Colloid, NBT, Nomad,
TPP, and NoTier reaching up to 58%, 68%, 123%, 1246%, and
67%. “microbench” represents the microbenchmark from §2.1.
Soar outperforms the next best system by 4–42% (except for
tc-twitter). Even the baseline NoTier outperforms several
tiering policies in many cases, highlighting the inefficiencies
of page-based migrations. Among all the tiering baselines, no
single approach consistently outperforms the others and their
performance varies significant across workloads. These results
further reinforce the effectiveness of Soar’s performance-
aware object allocation across diverse workloads.
Takeaway #3: Soar’s performance advantage over state-
of-the-art and NoTier hold across workloads except for
tc-twitter where Soar loses by 1% to Colloid.

6.5 Alto Performance Evaluation

As the performance of existing tiering designs degrade with in-
creasing slow-tier ratios, we evaluate Alto with a fast-tier size
that is sufficient to accommodate the workload’s working set
size, as determined by offline profiling, to demonstrate Alto
benefits. This configuration is biased in favor of existing tier-
ing systems. Figure 7a&b compares Alto with existing tiering
policies across a range of workloads on both SKX/NUMA and
SPR/CXL. In both environments, Alto reduces slowdowns
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Figure 7: Alto vs. TPP, NBT, Nomad, Colloid, and NoTier on SKX/NUMA and SPR/CXL across 8 workloads (§6.5–§6.7).
(a) On SKX/NUMA, Alto+TPP outperforms TPP by 2–471%. Similarly, Alto+NBT outperforms NBT by 1–20%, Alto+Nomad surpasses
Nomad by -2–11%, and Alto+Colloid achieves a performance gain over Colloid of 0–9%. (b) On SPR/CXL, Alto exhibits a similar trend to
SKX/NUMA, outperforming TPP, NBT, Nomad, and Colloid by 2–178%, 1–23%, 0–35%, and 0–18%, respectively.

Table 5: Page promotion reductions of Alto compared
to baseline (§6.5). Alto significantly reduces the number of page
promotions by up to 127.4×.

bc-kron
bc-tw

itte
r

bc-urand
sssp

-kron

tc-tw
itte

r

602.gcc
gpt-2 redis

TPP 127.4× 40.0× 83.9× 58.5× 1.5× 2.5× 2.7× 1.8×
NBT 3.5× 1.1× 1.7× 9.4× 1.2× 1.1× 1.9× 1.0×
Nomad 1.2× 2.3× 2.1× 1.4× 1.0× 4.4× 1.3× 1.4×
Colloid 14.9× 1.1× 2.1× 9.2× 1.0× 3.8× 3.7× 1.0×

across all tiering systems (TPP, NBT, Nomad, and Colloid)
for majority of the workloads, often cutting performance
degradation by more than half. On SKX/NUMA (left), Alto
eliminates extreme outliers, resulting in significantly better
performance of only 2% slowdown in the best case. On CXL
(right), the overall performance trend remains similar: Alto-
enhanced policies outperform their baselines across majority
of the workloads, highlighting Alto’s relative robustness
across different system configurations.

Among the four baselines, TPP exhibits the most aggressive
migration behavior due to its intensive hot-page detection
strategy. As a result, it performs poorly in our evaluation,
reaching up to 482% slowdown, which is even worse than
running the workloads entirely on the slow-tier (“CXL” bars).

Colloid focuses on balancing fast- and slow-tier latency
under bandwidth saturation, based on the observation that
fast-tier latency can exceed that of slow-tier in such cases.
However, in our setup, none of the workloads saturate fast-tier
bandwidth. By design, Colloid adopts a more aggressive page
promotion policy than NBT, promoting hot pages not only to
the fast-tier, but also to the slow-tier proactively. While this
aggressiveness benefits certain workloads, it is not universally
effective. As shown in Figure 7, Colloid performs worse than
NBT on nearly half of the workloads.

Nomad adopts a non-exclusive page migration strategy,
retaining pages in both tiers to avoid blocking migrations. As a
result, reducing migration frequency has a more limited impact
on performance compared to other systems. Additionally,
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CDF of Promotion Reductions under Alto

Figure 8: CDFs of page promotion reductions in Alto
(§6.5). Alto+Nomad promotion reduction is less than others.

Alto+Nomad regulates fewer page promotions than Alto
with TPP, NBT, and Colloid, as shown in Table 5. These
factors help explain the limited performance improvements
of Alto+Nomad observed in several workloads. Alto+Nomad
can underperform Nomad by up to 2% on several workloads,
such as bc-twitter, bc-urand, and gpt-2. The underlying
reasons are not yet clear to us and a deeper analysis is needed
to understand the root causes as future work.

Alto’s adaptive page promotion regulation allows it to
filter out unnecessary page migrations, thus achieving better
performance than the corresponding baselines. Table 5 and
Figure 8 shows the reduction in page promotions achieved
by Alto compared to the corresponding baselines across all
eight workloads. Alto significantly reduces the number of
page migrations by up to 127.4× while maintaining superior
performance for most of the cases.
Takeaway #4: Alto outperforms TPP, NBT, Nomad, and
Colloid by 2–471%, 1–23%, -2–35%, and 0–18% across 8
workloads on NUMA and CXL by regulating unnecessary
page promotions effectively. Alto+Nomad loses to Nomad for
a few workloads by no more than 2%.

6.6 Understanding Alto Performance

Alto’s strength lies in the simplicity and accuracy of its
AOL-based predictor, enabling it to significantly reduce page
promotion overhead while improving performance. Figure
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on runtime AOL dynamically.

8 shows the CDFs of reductions in page promotions for
Alto compared to the baselines. Specifically, Alto reduces
promotions by up to 127.4×, 9.4×, 4.4×, and 14.9× for TPP,
NBT, Nomad, and Colloid, respectively.

To better understand this improvement, we zoom in on the
tc-twitter workload and examine how Alto adaptively reg-
ulates promotion behavior. Figure 9 plots the page promotion
rate and AOL over time for both TPP and Alto+TPP. Two key
observations highlight Alto’s effectiveness:

(1) Unlike TPP, which aggressively promotes pages in the
first 100 seconds (red line) due to high LLC misses, Alto
promotes far fewer pages (green line) during this phase. This
is because AOL remains low (blue line), indicating high MLP
and limited performance sensitivity to memory latency. By
avoiding unnecessary migrations, Alto reduces the number
of promoted pages from 1.6 million (in TPP) to just 190K, a
reduction of 8.4×.

(2) As the workload progresses, Alto gradually increases
its promotion rate in response to rising AOL values, whereas
TPP simply follows access intensity without adaptive control.
Ultimately, Alto outperforms TPP while migrating 3.5×
fewer pages overall.

Other workloads in Figure 7 exhibit similar trends, demon-
strating Alto’s ability to maintain performance while mini-
mizing migration cost through adaptive, AOL-guided tiering.

6.7 Alto on CXL

Figure 7b details Alto’s performance on CXL, which closely
mirrors the trends observed on the SKX/NUMA setup (Fig-
ure 7a). Across all workloads, Alto improves performance
when layered over existing tiering systems, often achieving
the lowest slowdown. The performance gains are even more
stable on CXL due to improved bandwidth compared to the
SKX/NUMA setup. These results highlight Alto’s robust-
ness and portability across different hardware configurations.
Alto’s performance benefits are similarly explanined as Figure
8. Note that while workloads run faster on SPR compared
to SKX as the recent SPR CPU is more performant, the
slowdown relative to DRAM performance is comparable, or
slightly worse, due to the larger fast-tier/slow-tier latency gap
(2.4× on SPR vs. 2.1× on SKX).
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Figure 10: Alto sensitivity to AOL and sampling inter-
vals (§6.8). (a) Alto+NBT performance under varying AOL and
intervals. (b) Relative number of promotions in Alto+NBT to NBT.

6.8 Sensitivity Study

In this section, we study Soar and Alto’s sensitivity to AOL
and other parameters as well as justifying their default choices.

Soar. Algorithm 1 uses 𝑅min, 𝑅max, and 𝐿0 as thresholds to
incorporate MLP effects into object scoring. We evaluate the
sensitivity of Soar to these parameters. Varying 𝐿0 between
70, 80, 90, and 100 cycles results in minimal changes to the
object ranking: only the ordering of 𝑂2–𝑂4 in Table 2 differs.
For a 50% slow-tier ratio in bc-urand, objects 𝑂1–𝑂6 and
part of 𝑂7 are always placed in fast-tier, yielding identical
performance across the full range of 𝐿0 values. This indicates
that the maximum AOL threshold in Algorithm 1 is robust.

Similarly, adjusting 𝑅min and 𝑅max to (0.02, 0.6),
(0.03, 0.7), and (0.04, 0.8) results in minor changes, only
the ranking of 𝑂2–𝑂5 differs. Since the top objects remain
unchanged (under the same slow-tier ratio), the object place-
ment and performance are unaffected, confirming that Soar’s
scoring is stable under reasonable threshold variations.
Takeaway #5: Soar is robust to 𝐿0 (from 70 to 100), 𝑅min,
and 𝑅max (from (0.02, 0.6) to (0.04, 0.8)).

Alto. We evaluate Alto’s sensitivity to the AOL thresholds
(AOLlow, AOLhigh), and AOL sampling periods. Figure 10
shows the Alto results under a range of (AOLlow, AOLhigh)
threshold pairs and sampling intervals (100ms, 500ms, 1s).

In Figure 10a, we observe that Alto maintains stable per-
formance across a wide range of threshold values. Slowdown
remains within 16–22% for most parameter combinations,
indicating robustness to threshold tuning. Extreme thresholds
(e.g., 0/∞) lead to degraded performance, highlighting the
importance of filtering based on AOL to avoid over- or under-
migration. Figure 10b shows the relative number of page
promotions compared to Colloid. Across most configurations,
Alto reduces promotions by 30–70%, while preserving perfor-
mance. With more conservative AOL thresholds (e.g., 60/120)
and shorter sampling intervals, Alto eliminates majority of
the page promotions (down to 30%) while still maintaining
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Soar/Alto under Bandwidth Contention

Figure 12: Soar and Alto performance slowdown under
bandwidth contention (§6.9–§6.10). Under bandwidth con-
tention, Soar continues to outperform both NoTier and other tiering
policies, and Alto+NBT, Alto+Nomad, and Alto+Colloid improve
over their baselines by 11–26%, 27–81%, and -3–11%, respectively.

acceptable performance (19% vs. 16% slowdown).
Figure 11 shows the sensitivity of Alto to varying AOL

low/high threshold values, with combinations ranging from
0 to 140 (observed highest AOL). The two extreme cases
(0/0 and 140/140) in Figure 11 represent no promotion
regulation (i.e., equivalent to the NBT baseline) and full
regulation (i.e., equivalent to NoTier), respectively. Across
the threshold range from bottom left to top/bottom right,
Alto’s performance typically correlates with the degree of
regulation: more page promotion regulation (smaller numbers
in Figure 11b) generally leads to better performance (smaller
slowdowns in Figure 11a). The default setting used by Alto
(40/100 on SKX/NUMA) delivers reasonably good, though
not optimal, performance (16% vs. 14% slowdown). We
observe a maximum performance difference of 14% between
40/60 and 140/140 (NoTier). While the number of regulated
promotions generally reflects Alto’s efficiency, the exact
performance impact of each regulation is hard to isolate and
needs further investigation.
Takeaway #6: Alto is robust to sampling intervals from
100ms to 1s, and its default AOL low/high thresholds are
near-optimal, thanks to the accurate modeling of 𝐾 and AOL.

6.9 Soar under Bandwidth Contention

To evaluate the performance robustness of Soar to bandwidth
pressure, we use Intel MLC [55] to generate memory traffic
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Figure 13: Alto+Colloid performance gains over Colloid
under bandwidth contention and different fast/slow-tier
ratios (§6.10). Alto+Colloid outperforms Colloid by up to 10%
under most fast/slow-tier ratios combined with bandwidth contention.

on the fast-tier by varying the number of threads from 0 to 9
on SKX. Each MLC thread sustains ∼8 GB/s. The remaining
1 core is reserved for bc-urand with 50% slow-tier ratio. With
9 MLC threads, the bandwidth reaches 48 GB/s, which is 98%
of the total bandwidth. Latency increases to 180 ns, 2× of the
unloaded latency, demonstrating significant queuing delays.

Figure 12 shows that Soar outperforms the second best by
4–41% under bandwidth contention. As contention increases
(0–9 MLC threads), Colloid consistently outperforms Nomad
and NBT, but underperforms NoTier, with the performance
gap widening under higher contention. This indicates that
tiering becomes less effective in bandwidth-bound scenarios.
Soar maintains its performance lead over NoTier (the second-
best), though its gains diminish as contention intensifies (33%
vs. 4% for 3 and 9 MLC threads).
Takeaway #7: State-of-the-art tiering designs consistently
underperform NoTier due to elevated migration overhead
under bandwidth contention. In contrast, Soar outperforms all
of them on bc-urand, though its performance gains decrease
as contention increases, reaching up to 2× inflated latency.
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6.10 Alto under Bandwidth Contention

Figure 13a further compares Alto+Colloid and Colloid under
varying fast/slow-tier ratios (ranging from 1:6 to 6:1) in a
different MLC setup: 5 cores are reserved for bc-urand, and
the remaining 5 cores run MLC threads. With 5 MLC threads,
the system bandwidth reaches 40GB/s, approximately 81% of
the total bandwidth, and latency increases to 140ns, which is
56% higher than the unloaded latency of 90ns.

Under moderate memory bandwidth contention in this case,
even though overall system MLP increases, the background
memory pressure does not alter the foreground workload’s
MLP behavior. While contention raises memory latency, it
does not reduce the workload’s inherent MLP (confirmed
via our MLP measurements). However, as MLC threads
increase from 0 to 5, the AOL range shifts from 30–140 to 40–
250. Alto remains effective at regulating page promotions,
as only 14.2% of the runtime experiences AOL above 100.
Figure 13a&b supports this claim, showing that Alto+Colloid
outperforms Colloid under bandwidth contention while mi-
grating up to 51% fewer pages. While contention narrows the
latency gap between tiers (i.e., fast-tier latency approaches
that of the slow-tier), the MLP-induced performance penalties
of page promotion persist.

When further increasing the number of MLC threads to
9, Figure 12 shows somewhat diminished Alto performance
gains over its baseline, in particular, Alto+Colloid vs. Col-
loid, with -3–81% improvement. Among all the baselines,
Nomad shows the worst performance under extreme band-
width contention, while Colloid performs the best (its target
scenario). Note that bc-urand uses only 1 core here, as
more cores are reserved for MLC, compared to 5 cores in
Figure 13. Alto+Colloid falls behind Colloid by 3% under
the 9-MLC-thread setup but outperforms it in all other cases.
This behavior stems from increased fast-tier latency under
bandwidth contention, which expands the AOL range from
40–140 (0 MLC threads) to 95–270 (9 MLC threads). With
default AOL thresholds (40/100), Alto’s regulation becomes
less aggressive (Algorithm 2) when AOL falls out of the
target AOL range, as shown in Figure 13b. Only 2.3% of
runtime phases exhibit AOL below 95. As a result, Alto
regulates only 1.6% of pages under 9 MLC threads, leading
to 3% negative performance gains. However, adjusting AOL
thresholds to 90/150 and 90/270 to match the runtime AOL
range improves Alto+Colloid’s slowdown from 33% to 23%
and 20%, both outperforming Colloid (30%). Thus, adjusting
AOL thresholds upward to match runtime AOL under high
bandwidth contention can help preserve Alto’s benefits. This
requires tuning AOL thresholds based on contention levels.
Developing an auto-tuning mechanism for AOL thresholds
for such scenarios is an interesting direction for future work.
Takeaway #8: Alto achieves improvements of -3% to 81%
over Nomad, NBT, and Colloid for bc-urand under band-
width pressure across various fast/slow-tier ratios. However,

Alto’s benefits diminish under extreme contention (e.g., 2×
inflated latency), resulting in one case where Alto+Colloid
underperforms Colloid by 3%. Raising AOL thresholds can
help recover performance benefits in such scenarios.

7 Related Work
Heterogeneous Memory Management. Soar shares its
profiling-based design goal with prior systems [13, 34, 49, 56],
but differs in its use of performance metrics, leading to
different design choices. Unlike X-Mem [13], which classifies
memory access to static types of patterns and ranks coarse-
grained memory regions using offline-profiled latency, Soar
leverages an AOL-based predictor that accounts for MLP
and latency inflation for accurate slowdown prediction (§3.2).
Soar is application-transparent without code changes and is
lightweight, imposing neglible runtime overhead, making it
applicable to a wide range of workloads.

Memory Performance Modeling. Prior work has focused on
modeling memory performance using various metrics, includ-
ing CPU stalls, LLC misses, memory latencies, etc., as well
as ML-driven predictors [7, 8, 11, 21, 23, 57]. However, these
approaches often fall short due to accuracy and complexity
issues. While CPU stalls on the fast-tier can intrinsically
capture memory access performance impact, they serve as
a poor metric to predict slow-tier performance due to their
inability to account for shifting memory-overlap effects caused
by increased latency and variable MLP in the slow-tier. In
contrast, our AOL-based predictor explicitly models CPU
stalls, latency, and MLP. AOL amortizes the overestimated
CPU stall increases, ensuring high prediction accuracy and
serving as the key to Soar/Alto’s effectiveness.

Memory Tiering. Memory tiering has been extensively
studied from many angles, including efficient software- and
hardware-based hotness tracking, memory allocation and
migration policies across host and virtualized environments,
and support for various slow-tier memory types [4, 13–28,
58, 59]. For instance, HeMem utilizes PEBS for fine-grained
page access frequency sampling [17]. Most existing tiering
systems rely on hotness for guiding data placement across tiers,
ignoring the performance impact variability across memory
accesses. Soar and Alto designs are orthogonal to existing
tiering designs, acting as a general-purpose memory allocator
and migration regulator that complements other optimizations
such as better hotness tracking and migration policies.

8 Conclusion
Tiered memory management is becoming increasingly impor-
tant with the rise of CXL, yet significant challenges persist.
We demonstrate that hotness does not equate to performance,
highlighting the need to revisit both the fundamental principles
and strategies for memory tiering. We hope that our predictive
metrics on AOL, static and dynamic tiering policies (Soar
and Alto) will open up new directions for memory research.
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