
Is Garbage Collection Overhead Gone?
Case study of F2FS on ZNS SSDs

Dongjoo Seo∗
Ping-Xiang Chen∗

University of California, Irvine
{dseo3,p.x.chen}@uci.edu

Huaicheng Li
Virginia Tech

huaicheng@cs.vt.edu

Matias Bjørling
Western Digital

Matias.Bjorling@wdc.com

Nikil Dutt
University of California, Irvine

dutt@ics.uci.edu

ABSTRACT
The sequential write nature of ZNS SSDs makes them very
well-suited for log-structured file systems. The Flash-Friendly
File System (F2FS), is one such log-structured file system and
has recently gained support for use with ZNS SSDs. The large
F2FS over-provisioning space for ZNS SSDs greatly reduces
the garbage collection (GC) overhead in the log-structured
file systems. Motivated by this observation, we explore the
trade-off between disk utilization and over-provisioning space,
which affects the garbage collection process, as well as the
user application performance. To address the performance
degradation in write-intensive workloads caused by GC over-
head, we propose a modified free segment-finding policy
and a Parallel Garbage Collection (P-GC) scheme for F2FS
that efficiently reduces GC overhead. Our evaluation results
demonstrate that our P-GC scheme can achieve up to 42%
performance enhancement with various workloads.

CCS CONCEPTS
• Software and its engineering→ File systems manage-
ment.

KEYWORDS
F2FS, Garbage Collection, Zoned Namespace SSDs

∗Both authors contributed equally to the paper.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotStorage ’23, July 9, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0224-2/23/07.
https://doi.org/10.1145/3599691.3603409

ACM Reference Format:
Dongjoo Seo, Ping-Xiang Chen, Huaicheng Li, Matias Bjørling,
and Nikil Dutt. 2023. Is Garbage Collection Overhead Gone? Case
study of F2FS on ZNS SSDs. In 15th ACMWorkshop on Hot Topics in
Storage and File Systems (HotStorage ’23), July 9, 2023, Boston, MA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3599691.3603409

1 INTRODUCTION
The introduction of SSDs with Zoned Namespace (ZNS) sup-
port is a new type of storage device to avoid the performance
overhead associated with the traditional block interface for
flash-based SSDs [4, 9, 21]. Instead of providing an interface
with a single array of logical blocks, a ZNS SSD groups logi-
cal blocks into zones. This allows the SSD to align the zones
to its media characteristics. For flash-based SSDs specifically,
logical blocks in a zone can be read randomly, but they must
be written sequentially, and the entire zone must be reset
before it can be rewritten. ZNS SSDs delegate the responsi-
bility of fine-grained data management to the host system,
which means that the SSD’s Flash Translation Layer (FTL)
collaborates with the host software to place data onto the
logical blocks within a zone, while the SSDs continue to man-
age the coarse-grained activities, such as wear-leveling and
media reliability. The collaboration significantly reduces the
device-side garbage collection (GC), which leads the higher
performance, improved latencies as well as longer device
lifetime. Having the fine-grained data placement responsibil-
ity in the host presents an opportunity for the design of the
host-side GC scheme to leverage the unique characteristics
of ZNS SSDs. The Flash Friendly File System (F2FS) [14] was
chosen to utilize the performance benefits of a ZNS SSD
through a file interface at the user level. By forcing pure Log-
File Structure (LFS) mode [20] to eliminate random writes to
be written sequentially, F2FS has been proven to be efficient,
in compliance with the sequential-write constraint of ZNS
SSDs [4].

https://doi.org/10.1145/3599691.3603409
https://doi.org/10.1145/3599691.3603409
https://doi.org/10.1145/3599691.3603409

HotStorage ’23, July 9, 2023, Boston, MA, USA D. Seo and P.X. Chen et al.

However, based on our observation, GC overhead [11, 13,
16, 23] does not appear when we use F2FS with ZNS SSDs
even with high-utilization. This motivates us to revisit the
layout of F2FS on ZNS SSDs compared with block-based
SSDs. We found that F2FS relieves GC overhead by over-
provisioning storage spaces for ZNS SSD, similar to how
conventional SSDs over-provision its media which typically
accounts for 7-28% of the total media. We explore the trade-
off between a number of over-provisioning spaces and user
application performance affected by GC, and observe that
the size of over-provisioning space is an important factor
for performance. Also, we observed that configurations with
low over-provisioning space resulted in crashes for applica-
tions with high utilization. To enable exploration of these
low over-provisioning space configurations, we added ad-
ditional free segment searches in LFS mode. Since the low
over-provisioning space configurations incur GC overhead,
we propose a Parallel Garbage Collection (P-GC) scheme that
accelerates the GC process by parallelizing GC processing of
victim segments. The main contributions of this study can
be highlighted as follows:

• This paper demonstrates the on-disk layout of the LFS
mode of F2FS on ZNS SSDs design compared to F2FS
for conventional SSDs.

• We explore the trade-off between over-provisioning
space and file system performance with a new free
segment search scheme and propose a parallel GC
system design that accelerates the GC process.

• We evaluate our schemes based on F2FS with vari-
ous application sets that include write-intensive work-
loads. Our P-GC scheme achieves an average 24.5%
performance improvement in both micro- and macro-
benchmarks.

2 BACKGROUND AND MOTIVATION
2.1 Zoned Namespace (ZNS) SSD
The ZNS interface is a new feature that is introduced to over-
come the performance overhead associated with the existing
block interface of flash-based SSDs. Unlike traditional SSDs,
ZNS SSDs group logical blocks into zones that can only be
written sequentially. As shown in Figure 1a, the zone size
is defined as the total number of logical blocks within the
zone. Each zone has a write pointer that designates the next
writeable LBA within a writeable zone. Zoned storage SSDs
also define a zone capacity attribute for each zone, which
indicates the number of usable logical blocks within the
zone, starting from the first logical block of the zone. It is
either equal or smaller than the zone size. The use of zone
capacity can be aligned to the size of flash erase blocks for
a flash-based device, while maintaining a specific zone size
characteristic, such as maintaining a power of two zone size.

Zone Size

Write Pointer

Zone Capacity

Free Written Unusable

(a) Zone Size / Capacity

Append-Only

Zone

Section

Segment

(b) F2FS on ZNS SSDs

Figure 1: ZNS SSDs and F2FS main area on-disk layout

2.2 F2FS with LFS mode
F2FS is a popular file system for flash-based disks that di-
vides the data region into randomwrites andmulti-stream se-
quential write regions. Using ZNS SSDs with F2FS requires a
multi-device setup to place metadata blocks area (Superblock,
Checkpoint, Segment Information Table, NodeAddress Table,
and Segment Summary Area) on randomly writable storage
and main blocks area (Node, Data) on ZNS SSD. Figure 1b
shows the data structures layout of the main area that F2FS
managed for the file system at zone on ZNS SSDs. F2FS di-
vides the whole volume into fixed-size 2MB segments. The
segment is a basic unit of management in F2FS and is used
to determine the initial file system metadata layout. When
a ZNS SSD is formatted for F2FS, a section is a group of
fixed-size segments (2 MB), and the number of segments in a
section is determined to match the zoned device zone size in
ZNS SSD. The unwriteable logical blocks that exist between
a zone’s zone capacity and its zone size are explicitly marked
reserved and not utilized for writes.

Furthermore, F2FS utilizes a pure Log-Structured File Sys-
tem (LFS) mode; the LFS forces sequential writes to segments
and forces the sequential use of segments within sections,
which results in full compliance with the zoned block de-
vice’s write constraint. However, in the LFS mode of F2FS,
we could not directly reuse the invalid block until it becomes
free by GC. This limitation causes GC to trigger more fre-
quently than in the normal mode of F2FS, resulting in high
GC overhead when disk utilization gets higher, i.e, when we
explore low over-provisioning configurations.
F2FS employs foreground and background GC schemes

with different priorities and challenges to reclaim space
from invalidated data pages and maintain performance. Fore-
ground GC is triggered in real-time and can potentially im-
pact the user experience by blocking other requests, includ-
ing concurrent free page requests. Background GC, on the
other hand, is a periodic process that aims to reduce data
fragmentation, increase space utilization, and minimize per-
formance overhead. To enhance user experience, it is critical
to decrease the overhead of foreground GC. In this study, we
revisit these issues in the context of the ZNS SSDs.

Is Garbage Collection Overhead Gone?
Case study of F2FS on ZNS SSDs HotStorage ’23, July 9, 2023, Boston, MA, USA

2.3 What we observed
Figure 2 depicts the write-intensive YCSB-A workload
throughput between F2FS on normal SSD and F2FS on ZNS
SSD under different disk utilization. The normal SSD size
is 45GB, and the ZNS SSDs is with 45 zones with 1077MiB
(≈1GB) zone capacity and 2GB zone size. Surprisingly, we
did not observe any performance decrease due to GC for
high disk utilization on the tested ZNS SSD, which motivates
us to answer why GC overhead does not happen. Figures 3a
and 3b show the over-provisioning space by F2FS on both
same usable size SSDs. F2FS on ZNS SSD over-provisioning
36.9x times the number of segments. Therefore, in this work,
we want to answer several research questions: (1) How does
F2FS decide the over-provisioning space for ZNS SSDs? (2)
Can we over-provision less and observe its impact on perfor-
mance? (3) How to reduce GC overhead if indeed it manifests
in F2FS?

0.6 0.8 1

0.6

0.8

1

Utilization

Th
ro
ug

hp
ut

(a) Normal SSD

0.6 0.8 1

0.6

0.8

1

Utilization

Th
ro
ug

hp
ut

(b) ZNS SSD

Figure 2: Performance v.s F2FS Utilization

3 EXPLORATION AND OPTIMIZATION
3.1 Over-provisioning in F2FS
To focus on file system level over-provisioning ratio, we in-
tentionally ensure that block-based SSD has ample free space
[14]. ZNS SSD has the advantage of not having internal over-
provisioning space for GC. However, since the host system
is responsible for GC, LFS still needs to reserve space for
cleaning invalid blocks within each segment. F2FS reserves
an over-provision area when the file system is initialized to
address this. Figure 3 shows the number of over-provisioning
segments when we formatted the same disk space size be-
tween conventional block-based SSDs and ZNS SSDs, both
with 45 GB of usable space in total. As shown in Figure 3a,
ZNS SSDs reserved 36.9× times additional number of seg-
ments than conventional SSDs, which led to only 36% of
usable space in ZNS SSDs in Figure 3b. The reason for such
difference is that the over-provisioning segments are based
on average usable segments per section when formatting the
device based on Formula 1 with 𝑥% and a𝑚𝑎𝑟𝑔𝑖𝑛1 value for
1This margin value equals to the number of active logging in F2FS, which
in default is 6.

over-provisioning.
𝑜𝑣𝑝_𝑠𝑒𝑔𝑠 = (100/𝑥 +𝑚𝑎𝑟𝑔𝑖𝑛) ∗ 𝑎𝑣𝑔_𝑠𝑒𝑔_𝑝𝑒𝑟_𝑠𝑒𝑐 (1)

Normal ZNS
0

0.5

1

1.5

2
·104

433

16,008

#
of

se
gm

et
s

(a) Reserved segments

Normal ZNS
0

0.5

1
0.98

0.36

Fr
ee

sp
ac
es

(b) Free space per disk space

Figure 3: Impact of reserved segments on F2FS

0

0.5

1

1.5
Default

0.35
0.480.52

0.64
0.79

0.9611

Th
ro
ug

hp
ut

24681012141618

50

100

16
2533

4250
5965

of reserved sections

O
vp

.S
pa
ce

(%
)

Figure 4: Exploration for reserved sections with F2FS
on 45 zones ZNS SSD with 95% file system utilization

With 2MB segments, for conventional SSDs, the default
segment per section is 1. However, in our ZNS SSDs setting
with 1077MiB zone capacity, the usable segments per section
are 539 by zone capacity. Thus, suppose we would like to
reserve 10% in the file system. Then, the total of reserved
segments for normal SSDs will be 16, but for ZNS SSDs
will be 8624, which could be 539× times larger than the
default F2FS setting. We conduct the following experiment
to explore the trade-off between over-provisioning space and
write-intensive multi-threaded applications. We first modify
f2fs-tools [10] for customizing over-provisioning space in
F2FS for 45 zones ZNS SSDs. Then, we use fio [3], which
fills 95% of the available space in the file system with 4KB
random buffered writes with multiple small file access per
job for 10 minutes to compare the write throughput under
the different size of over-provisioning space. Intuitively, the
more over-provisioning space, the more latency reduction
we can obtain, which can be shown in Figure 4.

Finding a balance between disk utilization and GC over-
head is essential. Having too little free space can result in sig-
nificant GC overhead, even though sacrificing storage space
can improve performance. As a result, considering over-
provisioning space is also an important host-management
factor for users wanting to use F2FS with ZNS SSDs. The

HotStorage ’23, July 9, 2023, Boston, MA, USA D. Seo and P.X. Chen et al.

current approach for making over-provisioning decisions in
F2FS is tilted toward avoiding GC overhead for ZNS SSDs
with large zone sizes. Based on our exploration in Figure 4,
we choose to reserve 10 sections for F2FS with ZNS SSDs
since this configuration can strike a balance between over-
provisioning and the performance of the application.

3.2 Free segment search in LFS mode
Figure 5 shows that the system crashes for low over-
provisioning space configurations for I/O intensive applica-
tions. We investigated the cause of this problem and propose
a new free segment search policy that enables exploration
of these configurations.

The LFS mode performs a forward search (right direction)
for a free segment starting at the current section. When new
write requests are received, F2FS checks whether segments
can handle the writes and if not, it attempts to find a new
free section in the right direction using a bitmap. When the
forward search cannot find an available section, an alert is
sent to the user side, and the application crashes. Note that
we do not observe this situation with conventional SSDs
since one-to-one segment-per-section mapping results in a
high likelihood of finding a free section in the right direction,
even under high utilization.

However, ZNS SSDs only have a number of sections that
match the number of zones, making it difficult to find a free
section under high utilization with multiple writers on the
file system. To address this issue, we added a retry behavior
that checks for free sections from the start of the main data
part to the end of the device via a bitmap in the new segment-
finding routine. This approach significantly reduces the risk
of crashes in scenarios where multiple write applications are
running on a high-utilization system. Figure 5 shows that the
performance clearly reduced due to low over-provisioning
space for GC. Vanilla can maintain the performance well
but can not utilize the disk space we partitioned. ZNS-OP,
configured with a low over-provisioning space, shows that
performance drops by an increase in utilization. However,
an application has the possibility that it can crash when disk
utilization goes high. Finally, ZNS-OP-SS, which adds a new
segment search routine on ZNS-OP, uncovers the entire
design space, including the high utilization region.

3.3 Garbage collection optimization
F2FS has two garbage collection (GC) modes, namely fore-
ground (FG) and background (BG). The FG mode is triggered
when there are insufficient free sections available. On the
other hand, the BGmode runs periodically in the background
when the file system is idle, either with or without I/O op-
erations. We focus on the FG path because BG mode will
skip if FG is triggered. Since ZNS SSDs have a limitation of

10 20 30 40
0

0.5

1
Out of left space

Crash

Used disk space (GB)

Th
ro
ug

hp
ut

Vanilla ZNS-OP ZNS-OP-SS

Figure 5: Workload performance graphs by utilization

Algorithm 1 Parallel GC
stop fs operations
find victim section
Iterate each segment
if 𝑣𝑎𝑙𝑖𝑑𝑏𝑙𝑘𝑠 ≥ ℎ𝑎𝑙 𝑓 then

GC with parallelize
else

GC with single
end if
resume fs operations

F2FS

FG GC

ZNS SSD

FG GC2FG GC1

n/m n/m

Figure 6: Parallel GC Scheme

sequential write, LFS cannot reuse invalid blocks and must
clean an entire section to reclaim a dirty one. This limitation
accelerates the use of free segments and trigger GC.

When FG occurs, victim selection policy finds the section
that includes multiple segments composed of multiple blocks.
The selected section includes multiple segments, and we cur-
rently need to check each segment sequentially to determine
if we need to move the data inside of the segment to others
for the free segment. When revisiting the F2FS GC process,
we found that most of the total time consumed by GC stems
from valid data moving within large zones which involves
locating valid blocks and moving them to other sections.
From this observation, we propose Algorithm 1, namely

P-GC, a method to improve GC performance, which consists
of three phases: (1) Finding the victim sections. (2) Iterating
each segment in the sections to acquire information about
the target victim blocks. (3) Performing P-GC per segment
if the number of valid blocks is larger than half of the total
blocks in the segment. Another restriction from F2FS with
zoned storage is that F2FS forces to convert direct write
I/O to buffered I/O [22]. In cases where there is a burst of
buffered read/write usage, the buffered I/O inheritance prob-
lem exacerbates. Such a burst results in increased memory
usage, which may trigger the page cache drop and cause data
written to the disk to be lost. As a result, the data-moving
process during GC, which entails large sequential write and

Is Garbage Collection Overhead Gone?
Case study of F2FS on ZNS SSDs HotStorage ’23, July 9, 2023, Boston, MA, USA

multiple random read operations, is affected. To address this
issue, as shown in Algorithm 1, P-GC breaks down the GC
per segment process into multiple threads if the number of
valid blocks exceeds half of the blocks per segment. Our
approach involves parallelizing m threads to split n victim
blocks in each segment as well as enhancing GC’s random
read performance, as depicted in Figure 6.

4 EVALUATION
4.1 Experimental setup
All the experiments were conducted using 1TB Western Dig-
ital Ultrastar DC ZN540 [18]. The device comes with 2GiB
zone size and 1077MiB zone capacity. In order to achieve high
utilization in F2FS more quickly, we first use nvme-cli [1] to
format the ZNS device and conduct an evaluation with 45
zones in total with our fio [3] micro-benchmark. Similarly,
we further format the device using 301 zones and fill the file
system to 95% utilization for our filebench [17] and YCSB
workloads [7] on RocksDB [8] macro benchmarks evalua-
tion. For using ZNS SSD mainly, we partitioned a 500GBWD
Blue SN570 NVMe SSD [19] with 4GB partition in total for
random writable sections in F2FS and mounted both of the
devices with F2FS using LFS mode. Based on our exploration
from the microbenchmark, we empirically over-provisioning
10 sections for 301 zones of the tested ZNS SSD. We set up
a machine equipped with Intel(R) Core(TM) i7-10700K (8
cores @ 3.80GHz) and 32 GB of memory (DDR4, 2666 MHz),
running Ubuntu 20.04 (kernel 6.0.7, f2fs-tools 1.15.0 [10]).

905 301 181 129 100 82 45 Ou
rs

0

2

4

6
·104
48,892

29,328
23,338 20,535 18,972 18,002 16,008

10,240

of Zones

#
of

O
vp

.S
eg
.

Figure 7: Exploration for reserved segments with F2FS
with different ZNS SSDs configuration

Figure 7 shows the difference between vanilla F2FS and our
modified over-provisioning space for ZNS SSDs. Based on our
exploration in Section 3.1, we over-provisioning 10 sections
for every configuration of the ZNS SSD on F2FS. As shown
in Figure 7, vanilla F2FS reserved an average of 8.28x times
more than our 10-section setting. This over-provisioning dif-
ference can be larger when we format our device with more
space. While we use an empirical 10-section setting, there is
still room for determining the appropriate over-provisioning
space, which we will discuss in Section 7.

Vanilla P-GC
0

0.5

1

1.5

1 1.09

Th
ro
ug

hp
ut

(a) fio

Vanilla P-GC
0

0.5

1

1.5

1
1.16

Th
ro
ug

hp
ut

(b) fileserver

Vanilla P-GC
0

0.5

1

1.5
1

1.31

Th
ro
ug

hp
ut

(c) YCSB-A

Vanilla P-GC
0

0.5

1

1.5
1

1.42

Th
ro
ug

hp
ut

(d) YCSB-F

Figure 8: Performance comparison

4.2 Performance evaluation
We evaluated the effectiveness of our proposed Parallel GC
(P-GC) scheme on a micro- and macro-benchmark set. The
microbenchmark we used is fio, a flexible I/O testing ap-
plication, which issues 4KB random writes for 10 minutes
under 80% file system utilization. For the macro-benchmarks,
we used filebench and YCSB-A and YCSB-F workloads on
RocksDB over 95% file system utilization.

4.2.1 Micro benchmark. Figure 8a shows that fio’s perfor-
mance increased by 9% even with 80% file system utilization.
Such performance increase reflects that GC in LFS mode still
occurs even under 90% utilization. We also measured how
much data was read from the device during buffered write
operations. Vanilla F2FS read 58GB, and our P-GC scheme
read 51GB during the 10 minutes operations. With a similar
total number of GC between vanilla and P-GC, P-GC is able
to accelerate the random read part of data movement during
GC. This result shows the correlation between performance
increase and data movement speed of P-GC.

4.2.2 Macro benchmarks. For the macro benchmarks, we
used a larger partition size composed of 301 zones. Figure
8b,8c and 8d shows a comparison between vanilla and P-GC
with fileserver and YCSB-A, F workloads on RocksDB. P-GC
outperforms up to 42% than vanilla. In YCSB-A, F, the average
time of read operations (47.19us to 34.58us, 49.75us to
31.77us) and write operations (62.65us to 48.23us, 21.50us
to 20.93us) decreased. In fileserver, both read operations
(350.8mb/s to 410.4mb/s and write operations (346.4 mb/s
to 402.6 mb/s) performance increased, which illustrates that
application performance is less affected in P-GC than in
vanilla GC.

HotStorage ’23, July 9, 2023, Boston, MA, USA D. Seo and P.X. Chen et al.

During the FG GC, the application gets paused due to
the GC thread until the section is entirely freed up. This
highlights that FG GC’s latency is crucial in determining
the application performance. Therefore, in Figure 9, we mea-
sured and sorted the latency of FG GC during each YCSB
experiment. And, we compared the latency distribution. In
Figure 9a, the overall average speed of the P-GC exceeded
the Vanilla by 29% and performed more than 2.03× times
quicker in the slowest case. For Figure 9b, the average P-GC
speed was 7% faster. In the slowest case, P-GC was 2.98×
times faster. These experimental outcomes substantiate that
P-GC efficiently manages slow GC requests.

0 20 40 60 80 100
0

0.5

1

·109

Cumulative latency distribution (%)

La
te
nc
y
(n
s) P-GC

Vanilla

(a) YCSB-A

0 20 40 60 80 100
0

0.5

1

1.5

·109

Cumulative latency distribution (%)

La
te
nc
y
(n
s) P-GC

Vanilla

(b) YCSB-F

Figure 9: Latency distribution comparison of FG GC

5 CONCLUSIONS
In this study, we investigate using F2FS LFS mode on ZNS
SSDs for identifying the disk layout of F2FS on ZNS SSDs
and exploring the trade-off between over-provisioning in
F2FS and GC performance under high disk utilization. We
set a low empirical over-provisioning space to utilize better
the storage space with a new free segment-finding scheme.
Our results show that over-provisioning space should be
considered for the design of ZNS-based systems, particularly
for write-intensive workloads.

Additionally, we propose a Parallel GC (P-GC) scheme to
reduce the overhead of foreground GC in F2FS. Our proposed
P-GC scheme reduces GC overhead by up to 42% in both
micro- and macro-benchmarks.

6 RELATEDWORKS
Optimizing file systems for zoned storage has been widely
studied in recent years [2, 5, 12, 24]. ZNS SSDs are emerging
storage devices that follow the zoned storage models and
have gained tremendous research attention. Prior work has
suggested several optimization schemes for reducing F2FS
GC overhead for ZNS SSDs. Choi et al. [6] proposed a log-
structured merge-style zone cleaning scheme that separates
the hot and cold segments in a fine-grained manner. They
also examined how segment searching improved by increas-
ing the number of worker threads. Lee et al. [15] suggest
preempting the ongoing GC to reduce the interference be-
tween the cleaning process and the foreground applications.
Nevertheless, prior works are based on emulation. This work
explores the trade-off of over-provisioning for using F2FS
implemented on a ZNS SSD device and suggests a novel
parallel FG GC optimization for LFS mode.

7 LIMITATIONS AND DISCUSSIONS
In the course of our research, we have identified multiple
promising research directions. Firstly, our approach to deter-
mining over-provisioning space in ZNS SSDs was based on
empirical values, and we aim to develop a systematic method
for making this determination in the future. Secondly, GC
overhead can be caused by two factors: GC trigger timing
and GC throughput. While we improved GC throughput in
this study, the effectiveness of this enhancement depends
on the file system’s application scenario and GC trigger tim-
ing, which is closely related to the over-provisioning space
we explored. Therefore, to improve overall GC performance,
GC trigger timing and GC throughput must be considered
together in future research. Furthermore, we need to investi-
gate the scalability of our P-GC scheme because we used a
few threads for accelerating the GC process. We currently
only use two threads for P-GC since the file system locking
mechanisms make it hard to scale P-GC. We plan to proac-
tively load the required information for GC to handle scenar-
ios where page cache drops occur due to extensive buffered
I/O. Lastly, for the proposed free segment search, how many
times to search and when to stop searching should be ex-
plored based on the characteristics of running workloads.
This fact motivated us to explore how we model problem
solutions in the future.

ACKNOWLEDGMENTS
The authors would like to thank four anonymous reviewers,
and our shepherd Dr. Zhichao Cao for their help in improving
the presentation of this paper. We also thank the members
of Western Digital for their support. This work is supported
by the U.S. National Science Foundation under Grant No.:
CCF-1704859 and J. Yang & Family Foundation Fellowship.

Is Garbage Collection Overhead Gone?
Case study of F2FS on ZNS SSDs HotStorage ’23, July 9, 2023, Boston, MA, USA

REFERENCES
[1] 2015. nvme-cli. https://github.com/linux-nvme/nvme-cli.
[2] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and Peter Desnoyers.

2017. Evolving ext4 for shingled disks. In 15th USENIX Conference on
File and Storage Technologies (FAST 17). 105–120.

[3] Jens Axboe. 2005. Fio-flexible i/o tester synthetic benchmark. URL
https://github. com/axboe/fio (Accessed: 2023-01-13) (2005).

[4] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R Ganger, and George Amvrosiadis. 2021.
{ZNS}: Avoiding the Block Interface Tax for Flash-based {SSDs}. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). 689–703.

[5] Ping-Xiang Chen, Shuo-Han Chen, Yuan-Hao Chang, Yu-Pei Liang,
andWei-Kuan Shih. 2021. Facilitating the Efficiency of Secure File Data
and Metadata Deletion on SMR-based Ext4 File System. In Proceedings
of the 26th Asia and South Pacific Design Automation Conference. 728–
733.

[6] Gunhee Choi, Kwanghee Lee, Myunghoon Oh, Jongmoo Choi,
Jhuyeong Jhin, and Yongseok Oh. 2020. A New LSM-style Garbage
Collection Scheme for ZNS SSDs.. In HotStorage. 1–6.

[7] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143–154.

[8] Facebook. 2019. RocksDB. (2019).
[9] Hans Holmberg. 2020. ZenFS, Zones and RocksDB-Who Likes to Take

out the Garbage Anyway.
[10] Jaegeuk Kim. 2022. f2fs-tools. https://kernel.googlesource.com/pub/

scm/linux/kernel/git/jaegeuk/f2fs-tools/+/refs/tags/v1.15.0.
[11] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo

Min, and SamHNoh. 2019. Alleviating Garbage Collection Interference
Through Spatial Separation in All Flash Arrays.. In USENIX Annual
Technical Conference. 799–812.

[12] Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng Li, Michael
Kaminsky, David G. Andersen, Gregory R. Ganger, George
Amvrosiadis, and Matias Bjørling. 2023. RAIZN: Redundant Array
of Independent Zoned Namespaces. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 660–673. https://doi.org/10.1145/3575693.3575746

[13] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji
Kihara, and Satoshi Moriai. 2006. The Linux implementation of a
log-structured file system. ACM SIGOPS Operating Systems Review 40,
3 (2006), 102–107.

[14] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
2015. {F2FS}: A New File System for Flash Storage. In 13th USENIX
Conference on File and Storage Technologies (FAST 15). 273–286.

[15] Manjong Lee, Jonggyu Park, and Young Ik Eom. 2023. An Efficient F2FS
GC Scheme for Improving I/O Latency of Foreground Applications.
In 2023 IEEE International Conference on Consumer Electronics (ICCE).
1–3.

[16] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y.
Wang, and Thomas E. Anderson. 1997. Improving the Performance of
Log-Structured File Systems with Adaptive Methods. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems Principles (Saint
Malo, France) (SOSP ’97). Association for Computing Machinery, New
York, NY, USA, 238–251. https://doi.org/10.1145/268998.266700

[17] Richard McDougall and Jim Mauro. 2005. FileBench. URL: http://www.
nfsv4bat. org/Documents/nasconf/2004/filebench.pdf (2005).

[18] Western Digital Corporation. 2021. 2.5-inch U.2, 15mm, NVMe ZNS
Solid State Drive (SSD). https://www.hdstorageworks.com/Ultrastar-

DC-ZN540.asp.
[19] Western Digital Corporation. 2022. WD Blue SN570 NVMe™

SSD. https://www.westerndigital.com/products/internal-drives/wd-
blue-sn570-nvme-ssd#WDS500G3B0C.

[20] Mendel Rosenblum and John K Ousterhout. 1992. The design and
implementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS) 10, 1 (1992), 26–52.

[21] Nick Tehrany and Animesh Trivedi. 2022. Understanding NVMe
Zoned Namespace (ZNS) Flash SSD Storage Devices. arXiv preprint
arXiv:2206.01547 (2022).

[22] Linux Torvalds. 2023. F2FS forces direct I/O to convert to
buffered I/O for zoned device. https://github.com/torvalds/linux/blob/
d3f704310cc7e04e89d178ea080a2e74dae9db67/fs/f2fs/file.c#L808.

[23] Qiuping Wang, Jinhong Li, Patrick PC Lee, Tao Ouyang, Chao Shi,
and Lilong Huang. 2022. Separating Data via Block Invalidation Time
Inference for Write Amplification Reduction in {Log-Structured} Stor-
age. In 20th USENIX Conference on File and Storage Technologies (FAST
22). 429–444.

[24] Fenggang Wu, Ming-Chang Yang, Ziqi Fan, Baoquan Zhang, Xiongzi
Ge, and David HC Du. 2016. Evaluating host aware {SMR} drives.
In 8th {USENIX} Workshop on Hot Topics in Storage and File Systems
(HotStorage 16).

https://github.com/linux-nvme/nvme-cli
https://kernel.googlesource.com/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools/+/refs/tags/v1.15.0
https://kernel.googlesource.com/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools/+/refs/tags/v1.15.0
https://doi.org/10.1145/3575693.3575746
https://doi.org/10.1145/268998.266700
https://www.hdstorageworks.com/Ultrastar-DC-ZN540.asp
https://www.hdstorageworks.com/Ultrastar-DC-ZN540.asp
https://www.westerndigital.com/products/internal-drives/wd-blue-sn570-nvme-ssd#WDS500G3B0C
https://www.westerndigital.com/products/internal-drives/wd-blue-sn570-nvme-ssd#WDS500G3B0C
https://github.com/torvalds/linux/blob/d3f704310cc7e04e89d178ea080a2e74dae9db67/fs/f2fs/file.c#L808
https://github.com/torvalds/linux/blob/d3f704310cc7e04e89d178ea080a2e74dae9db67/fs/f2fs/file.c#L808

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND MOTIVATION
	2.1 Zoned Namespace (ZNS) SSD
	2.2 F2FS with LFS mode
	2.3 What we observed

	3 EXPLORATION AND OPTIMIZATION
	3.1 Over-provisioning in F2FS
	3.2 Free segment search in LFS mode
	3.3 Garbage collection optimization

	4 EVALUATION
	4.1 Experimental setup
	4.2 Performance evaluation

	5 CONCLUSIONS
	6 RELATED WORKS
	7 LIMITATIONS AND DISCUSSIONS
	Acknowledgments
	References

