
Characterizing and Emulating FDP SSDs with WARP

Inho Song, Shoaib Asif Qazi, Javier Gonzalez•, Matias Bjørling†, Sam H. Noh, Huaicheng Li

Virginia Tech •Samsung Electronics †Western Digital

Abstract

Flexible Data Placement (FDP) promises to reduce

write amplification by steering writes across reclaim

unit handles (RUHs), yet outcomes vary widely across

devices. This paper presents WARP, the first open

emulator and comprehensive study of FDP SSDs. Our

cross-device, cross-workload characterization shows that

FDP sustains near-1 WAF when RUH isolation aligns

with object lifetimes, but fails under misclassification,

RUH interference, or adversarial invalidations. WARP

reproduces hardware WAF trends while exposing

per-RUH dynamics and configurable policies hidden

in real devices. With WARP, we explore the firmware

design space for FDP and demonstrate policies that

reduce WAF beyond current hardware. By combining

empirical characterization with a transparent emulator,

this work advances FDP research from anecdotal reports

to principled understanding and provides a platform for

future FDP-aware system design.

1 Introduction

Flash storage underpins today’s data-intensive applications

such as caching and analytics, but scaling it sustainably

is becoming increasingly challenging. Rising demand

collides with constraints on cost, endurance, and carbon

impact. At the device level, these challenges converge

on the problem of write amplification (WAF), the excess

writes to flash triggered by garbage collection (GC). High

WAF shortens SSD lifetime, inflates replacement cost, and

drives up the environmental footprint of storage fleets [1–

5]. As SSDs dominate cloud infrastructure, reducing WAF

has become a first-order goal for both performance and

sustainability [6–10]. Even single-digit changes in WAF

translate into millions of dollars in cost and significant

gains in device lifetime at hyperscale.

To this end, hyperscalers such as Google and Meta

have championed the Flexible Data Placement (FDP)

interface, now ratified in the NVMe standard [11]. Major

vendors have begun shipping FDP-enabled SSDs [12–14],

making it one of the first endurance-focused interfaces to

see broad commercial traction. FDP lets hosts steer writes

into logical groups called reclaim unit handles (RUHs),

so that data with similar lifetimes are reclaimed together

and WAF approaches 1.0. Unlike prior proposals such as

OpenChannel or Zoned Namespaces (ZNS) [15, 16], FDP

preserves backward compatibility with the block interface,

enabling easy adoption while still promising substantial

lifetime and sustainability gains at scale.

Attractive as this promise is, FDP is a best-effort inter-

face rather than a guarantee. Unlike OpenChannel/ZNS,

FDP leaves GC entirely device-managed. Although hosts

can tag writes with RUHs, reclaim policies remain opaque

to software and device-specific. As a result, FDP only

reduces WAF when workload lifetimes align with RUH

isolation; when they do not, the expected benefit van-

ishes. Commercial FDP SSDs further complicate matters.

Although they expose the same NVMe FDP interface,

each vendor hard-codes different internal choices, such

as RU size, over-provisioning (OP) ratio, the number of

RUHs, and whether RUHs are Initially Isolated (II) or

Persistently Isolated (PI). These firmware-level policies

are invisible to the host, yet they fundamentally shape

FDP’s effectiveness. The same workload can therefore

see near-ideal WAF on one device and collapse on another,

even though both advertise “FDP support.” This gap

between specification and practice is the major barrier to

FDP adoption. Our study addresses this gap by asking

three key questions: When does FDP deliver near-1 WAF,

and when does it fail? Which vendor-level configura-

tions drive these differences? What internal mechanisms

explain the variation across devices?

Early efforts have begun to explore FDP’s potential. A

recent study integrated FDP into CacheLib and showed

that it can deliver near-ideal WAF under production traces

without hurting hit ratio [17]. Initial ecosystem support

has also emerged, including NVMe driver patches that

propagate FDP tags and file systems such as F2FS that

expose FDP hints [18]. While encouraging, these steps

leave critical gaps. Existing studies focus on a single appli-

cation stack, do not characterize FDP across devices and

workloads, and, because commercial drives are opaque,

cannot explain why FDP helps in some cases but fails in

others. As a result, the community still lacks a principled

1

understanding of FDP’s effectiveness, its limits, and the

design choices that determine its benefits.

In this paper we present WARP, the first comprehen-

sive study and open emulator for FDP SSDs. Our work

combines cross-device characterization with a validated

emulator to move FDP research from anecdotal demon-

strations to a principled foundation. Three elements

distinguish our contribution:

Characterization. We provide the first cross-device,

cross-workload study of two commercial FDP SSDs, re-

vealing both their strengths and fragilities. FDP consis-

tently lowers WAF in cache-like workloads, but it breaks

under co-located traffic and adversarial invalidations. Our

results show sharp vendor-dependent variability and un-

cover two previously undocumented phenomena: Noisy

RUH, where invalidations in one handle amplify writes in

others, and Save Sequential, where devices prematurely

reclaim long sequential streams. Together, these findings

show that FDP’s promise of near-1 WAF is not guaranteed;

it is workload- and configuration-dependent.

Emulation. To explain these effects, we build and validate

WARP
1, the first open FDP emulator. WARP faithfully

reproduces real-device WAF trends while exposing inter-

nal dynamics that hardware conceals, such as per-RUH

amplification, GC victim choices, and resource sharing

between RUHs. Beyond validation, WARP turns opaque

firmware defaults into tunable research knobs: II vs. PI

isolation, RU size, OP ratio, and GC strategies. With this

visibility, we systematically explore FDP’s design space.

Insights. Our exploration yields new design-level un-

derstanding. We show that PI only outperforms II above

device-dependent OP thresholds, while II is more resilient

under limited slack (§5). Such insights lead to further

research questions. By releasing WARP as an open plat-

form, we enable reproducible and full-stack FDP research

spanning firmware, OS, and applications.

By combining broad characterization with a validated

emulator, this work moves the community from anecdotal

evidence toward a principled understanding of FDP. Our

results show that FDP is flexible but not foolproof : it de-

livers when workloads align with its placement model, but

can fail under others. WARP bridges this gap by providing

both the empirical evidence and the mechanistic insights

necessary to design FDP-aware systems and controllers.

Contributions. We make the following contributions:

• We conduct the first systematic study of commercial FDP

SSDs across synthetic, trace-driven, and file-system

workloads, revealing when FDP sustains near-1 WAF

and when it collapses.

• We identify two previously unreported behaviors that ex-

plain how RUH interference and premature reclamation

1
WARP stands for Write Amplification Research Platform

erode FDP’s benefits.

• We design and validate WARP, the first open FDP emu-

lator that faithfully reproduces hardware trends while

exposing per-RUH amplification, GC victim choices,

and tunable geometry.

• Using WARP, we explore II vs. PI, OP ratios, and

RU sizing, showing that PI outperforms II only above

device-dependent OP thresholds, while II is more robust

under limited slack. We propose firmware strategies

that reduce WAF beyond current hardware.

• We have upstreamed WARP to FEMU at https://gi

thub.com/MoatLab/FEMU.

2 Background and Motivation

FDP primer. FDP is an interface standardized in NVMe

that allows the host to provide placement hints while

keeping all internal implementation details hidden from

the host. Its actual realization in firmware and flash

translation layers (FTLs) is vendor-specific and opaque.

FDP was ratified as NVMe TP4146, a technical proposal

driven by the needs of hyperscalers such as Google and

Meta, who sought to lower WAF at scale without disruptive

application changes [11, 19].

Figure 1 shows the overview of the FDP SSDs and their

internals. At its core, FDP provides three abstractions:

Reclaim Units (RUs), the granularity of GC, usually config-

ured as a NAND Flash Superblock; Reclaim Groups (RGs),

collections of RUs managed together, usually grouped

by NAND Flash Die; and Reclaim Unit Handles (RUHs)

(Figure 1b), logical identifiers that steer host writes to

particular RUs. RUHs may be Initially Isolated (II), where

data can be co-located after GC (Figure 1d), or Persistently

Isolated (PI), which preserves isolation across GC (Fig-

ure 1e). In other words, II redirects all GC copies into a

shared GC-RUH, while PI keeps copies within the source

RUH. FDP also includes optional visibility features: hosts

can issue RU space queries to check available capacity

and retrieve event logs that record RU allocations, remaps,

and selected GC statistics.

FDP in the context of prior interfaces. Prior studies

reveal intrinsic and unwritten characteristics of Solid-

State Devices, thoroughly investigating and reasoning

about the SSD performance [20–22]. These findings

inspired novel storage systems [23, 24], data classification

strategies, from intuitive and simple solutions [25–27]

to advanced and model-based solutions [2, 4, 28–30],

and hardware-software co-designs [1, 10, 31–34] that

collectively enabled advanced host-device interfaces [15,

16, 35–39].

Among these designs, FDP is the latest in a progres-

sion of host/device co-design interfaces targeting lower

WAF. Earlier designs gave the host more intrusive control:

OpenChannel-SSDs delegated both placement and GC to

2

https://github.com/MoatLab/FEMU
https://github.com/MoatLab/FEMU

Data OPS

Victim for GC Reserved for GC

Copy valid pages

Reserved for GC

[i]

[ii]

[iii]

RUH OPS

Victim for GC Reserved for GC

Copy valid pages

Reserved for GC

[i]

[ii]

[iii]

RUHRUH

[a] [b]

Reserved for GC

[c]

RUH is Initially Isolated(II)γ

Victim for GC

Reserved for GC

Freed block Mixed after GC

Write pointer for RUH γWrite pointerInvalidValidClean

Reserved for GC

RUH

II or PI?

γ

RUH is Persistently Isolated(PI)γ

[d] [e]

Figure 1: FDP SSD RUH data placement strategies. The figure shows (a) a conventional SSD and (b) an FDP SSD. The

FDP SSD differentiates data using the RUH ID, which is specified by the host system or application in the NVMe request field. (c) An

example of garbage collection in a Reclaim Unit Handle (RUH), where a NAND block is selected from RUH W. (d) With initially

isolated RUHs, victim GC data are co-located. (e) With persistently isolated RUHs, victim GC data are kept separate.

software, at the cost of high complexity [15]. ZNS SSDs

reduced WAF by enforcing sequential zone writes and

host-managed resets, but required invasive application

changes [16]. Multi-streamed SSDs allowed lightweight

tagging of writes, but provided no physical isolation guar-

antees [36]. FDP instead occupies a middle ground: it

preserves backward compatibility and requires no applica-

tion changes, while offering lightweight placement hints

through RUHs. Unlike OpenChannel or ZNS, it keeps

GC entirely opaque and vendor-managed, a property that

fundamentally shapes both its potential and its limitations.

Evolving specification and ecosystem support. Both the

FDP specification and its software ecosystem are still in a

nascent stage. The NVMe standard continues to evolve,

and today’s devices typically implement only a subset

of their capabilities with fixed, vendor-specific defaults

(e.g., RU size, OP ratio, RUH type). On the software

side, Linux offers only early driver support to pass RUHs

via I/O passthrough [18], and application-level prototypes

such as CacheLib have demonstrated initial benefits [40].

However, formal block-layer integration is missing, and

mainstream file systems and applications have yet to adopt

FDP. This immaturity on both specification and ecosystem

fronts makes it difficult to explore FDP’s design space

with hardware alone.

Implications for WAF. Because FDP is limited to place-

ment hints and leaves GC unchanged, its effect on WAF

is inherently workload-dependent. RUH isolation can

align with object lifetimes and drive WAF close to 1, but

adversarial or co-located patterns can erase the benefit.

Vendor-specific defaults, opaque to the host and varying

across devices, further introduce cross-device variability.

Prior write amplification studies build upon conventional

SSDs’ internal resource management [5, 41], system side

changes [23, 24, 42–44], utilizing memory devices [45, 46]

and tailored optimization with application design [47–49],

followed by write amplification modeling for conventional

SSDs [50, 51]. Prior studies have shown promising gains

in narrow contexts, but have not addressed the broader

questions: when does FDP reduce WAF, when does it fail,

and why do devices differ? These open questions directly

motivate our cross-device characterization of commercial

FDP SSDs and our design of WARP, an emulator that

exposes FDP’s hidden dynamics and enables systematic

exploration of alternative policies.

3 FDP Characterization

To understand FDP’s capabilities and limitations, we first

conduct a detailed study on diverse workloads.

3.1 Testbed and Environment

Devices. We evaluate two commercial FDP-capable SSDs

from different vendors, denoted SSDA (7.68TB, U.3) and

SSDB (3.84TB, E1.S). Both are PCIe Gen5, NVMe 2.1

compliant, and expose eight RUHs (Table 1). Each device

delivers peak sequential write throughput of ∼5GB/s.

Environment. Experiments run on servers equipped

with Intel(R) Xeon(R) Gold 5416S CPUs (2.0 GHz) and

500GB DRAM. The software stack uses Linux v6.8 with

FDP patches that propagate write hints through NVMe

I/O passthrough. This is currently the only upstream

mechanism for interfacing FDP devices, as transparent

block-layer support is not yet available [19]. We enable

FDP both via direct application integration and file-system

support, depending on the workload.

Workloads. Our evaluation spans three classes: (1) Syn-

thetic microbenchmarks with FIO [52], varying the num-

ber of write streams and access patterns to stress explicit

3

Workload Tool #Threads I/O Size R:W #RUHs

kv202206 CacheLib R16W64 4KB 4:1 2

kv202210 CacheLib W64 4KB 0:10 2

kv202401 CacheLib W64 4KB 0:10 2

cdn sea1 CacheLib R16W64 4KB 1:1.4 2

twitter12 CacheLib R16W64 4KB 1:8 2

twitter37 CacheLib R16W64 4KB 3:1 2

OLTP Filebench 10 256KB 1:5 6

Fileserver Filebench 200 256KB 1:4 6

Microbench FIO 1–3 4–256KB 0:10 1–3

Table 1: FDP SSD specifications and experiment en-

vironments. Real FDP devices from different vendors and

detailed environmental setup for testing. R and W denote reads

and writes, respectively.

RUH assignment; (2) Production traces from CacheLib

(kvcache, cdn, and twitter), where CacheLib manages

large-object (LOC) and small-object (SOC) caches sep-

arately, which map to distinct RUHs [17]; and (3) File-

system workloads (FileServer and OLTP) on F2FS, where

RUH assignment is via F2FS’s data classification [23].

3.2 Microbenchmarks

We begin with synthetic workloads to expose FDP’s funda-

mental properties in a controlled setting. Each workload

issues one or more concurrent streams, with each stream

mapped to a distinct RUH and targeting a disjoint LBA

range. By varying stream count, request type, and ac-

cess skew, we isolate how RUH separation impacts write

amplification. We report WAF as a function of written

data volume normalized to device capacity under different

workload mixes. For SSDB, we present only partial re-

sults since the device failed after excessive writes during

evaluation. We use “NoFDP” to denote the baseline mode

where all writes are issued without RUH hints, effectively

reverting the device to conventional SSD behavior.

Single-stream baseline. Figure 2 shows results from

128KB fully random writes across the entire device LBA

space to a single RUH, equivalent to default SSD behavior

without FDP. Both drives show WAF rising quickly from

the ideal 1.0 and plateauing at a device-specific steady

state: SSDA near 2.0 and SSDB near 3.5. These stable

plateaus indicate that baseline WAF is primarily dictated

by vendor geometry and GC policies.

Two-streams. Running two concurrent streams highlights

how FDP’s RUH isolation reduces write amplification.

Figure 4a considers two sequential streams with mis-

matched block sizes (16KB vs. 256KB), where NoFDP

yields ∼1.1 WAF due to misaligned progress and par-

tially filled blocks triggering extra GC. FDP eliminates

this interference, holding WAF near 1.0. Without FDP,

WAF rises steeply, exceeding 2.3 even at a 90:10 split and

Figure 2: One stream write: uniform random. WAF

under the one-stream 128KB random-write workload. The two

commercial FDP SSDs diverge significantly: SSDA stabilizes

around 2.0×, while SSDB reaches about 3.5×.

peaking at 2.4 under 50:50. In contrast, FDP sustains

near-ideal WAF across all mixes, showing that RUH sep-

aration effectively isolates sequential writes from random

interference. As randomness dominates (10:90), both

FDP and NoFDP climb, but FDP consistently maintains

lower amplification. Overall, FDP’s benefits are most

pronounced in mixed workloads, while purely sequential

streams already achieve near-ideal efficiency without it.

Observation #1: FDP’s RUH isolation consistently low-

ers WAF by shielding sequential streams from random

interference, restoring near-ideal efficiency across mixed

workloads while naturally sequential streams already

achieve close to 1.0 WAF.

Three-stream with overwrites. We extend the two-

stream setup with a third overwrite stream to capture

skewed access, where a small subset of data is updated

disproportionately often. The overwrite stream targets the

sequential region using Zipfian distributions (U=1.2 or

2.2) or an 80/20 pattern, representing common hot-cold

access. For the MixedFDP setup, only two RUHs are used,

with the sequential and overwrite streams intentionally

mapped to the same RUH while the random stream resides

in another. This models misclassification or static RUH

assignments that fail to adapt to shifting data temperature.

For the FDP setup, three RUHs are used, assigning each

data stream to a separate RUH.

Figure 3 shows clear vendor differences. On SSDA

(Figure 3a-c), FDP (blue line) sustains nearly ideal WAF

(∼1.0) under both Zipfian workloads, but its benefit col-

lapses under the 80/20 case, where updates spread more

broadly across the LBA space (i.e., 80% of the accesses

go to 20% of the LBAs). On SSDB (Figure 3d-f), overall

WAF is higher: even with FDP, skewed workloads yield

1.3–1.5, and the 80/20 case climbs above 3.0, highlighting

vendor-dependent sensitivity. Across both devices, the

trends are consistent: FDP achieves the lowest amplifica-

tion, NoFDP the highest, and MixedFDP lies in between.

Notably, MixedFDP behaves like FDP when skew is strong

(Zipf 2.2), but quickly converges to NoFDP under 80/20,

4

Figure 3: WAF for the three-stream-write workload.

The x-axis represents data volume from the host, defined as

rHMW =
Host Media Written

Device Capacity
. SSDA has 7.68TB capacity and

SSDB has 3.84TB capacity. Internal device configurations are

not disclosed.

confirming that misclassification or lifetime heterogeneity

within an RUH undermines FDP’s effectiveness. These

results suggest that FDP works best when traffic is strongly

skewed and RUH classification is accurate, but vendor

firmware, workload distribution, and adaptive remapping

ultimately dictate how much WAF can be suppressed.

Worst-case stress. Figure 5 shows the WAF results

when the overwrite stream is replaced with a uniform

random invalidation stream, leaving GC no opportunity

to optimize. On SSDA (5a), FDP, MixedFDP, and NoFDP

all rise nearly together, reaching ∼2.6-2.9 by 4× device

capacity, with FDP offering only marginal improvement.

On SSDB (5b), the situation is even more severe: WAF

climbs steeply to 4.5 despite FDP, revealing extreme

amplification under this adversarial workload. These

results further underscore that FDP’s benefits are both

vendor- and workload-dependent. While FDP can mitigate

amplification under skewed or structured patterns, its

advantage collapses under uniformly random invalidations,

converging toward conventional SSD behavior.

Observation #2: FDP mitigates WAF when isolating

heterogeneous streams, but its effectiveness depends

on vendor firmware and workload skew; strong Zipfian

patterns allow near-ideal WAF, while 80/20 mixes or

misclassified RUHs collapse toward NoFDP behavior,

underscoring that vendor defaults and RUH assignment

accuracy critically shape the benefits.

3.3 CacheLib

CacheLib manages small and large objects with separate

engines, BigHash for small items (default threshold 2KB,

termed SOC) and BlockCache for large ones (LOC),

making it a natural fit for FDP. SOC stores objects in 4KB

Figure 4: SSD WAF in two-stream-write. WAF of

FDP SSDA under the two-stream-write workload. (a) Mix of

two sequential streams with different request size. (b–d) Mix

of sequential and random write streams changing capacity

proportion.

Figure 5: Three-stream-write for uniform random.

Both SSDs show similar trends but with significantly different

magnitudes. SSDA reaches 2.58× at 4× device capacity, while

SSDB reaches 4.49×, the highest WAF observed in this study.

buckets that are rewritten in their entirety when any object

is updated, generating frequent random writes that inflate

WAF. LOC, by contrast, is log-structured, appending

updates sequentially in large segments (16MB), which is

device-friendly. FDP maps these two engines to distinct

RUHs, preventing their very different write behaviors

from interfering [17, 40]. We evaluate three production

traces, kvcache, cdn2025, and twitter, collected from

Meta, running SOC at 4%, 20%, and 40% of SSD space,

with LOC consuming the remainder. Results are drawn

from SSDA with CacheLib version v20240621.

Key-value cache. In kvcache, FDP substantially reduces

WAF. As shown in Figure 6, WAF without FDP begins

rising after roughly 1.1 host writes (about 8TB) and grows

to 1.64 at 20% and 1.85 at 40% SOC, meaning more

than 4.6TB of data is rewritten internally. With FDP,

WAF stays near 1.0 across all allocations; at 20%, WAF is

only 1.08, implying just 8% of data rewritten. Figure 8

confirms hit ratios are preserved: both FDP and NoFDP

reach about 82% at higher SOC, compared to 61% at 4%.

As SOC capacity increases, the cache can store tens of

millions more objects, improving hit ratio. FDP delivers

5

Figure 6: CacheLib WAF. Write amplification in

kvcache202206 real traces. (a) BigHash engine takes 4%

of the total SSD size; (b) BigHash engine takes 20%; and (c)

BigHash engine takes 40%. BlockCache takes 96%, 80%, and

60% of the SSD size, respectively.

this benefit while suppressing WA, breaking the usual

tradeoff between endurance and cache effectiveness.

CDN and Twitter caches. In Figure 7 for cdn and

twitter traces, both configurations already achieve near-

ideal 1.0 WAF, reflecting naturally device-friendly access

patterns. Here, FDP does not underperform, providing a

safe deployment property: enabling FDP yields gains when

workloads are challenging (e.g., kvcache) but imposes no

regression when workloads are already benign.

Multi-tenant cache. We next simulate co-location, where

CacheLib consumes 60% of the device capacity and other

applications share the remaining 40% with diverse access

patterns. Without FDP, interference is severe: in kvcache,

WAF rises from 1.28 to nearly 3.0 (Figure 9a), a seven-fold

increase at the same elapsed time. FDP sharply mitigates

this effect: noisy tenants contribute little to WAF, and

the highest observed value with FDP is only 2.6, still

below the baseline NoFDP case. This demonstrates FDP’s

robustness in multi-tenant environments.

Observation #3: Across kvcache, cdn2025, and twitter,

FDP sustains near-ideal WAF (1.0-1.2) without degrad-

ing hit ratio, and never regresses when workloads are

device-friendly. FDP eliminates the fundamental hit

ratio vs. WAF tradeoff in kvcache: larger small-object

caches improve hit ratio by 20 percentage points but

normally inflate WAF to 1.6-1.8; with FDP, hit ratio rises

while WAF remains near 1.0. In multi-tenant settings,

FDP isolates cache traffic from noisy neighbors, cutting

WAF by up to 50% compared to NoFDP. This robustness

suggests FDP-enabled devices are well suited to shared

cloud deployments.

3.4 F2FS

F2FS natively tags data placement with up to six han-

dles based on data type and temperature, making it a

natural candidate to exploit FDP. To evaluate this, we

ran two filebench workloads: Fileserver and OLTP. We

use filebench v1.14. Fileserver. This workload spawns

200 threads, each issuing four writes and one read on

Figure 7: WAF under different traces. WAF under

kv2024, kv2022, cdn2025, and twitter traces. Cache size is

set to 100% of the SSD capacity. WAF is monitored until it

stabilizes for both NoFDP and FDP cases. Write-only portions

of the kv2024 and kv2022 traces are selected to accelerate

convergence.

Figure 8: Hit ratio in CacheLib. Average hit ratio from

Figure 6, measured over a 100-minute interval. Cache sizes of

4%, 20%, and 40% correspond to proportional SSD cache sizes

of a 7.68TB device for the small-object cache (BigHash) engine

(i.e., the “NVM cache” in CacheLib).

10 million 540KB files with 256KB I/O requests. After

ten hours, it generates 28TB of writes and yields a WAF

of 1.83. As shown in Figure 10, enabling FDP through

F2FS produces almost identical results: both vendors’

drives stabilize around 2.3–2.5 WAF, with no measurable

improvement. This indicates that FDP support in F2FS,

while present, is ineffective in practice. Detailed workload

6

Figure 9: CacheLib with noisy neighbors. CacheLib

kvcache202206 trace with 4K random write (QD=1) as noisy

neighbors under the same workload elapsed time. (a) The noisy

workload increases write amplification significantly without

FDP support, whereas (b) the FDP case maintains stable write

amplification.

configurations are listed in Table 1.

To understand why, we traced F2FS I/O hint types

with eBPF and found that 99% of user data is labeled as

WARM, which maps to the generic WRITE LIFE NOT SET hint.

Consequently, nearly all writes are funneled into a single

RUH, collapsing FDP to NoFDP behavior. Figure 11

shows the total number of I/Os with write hints. Although

F2FS does separate node and metadata segments into

different RUHs, this separation alone is insufficient to

reduce WAF. For FDP to help, user data must also be

more finely classified and spread across multiple RUHs.

OLTP. The OLTP workload launches ten writer threads

that perform 256KB writes on 63K files, each issuing 100

asynchronous I/Os before calling dsync(). Results follow

the same trend as Fileserver: despite FDP tagging, WAF

remains virtually unchanged across both devices.

Observation #4: F2FS integrates cleanly with FDP’s

tagging interface, but the benefits depend critically on the

file system’s data classification policy and the device’s

internal GC. Without accurate tagging of user data across

RUHs, FDP degenerates to conventional SSD behavior.

Across synthetic and real workloads, FDP proves both

powerful and fragile. When host classifications align with

RUH isolation, it sustains near-ideal WAF. But benefits

collapse under misclassification, cross-RUH interference,

or adversarial access patterns, and outcomes vary sharply

across vendors due to opaque internal policies. Commer-

cial devices reveal these effects without exposing their

causes, underscoring the need for our emulator (§4) to

illuminate per-RUH behavior and enable the design of

more effective FDP policies beyond today’s hardware.

4 WARP Design and Implementation

4.1 Design Goals and Contract

WARP is designed as a faithful, extensible, and open

platform to answer when and why FDP reduces WAF, and

how alternative controller policies affect that outcome. To

Figure 10: F2FS WAF under Filebench workloads.

Under F2FS, FDP and NoFDP exhibit the same write amplifica-

tion trend, representing the worst case for FDP. For the OLTP

workload, both curves flatten at a WAF of 1.0, which is ideal.

TRIM is enabled by default.

Figure 11: Cumulative write hint distribution for F2FS

under Fileserver. Total number of I/O writes in the Fileserver

workload over a 10-hour benchmark. Write hints are converted

to RUH IDs in the NVMe driver using kernel patches [18].

However, write hints that are directly translated to RUH IDs are

underutilized in F2FS.

meet this goal, WARP provides three capabilities:

• Isolation semantics. WARP implements both FDP

modes defined in NVMe: Initially Isolated (II) and

Persistently Isolated (PI). These rules are modeled ex-

plicitly, making RUH identity either discarded (II) or

preserved (PI).

• Configurable geometry and policies. RU size, over-

provisioning ratio, RUH count, GC heuristics, lazy

thresholds, and block remapping are tunable, turning

opaque vendor defaults into explicit research knobs.

• Per-RUH observability. WARP instruments counters

and event logs, exposing hidden dynamics such as

Noisy RUH interference and Save Sequential premature

reclamation.

These capabilities rest on a set of explicit design con-

tracts that make WARP predictable and reproducible. First,

RUH mapping is deterministic so that every host tag al-

ways resolves to the same reclaim unit. Second, isolation

semantics are enforced consistently: in II mode all GC

copies are redirected into a shared GC-RUH, whereas in

PI mode copies remain within their original RUH. Finally,

RU granularity is explicitly defined at the start of each

run and remains fixed throughout execution. Together,

these contracts define WARP’s guarantees and form the

foundation for the following design.

7

4.2 Interface and Placement Model

At the interface level, WARP extends FEMU [53] to parse

FDP placement hints in NVMe commands and to map

tagged writes to Reclaim Units (RUs), which are logical

groupings of NAND blocks (e.g., superblocks). Each RUH

maintains one or more write pointers to its active RUs. II

semantics provide lightweight isolation: host writes enter

RUH - , but GC copies are redirected into a dedicated

GC-RUH, discarding the original tag. This path requires

only minimal changes to a legacy FTL and explains why

commercial FDP SSDs adopt II in their initial design [17].

PI semantics preserve RUH identity across reclamation

by maintaining a per-RUH GC write pointer. This policy

enforces strict isolation but fragments the over-provisioned

space. WARP is the first open emulator to support both

semantics side by side.

By default, each RUH in WARP appends into a single

active RU until it becomes full and is closed. More ad-

vanced policies may allocate multiple RUs concurrently,

increasing parallelism or alleviating GC pressure. WARP

can be extended to support such advanced designs, includ-

ing alternative II policies. In PI mode, an additional GC

write pointer ensures strict separation of host and GC data.

By exposing these placement choices, WARP turns RUH

management into a controllable design axis rather than an

opaque firmware behavior.

4.3 GC Architecture

WARP generalizes GC into two distinct decisions. The first

decision is which RUH to reclaim from. Policies include

greedy selection, which targets the RUH under highest

pressure, and pressure-based selection, which considers

the ratio of live to free space. The second decision is

which RU within the selected RUH to reclaim. Options

include greedy selection of the RU with the fewest valid

pages and cost-benefit selection, which scores a victim

as
D×age

1−D
, where D is block utilization and age is the time

since the last invalidation [54].

In addition to these basic policies, WARP implements

optimizations commonly found in enterprise SSD con-

trollers. (1) Lazy GC postpones reclamation until valid

occupancy in a RU falls below a threshold (empirically be-

tween 5–10%). (2) WARP also distinguishes background

GC, triggered at approximately 90% RU allocation, from

foreground GC, triggered near exhaustion (e.g., at approx-

imately 99%). These thresholds reduce wasted copies

of short-lived data. (3) Block remapping further reduces

amplification: when a victim RU contains blocks that are

entirely valid, those blocks are directly remapped into

the destination RU without migration. This optimization

preserves semantics while eliminating redundant writes.

By introducing RUH-aware victim selection, tunable lazy

thresholds, and block remapping, WARP transforms GC

from a fixed background routine in FEMU into an explicit,

per-RUH design surface.

4.4 Configurable Geometry

Commercial SSDs hard-code geometry parameters such

as RU size and OP ratio during the manufacturing phase

and cannot be changed [17]. WARP decouples these

parameters from hardware and exposes them as first-class

knobs to allow evaluations of different RU sizes (e.g.,

128, 256, and 512MB), OP ratios (e.g., ranging from 1

to 28 percent), and RUH count (configurable). By mak-

ing geometry explicit and configurable, WARP enables

researchers to investigate how FDP benefits depend on

controller choices that are otherwise invisible in hardware.

4.5 Observability and Calibration

A key contribution of WARP is its observability through

rich telemetry. For every workload, WARP records statis-

tics at three complementary levels of detail. At the device

level, it reports standard measures such as host bytes, me-

dia bytes, and overall WAF. At the RUH level, it exposes

a deeper view of FDP’s internal behavior by tracking host

bytes, GC copy bytes, remapped blocks, allocations, evic-

tions, and the average number of valid pages reclaimed.

At the per-GC-event level, it logs fine-grained details

including the victim RUH, the specific RU reclaimed,

the destination RUH, the applied policy, the number of

live and copied pages, and the elapsed time. These mea-

surements reveal internal dynamics that are invisible on

commercial devices (§5), such as Noisy RUHs, where

invalidations in one RUH raise amplification in others,

and Save Sequential, where long sequential streams are

reclaimed prematurely. By exporting all data as structured

logs, WARP enables validation against hardware, ensures

reproducibility of experiments, and provides the foun-

dation for systematically analyzing when and why FDP

delivers its intended benefits. It also supports calibration:

in §5, we tune geometry and GC thresholds until WARP

reproduces the steady-state WAF plateaus of real devices,

then validate against multi-stream and trace workloads.

4.6 Implementation in Context of FEMU

Extending FEMU to support FDP required changes at

both the interface and the internal policy levels. At

the interface, we added support for parsing FDP tags in

NVMe commands and mapped them to explicit RU and

RUH abstractions. At the placement level, we introduced

RUH write pointers and implemented both II and PI

semantics, thereby enabling FDP isolation modes. At the

GC level, we replaced FEMU’s fixed background policy

with RUH-aware victim selection, tunable lazy thresholds,

and block remapping, capturing behaviors unique to FDP.

8

Device Capacity FDP CacheLib WAF

4% 20% 40%

SSDA 7.68TB NoFDP 1.10 1.64 (+49%) 1.85 (+68%)

SSDA 7.68TB FDP 1.0 1.07 (+7%) 1.27 (+27%)

WARPA 240GB NoFDP 1.16 1.37 (+18%) 2.00 (+72%)

WARPA 240GB FDP 1.0 1.04 (+4%) 1.37 (+37%)

Device Capacity FDP RUH 3Syn WAF

zipf2.2 zipf1.2 80/20

SSDA 7.68TB FDP II 1.03 1.04 1.69

SSDA 7.68TB mixed II 1.03 1.67 2.08

SSDA 7.68TB NoFDP II 1.60 1.81 2.09

WARPA 240GB FDP PI 1.04 1.06 1.24

WARPA 240GB mixed PI 1.70 2.04 1.82

WARPA 240GB NoFDP PI 2.13 2.17 2.07

WARPA2 458GB (14%) FDP II 1.05 1.10 1.68

WARPA2 458GB (14%) mixed II 2.19 2.38 2.35

WARPA2 458GB (14%) NoFDP II 2.48 2.60 2.64

SSDB 3.84TB FDP II 1.29 1.45 3.12

SSDB 3.84TB mixed II 1.72 2.13 3.53

SSDB 3.84TB NoFDP II 2.58 2.95 3.97

WARPB 240GB (20%) FDP PI 1.56 1.71 1.99

WARPB 240GB (20%) mixed PI 2.88 3.10 3.37

WARPB 240GB (20%) NoFDP PI 3.48 3.61 3.55

Table 2: WARP validation. WAF from different vendors

under CacheLib kvcache202206 trace, and three stream write.

At the geometry level, we decoupled RU size and over-

provisioning ratio from FEMU’s static configuration and

exposed them as runtime parameters, making geometry

a design knob rather than a fixed constant. Finally, we

added observability by instrumenting per-RUH counters

and structured GC event logs, which allow researchers to

validate emulator behavior against hardware and reproduce

experiments. Taken together, these enhancements rebase

FEMU’s pre-FDP FTL into WARP, an emulator that treats

FDP as a first-class feature and exposes it as a configurable,

observable design space for systems research.

5 Evaluation

The evaluation of WARP pursues two complementary

goals. First, we assess fidelity: does WARP reproduce the

key write amplification trends observed on commercial

FDP SSDs across synthetic, trace-driven, and file-system

workloads? Second, we demonstrate insight: does WARP

reveal internal per-RUH dynamics and design tradeoffs

that real devices conceal?

To this end, we configure WARP with calibrated de-

faults (RU=256MB, OP=10%, lazy GC threshold=5%,

block remapping enabled, and eight RUHs) unless other-

wise noted. We evaluate three classes of workloads: (1)

microbenchmarks stressing RUH isolation with controlled

access patterns, (2) production traces from CacheLib

that exercise skewed and multi-tenant caches, and (3)

Figure 12: Revisiting one stream write with WARP.

Under the one-stream 128 KB random-write workload, most

configured WARP settings (WARP2–7) fall between 2.0–3.5×,

matching the write amplification observed on two commercial

FDP SSDs with relatively simple configuration knobs.

Figure 13: WARP result in CacheLib. Write amplification

in kvcache202206 real traces. (a) BigHash engine takes 4%

of the total SSD size; (b) BigHash engine takes 20%; and (c)

BigHash engine takes 40%. BlockCache takes 96%, 80%, and

60% of the SSD size, respectively.

file-system workloads (FileServer and OLTP on F2FS)

that rely on native FDP tagging. Our analysis proceeds

in stages: we first validate WARP against device-level

WAF baselines, then leverage its observability to uncover

phenomena such as Noisy RUH and Save Sequential,

and finally explore the design tradeoff between II and PI

isolation modes under varying OP budgets.

Unless otherwise noted, all experiments run on WARP

built atop FEMU’s SSD model. We adopt FEMU’s default

SSD configuration: 8 channels, 8 dies per channel, with

a page size of 4KB. Read, program, and erase latencies

follow FEMU’s NAND timing. These parameters are not

altered by FDP, ensuring that WARP preserves FEMU’s

baseline device fidelity while layering FDP-specific ab-

stractions on top.

5.1 Essential FDP Properties

Validation of WAF trend. Since WARP reveals the

hidden dynamics of FDP, it should reproduce fundamental

WAF trends of FDP SSDs. Figure 12 compares two

enterprise FDP SSDs against seven WARP configurations.

As expected, the real devices diverge sharply: SSDA stabi-

lizes near 2.0 while SSDB reaches about 3.5. By varying

RU size, OP ratio, and lazy-GC thresholds, we found

WARP configurations that consistently fall between these

two bounds. For example, under 128KB random writes,

WARP2−7 spans the range from 2.0 to 3.5, mirroring the

9

Figure 14: WARP WAF under the three-stream-write

workload. The x-axis shows data volume written from the host.

WARPA and WARPB capture real FDP devices with different

GC schemes. Configurations are listed in Table 2.

vendor spread, except WARP1. This confirms that WAF is

not a fixed property but an emergent outcome of hardware

geometry (block/page size, parallelism, OP ratio) and

firmware policy (GC heuristics, scheduling, thresholds).

Despite the complexities, WARP captures the trend with

only a few configuration knobs, validating its fidelity for

subsequent studies.

CacheLib validation. Having established fidelity

on synthetic microbenchmarks, we next validate WARP

against production traces. CacheLib is particularly chal-

lenging: its BigHash engine generates small-object up-

dates that inflate WAF, while BlockCache issues sequential

appends that are device-friendly.

Figure 13 shows that WARP reproduces these dynamics

with high fidelity. As cache size increases, the real FDP

SSDA reduces WAF from 1.85 (Figure 6 NoFDP) to 1.27

(Figure 6 FDP) at 40% SOC, while WARP mirrors the

same directional improvement (2.00 → 1.37). At smaller

SOC fractions (4% and 20%), both devices maintain near-

ideal WAF around 1.0–1.1, again captured by WARP.

These results confirm that WARP faithfully models FDP’s

central effect: suppressing WAF when workloads are

adversarial while remaining neutral when they are benign.

Moreover, the consistency across SOC ratios highlights

that WARP captures the sensitivity of FDP to workload

composition, sometimes more transparently than vendor

firmware, which conceals internal heuristics.

Complex workload validation. Finally, we validate

WARP under skewed and multi-stream workloads, which

stress FDP more severely than uniform random writes.

These patterns combine sequential, random, and overwrite

streams with varying skew (Zipfian, 80/20), modeling re-

alistic hot/cold dynamics and misclassification scenarios.

Figure 14 shows that WARP reproduces the expected

qualitative hierarchy for SSDA: FDP sustains near-ideal

WAF (1.0), NoFDP escalates toward 2.0, and MixedFDP

Figure 15: Revisiting three-stream-write with WARP.

WAF under the three-stream-write workload with the WARPA2

configuration using the greedy algorithm. WARPA2 follows real

FDP device trends.

remains between the two (1.3-1.6 depending on skew).

While absolute values differ slightly due to vendor-specific

geometry and GC heuristics, the ordering and slopes are

consistent. For SSDB, which exhibits higher amplification

overall, WARP still matches the same hierarchy: FDP near

1.3, MixedFDP rising toward 2.0, and NoFDP exceeding

2.5. With parameter tuning, WARP tracks the device-

specific trends across all skewed workloads.

Additional validation in Figure 15 confirms these results:

under both Zipfian and 80/20 access distributions, WARP

preserves the same ordering of three different use cases,

with WAF values aligned to within 0.2-0.3 of the real

devices. These experiments demonstrate that WARP

faithfully models FDP behavior even under complex,

adversarial workloads, establishing it as a robust platform

for deeper exploration of FDP policies.

Observation #5: WARP reproduces the WAF behavior

of enterprise FDP SSDs across both synthetic and real

workloads, matching vendor trends while remaining

fully transparent and tunable. Its fidelity across devices

and workload classes underscores its value as a general

research platform for exploring FDP design.

5.2 Analysis of Three-Stream-Writes and Beyond

Per-RUH effects. Figure 16 breaks down WAF by individ-

ual RUHs. Two key phenomena emerge: (1) a Noisy RUH,

where overwrite traffic in one handle indirectly inflates

WAF in others by increasing GC pressure; and (2) Save

Sequential, where capacity-dominant sequential streams

are prematurely reclaimed, erasing their natural device-

friendly behavior. Both effects are visible in WARP’s

counters and echoed in real devices, demonstrating FDP’s

fragility under co-location.

Noisy RUH. Figure 16a shows workload distribution

10

Figure 16: WAF breakdown for the three-stream-write

workload at 5× rHMW in WARPA. (a) Host-written data

volume per RUH in relative terms. 4.42 means 4.42× device

capacity of data was written to RUH 0. (b) WAF breakdown per

RUH, considering only amplified writes. The x-axis shows the

absolute amount of amplified data.

Figure 17: Per-RUH WAF under the three-stream-write

workload in WARP (PI). Per-RUH WAF considers each RUH

as a subset of the SSD (i.e., Per-RUH-WAF =
RUHi GCed Data
RUHi Data Written).

In (c), the per-RUH WAF of RUH 1 and RUH 2 rises to 3.8×.

across RUHs. RUH 0, the sequential overwrite stream,

dominates all three workloads, absorbing 4.42–4.45× de-

vice capacity of traffic (88% of writes). RUH 1 (random

writes) and RUH 2 (invalidation) contribute only 0.26–

0.32 and 0.22–0.40× capacity respectively (5–6% each).

Figure 16b shows amplification contributions. Under

Zipfian workloads, most amplification comes from RUH 0

(WAF 0.038–0.043), with RUH 1 and RUH 2 nearly negli-

gible. Under the 80/20 workload, however, amplification

rises across all RUHs: RUH 1 contributes 0.131 (26% of

total) and RUH 2 contributes 0.070 (14%), even though

their traffic volumes barely change. The culprit is RUH 2’s

invalidation stream, which forces more aggressive GC and

indirectly raises RUH 1’s WAF. This interference effect

breaks RUH isolation.

We call this Noisy RUH: a single RUH can degrade

global amplification across others. Notably, the same pat-

tern appears on real FDP SSDs (Figure 3c&f), indicating

it is a general property of current FDP implementations.

Observation #6: Our per-RUH breakdown reveals criti-

cal pitfalls of FDP: “Noisy RUHs” propagate garbage-

collection pressure across handles, inflating global WAF.

FDP’s effectiveness depends not only on RUH isolation

but also on balanced workloads and device-level slack.

Save Sequential. Figure 16b also shows that RUH 0,

although sequential, contributes the majority of WAF

(0.131–0.264 depending on workload). Ideally, sequential

streams should self-invalidate and incur little amplification.

Yet limited OP and GC heuristics cause the device to

prematurely reclaim RUH 0, even when its data would soon

be overwritten. This Save Sequential effect means that

even sequential, capacity-dominant streams can dominate

WAF if they collide with GC policy.

Observation #7: The apparent “victim” of WAF is often

the capacity-dominant RUH, not the noisy RUH. In FDP

SSDs, even long sequential streams cannot be assumed

safe; when their scale collides with device internals, they

may erode the isolation benefits of FDP.

5.3 FDP SSD II vs. PI

OP tradeoff. The balance between Initially Isolated

(II) and Persistently Isolated (PI) schemes is governed

primarily by the amount of over-provisioned flash available.

Figure 18 summarizes this tradeoff across different RU

sizes and OP ratios under the 80/20 workload, a stress

case that produces widespread invalidations.

Figure 18a shows results for 256MB RUs. When OP

is limited (3–5%), II achieves a lower WAF (OP3% 2.92,

OP5% 2.178) than PI (OP3% 3.8, OP5% 2.365). The

crossover occurs around 7–9% OP, illustrating that PI only

surpasses II once sufficient spare capacity is available

to absorb the fragmentation induced by strict per-RUH

isolation. Figure 18b repeats the experiment with smaller

128MB RUs. Here the crossover point shifts upward. With

3% OP, II again performs better (WAF 2.521 vs. 2.781

for PI), but even at 5% OP, II maintains an advantage

(1.74 vs. 1.908). Only at higher OP (7–10% and above)

does PI reach parity (1.129 vs. 1.091 for PI, OP 10%).

Smaller RUs thus require more generous OP budgets for

PI to exploit its theoretical lower bound. Figure 18c and

(d) highlight this effect directly by fixing OP at 5% and

10% respectively for 256MB RUs. At 5%, II’s WAF is

2.187 while PI’s is 2.365, confirming that under tight OP

budgets PI’s fragmentation penalty dominates. At 10%,

II achieves 1.338 while PI drops to 1.181, showing that PI

only begins to pull ahead at higher OP levels.

II and PI: why and when. These results reflect how

each scheme leverages spare space. PI enforces strict RUH

isolation even for GC copies, fragmenting the spare pool.

Under tight OP budgets, this starves each RUH of slack and

triggers frequent GC, inflating WAF. II, in contrast, pools

spare space in the GC-RUH and can flexibly amortize GC

overhead across streams, making it more resilient under

scarce OP. When OP is plentiful, however, PI’s isolation

pays off: each RUH has its own slack, minimizing cross-

stream interference and yielding lower WAF than II. Thus

PI’s potential lower bound is below II’s, but only if OP is

sufficient to offset its fragmentation.

Fragility of PI. Although PI can outperform II, it is the

11

Figure 18: WARP FDP II vs. PI design OP tradeoff. Two RUH types—Initially Isolated and Persistently Isolated—show

WAF across different OP ratios and RU sizes. Lower is better. All WAF collected from the 80/20 workload at 5× rHMW (224GB). (a)

WAF with RU 256MB for all OP settings. (b) WAF with RU 128MB for all OP settings. (c) WAF at OP 5% for the RU 256MB setting

only. (d) WAF at OP 10% for the RU 256MB setting only.

Figure 19: II vs. PI design tradeoff for the 80/20

workload at 5× written data volume in WARP. (a)

WARP RU256MB setting shows the crossover point around 7–

9% OP. (b) WARP RU128MB setting shows the crossover point

around 5–7% OP (224GB).

more fragile mode. As the number of RUHs grows, or as

workloads become heterogeneous and device-unfriendly,

PI requires disproportionately larger OP budgets to main-

tain its advantage. Under such conditions, PI may exhibit

higher WAF than II. By contrast, II’s lower bound is higher,

but it demonstrates robustness across workloads with tight

OP and high interference. The dedicated GC-RUH ab-

sorbs much of the GC-induced contention, shielding II

from pathological amplification.

The 80/20 workload used here is more adversarial than

Zipfian skewed writes, since invalidations are spread more

broadly across the address space. This highlights the

circumstances under which PI can be beneficial: (1) work-

loads with well-classified lifetimes, and (2) devices with

abundant OP. In contrast, II would be a robust choice

under irregular or mixed workloads and when OP budgets

are constrained. For system designers, this tradeoff im-

plies that PI requires coordinated host classification and

generous OP allocation, while II provides resilience with

less host knowledge.

Observation #8: II achieves lower WAF when OP is

scarce, while PI delivers the lowest WAF only when

OP is abundant. PI is potentially more powerful but

fragile: under limited OP or heterogeneous workloads,

its benefits collapse and it can perform worse than II.

6 WARP Guided Optimization

6.1 WARP WAF optimization

In this section, we demonstrate how WARP enables design

exploration through a simple yet effective optimization in

CacheLib. Figure 20 reports WAF for the kvcache202206

trace at 40% SOC. In addition to the NoFDP and FDP base-

lines, we evaluate a device-level optimization in WARP

that assigns a small RU to the SOC handle (RUH 0).

The idea is straightforward: we configure a small RU

(i.e., a single-channel-mapped RU), so that all writes from

RUH 0 fill one NAND block completely before moving to

another channel. The improvement is evident: while FDP

alone reduces WAF from 2.0 (NoFDP) to 1.37, adding the

small-RU optimization lowers it further to 1.16. The effect

is substantial under heavy SOC (40%) but the benefit is

minimal in light SOC settings (4%). The gains are twofold.

First, smaller RUs can reduce GC overhead by collecting

fewer pages per cycle. Second, constraining an RU to a

single channel implicitly throttles the small-object cache,

preventing it from overwhelming the device with parallel

GC activity. As a result, the Noisy RUH effect is suppressed.

WARP provides the foundation for exploring such co-

design opportunities between host software and device-

level policies. Particularly, this case opens a promising

direction: adaptive RU sizing (i.e., dynamic RU sizing) for

FDP SSDs. Shrinking RUs for noisy workloads reduces

amplification, while larger RUs preserve throughput for

benign workloads [55]. This aligns with findings from

prior work [56]. Furthermore, throughput sensitivity

interacts with WAF, suggesting the need for FDP-aware

schedulers that consider RUHs for request scheduling.

6.2 WARP Latency Optimization

Latency matters as much as write amplification in system

performance. WARP builds on FEMU’s validated timing

model and, with our documented tuning, provides pre-

dictable, repeatable latency behavior that closely tracks

12

Figure 20: Optimization for CacheLib SOC. WAF for

the kvcache202206 trace at 40% SOC in WARP.

real FDP SSDs, making it a strong platform beyond just

FDP emulation. In Table 3, under 4KB high-queue-depth

workloads, WARP sustains 335K IOPS versus 460K on a

real SSD (SSDA), with nearly identical median and main

tail latencies (p50–p99 around 70–80µs) and realistic

GC-driven tail spikes (457µs vs. 967µs for p99.999),

while maintaining latency stability up to the five-nines.

Proper tuning for WARP involves removing the expensive

VM-exit system call overhead by disabling the NVMe

doorbell write. In this way, the expensive MMIO doorbell

write operation is mitigated, resulting in a high-quality

emulation platform in userspace (QEMU).

Table 3 shows identical median latency and stable

p99.999 latency compared to FDP SSD. Together with

other findings, WARP is not only a faithful FDP SSD

emulator but also a high-quality emulation platform for

latency-sensitive SSD research [38, 39, 57].

7 WARP Use Cases and Future Directions

Beyond validating FDP fidelity and revealing hidden

phenomena, WARP enables a wide range of use cases that

are impractical or impossible with commercial SSDs. We

highlight several opportunities where WARP can serve as

a platform for both systems research and device co-design.

• Policy exploration beyond hardware. Today, commer-

cial devices expose only II semantics. WARP makes

it possible to evaluate PI mode, hybrid schemes (e.g.,

adaptive isolation), or new victim-selection heuristics

that vendors have not yet implemented. This supports

head-to-head comparisons of design choices that remain

invisible in hardware.

• Cross-layer co-design. File systems (e.g., F2FS) and

KV stores (e.g., CacheLib) can be run unmodified atop

WARP to measure how FDP semantics interact with

tagging policies. Researchers can quantify the cost of

misclassification and explore whether tagging by file

type, hot/coldness, or application hints yields the best

isolation. Such studies are infeasible on opaque devices.

• Multi-tenancy and resource sharing. FDP’s intended

role is to isolate tenants, yet our results reveal fragility

(Noisy RUH, Save Sequential). WARP enables con-

Device Avg Stdev p50 p99 p99.9 p99.99 p99.999

SSDA 70`s 9.8 70`s 80`s 92`s 200`s 967`s

WARP 77`s 12.1 70`s 77`s 82`s 102`s 457.4`s

Table 3: Latency in WARP and real SSD. Baseline

latency for 4K random read workload (QD=1). With proper

tuning, WARP shows predictable latency compared to real SSD.

trolled experiments with co-located workloads, testing

whether new GC or RUH assignment policies improve

fairness and reduce interference.

• Dynamic policy adaptation. With fine-grained observ-

ability, WARP can serve as a foundation for adaptive

controllers. Examples include dynamically resizing

RUs for noisy workloads, adjusting GC thresholds in

response to workload intensity, or switching between

II and PI modes depending on OP availability. These

experiments are only possible with an open emulator.

These use cases illustrate that WARP is not only a

faithful emulator but also a general research and education

platform. By making opaque firmware knobs explicit and

tunable, it opens new opportunities for systematic study

of FDP and related flash-management policies.

8 Conclusion

We presented WARP, the first open emulator and sys-

tematic study of FDP SSDs. Our cross-device charac-

terization shows that FDP can achieve near-ideal WAF

when RUH isolation aligns with object lifetimes, but its

benefits collapse under misclassification, interference, or

adversarial patterns, with outcomes varying sharply across

vendors. WARP bridges this gap by reproducing hardware

trends while exposing per-RUH dynamics and tunable

design knobs. With this visibility, we uncovered new

pitfalls, such as the Noisy RUH and Save Sequential ef-

fects, demonstrating that FDP’s benefits are not automatic

and require careful stream classification and device-level

awareness. Beyond validation, WARP enables exploration

of new firmware strategies, OS-level policies, and applica-

tion designs that can push FDP beyond current hardware

limits with transparent full-stack interaction. WARP is

open-source and publicly available; we hope it will fos-

ter co-design research that fully realizes FDP’s promise

across diverse storage workloads.

Acknowledgments

We thank Reza Salkhordeh, our shepherd, and the anony-

mous reviewers for their valuable feedback and comments.

We also would like to thank Vivek Shah and Arun George

for their helpful discussions. This research was partially

supported by the NSF CAREER Award CNS-2339901

and NSF Grant CNS-2312785.

13

References

[1] Sara McAllister, Yucong “Sherry” Wang, Benjamin Berg,

Daniel S. Berger, George Amvrosiadis, Nathan Beckmann,

and Gregory R. Ganger. FairyWREN: A Sustainable Cache

for Emerging Write-Read-Erase Flash Interfaces. In Pro-

ceedings of the 18th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2024.

[2] Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao Ouyang,

Chao Shi, and Lilong Huang. Separating Data via Block

Invalidation Time Inference for Write Amplification Re-

duction in Log-Structured Storage. In Proceedings of the

20th USENIX Symposium on File and Storage Technologies

(FAST), 2022.

[3] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the

Lifetime of Flash-based Storage Through Reducing Write

Amplification from File Systems. In Proceedings of the

11th USENIX Symposium on File and Storage Technologies

(FAST), 2013.

[4] Seonggyun Oh, Jeeyun Kim, Soyoung Han, Jaehoon Kim,

Sungjin Lee, and Sam H. Noh. MIDAS: Minimizing

Write Amplification in Log-Structured Systems Through

Adaptive Group Number and Size Configuration. In Pro-

ceedings of the 22nd USENIX Symposium on File and

Storage Technologies (FAST), 2024.

[5] Minji Kang, Soyee Choi, Gihwan Oh, and Sang-Won Lee.

2R: Efficiently Isolating Cold Pages in Flash Storages. In

Proceedings of the 46th International Conference on Very

Large Data Bases (VLDB), 2020.

[6] Swamit Tannu and Prashant J. Nair. The Dirty Secret

of SSDs: Embodied Carbon. In the 2nd Workshop on

Sustainable Computer Systems (HotCarbon), 2023.

[7] Sara McAllister, Fiodar Kazhamiaka, Daniel S. Berger,

Rodrigo Fonseca, Kali Frost, Aaron Ogus, Maneesh Sah,

Ricardo Bianchini, George Amvrosiadis, Nathan Beck-

mann, and Gregory R. Ganger. A Call for Research on

Storage Emissions. In the 3rd Workshop on Sustainable

Computer Systems (HotCarbon), 2024.

[8] Gabriel Haas, Bohyun Lee, Philippe Bonnet, and Vik-

tor Leis. SSD-iq: Uncovering the Hidden Side of SSD

Performance. In Proceedings of the 51st International

Conference on Very Large Data Bases (VLDB), 2025.

[9] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards SLO

Complying SSDs Through OPS Isolation. In Proceed-

ings of the 13th USENIX Symposium on File and Storage

Technologies (FAST), 2015.

[10] Alberto Lerner and Philippe Bonnet. Not your Grandpa’s

SSD: The Era of Co-Designed Storage Devices. In Proceed-

ings of the 2021 ACM SIGMOD International Conference

on Management of Data (SIGMOD), 2021.

[11] Michael Allison. Flexible Data Placement using NVM

Express - Specification Perspective. https://www.yout

ube.com/watch?v=ZEISXHcNmSk.

[12] Eliminating the I/O Blender: The Promise of Flexible Data

Placement. https://sg.micron.com/about/blog/com

pany/innovations/eliminating-the-io-blender-p

romise-of-flexible-data-placement.

[13] NVMe FDP - A Promising New SSD Data Placement

Approach. https://www.storagenewsletter.com/20

25/02/05/nvme-fdp-a-promising-new-ssd-data-p

lacement-approach/.

[14] Introduction to Flexible Data Placement: A New Era of Op-

timized Data Management. https://download.semic

onductor.samsung.com/resources/white-paper/F

DP Whitepaper 102423 Final 10130020003525.pdf.

[15] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.

LightNVM: The Linux Open-Channel SSD Subsystem. In

Proceedings of the 15th USENIX Symposium on File and

Storage Technologies (FAST), 2017.

[16] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Ar-

avind Ramesh, Damien Le Moal, Greg R. Ganger, and

George Amvrosiadis. ZNS: Avoiding the Block Interface

Tax for Flash-based SSDs. In Proceedings of the 2021

USENIX Annual Technical Conference (ATC), 2021.

[17] Michael Allison, Arun George, Javier Gonzalez, Dan

Helmick, Vikash Kumar, Roshan R. Nair, and Vivek Shah.

Towards Efficient Flash Caches with Emerging NVMe

Flexible Data Placement SSDs. In Proceedings of the 2025

EuroSys Conference (EuroSys), 2025.

[18] Support Flexible Data Placement (FDP). https://gith

ub.com/SamsungDS/linux/commit/879822d2528090

ce45bb54c4bf66344290fe037a.

[19] Flexible Data Placement. https://lwn.net/Articles

/1018642/.

[20] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Under-

standing intrinsic characteristics and system implications

of flash memory based solid state drives. In Proceedings of

the 2009 ACM International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS), 2009.

[21] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. The Unwritten Contract of

Solid State Drives. In Proceedings of the 2017 EuroSys

Conference (EuroSys), 2017.

[22] Nanqinqin Li, Mingzhe Hao, Huaicheng Li, Tim Emami,

and Haryadi S. Gunawi. Fantastic SSD Internals and

How to Learn and Use Them. In Proceedings of the 15th

ACM International Conference on Systems and Storage

(SYSTOR), 2022.

[23] Changman Lee, Dongho Sim, Joo-Young Hwang, and

Sangyeun Cho. F2FS: A New File System for Flash Stor-

age. In Proceedings of the 13th USENIX Symposium on

File and Storage Technologies (FAST), 2015.

[24] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won

Lee, and Young Ik Eom. SFS: Random Write Considered

Harmful in Solid State Drives. In Proceedings of the 10th

USENIX Symposium on File and Storage Technologies

(FAST), 2012.

[25] Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and

Onur Mutlu. WARM: Improving NAND Flash Mem-

ory Lifetime with Write-Hotness Aware Retention Man-

agement. In Proceedings of the 8th ACM International

Conference on Systems and Storage (SYSTOR), 2015.

[26] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,

14

https://www.youtube.com/watch?v=ZEISXHcNmSk
https://www.youtube.com/watch?v=ZEISXHcNmSk
https://sg.micron.com/about/blog/company/innovations/eliminating-the-io-blender-promise-of-flexible-data-placement
https://sg.micron.com/about/blog/company/innovations/eliminating-the-io-blender-promise-of-flexible-data-placement
https://sg.micron.com/about/blog/company/innovations/eliminating-the-io-blender-promise-of-flexible-data-placement
https://www.storagenewsletter.com/2025/02/05/nvme-fdp-a-promising-new-ssd-data-placement-approach/
https://www.storagenewsletter.com/2025/02/05/nvme-fdp-a-promising-new-ssd-data-placement-approach/
https://www.storagenewsletter.com/2025/02/05/nvme-fdp-a-promising-new-ssd-data-placement-approach/
https://download.semiconductor.samsung.com/resources/white-paper/FDP_Whitepaper_102423_Final_10130020003525.pdf
https://download.semiconductor.samsung.com/resources/white-paper/FDP_Whitepaper_102423_Final_10130020003525.pdf
https://download.semiconductor.samsung.com/resources/white-paper/FDP_Whitepaper_102423_Final_10130020003525.pdf
https://github.com/SamsungDS/linux/commit/879822d2528090ce45bb54c4bf66344290fe037a
https://github.com/SamsungDS/linux/commit/879822d2528090ce45bb54c4bf66344290fe037a
https://github.com/SamsungDS/linux/commit/879822d2528090ce45bb54c4bf66344290fe037a
https://lwn.net/Articles/1018642/
https://lwn.net/Articles/1018642/

and Vijay Balakrishnan. AutoStream: automatic stream

management for multi-streamed SSDs. In Proceedings of

the 10th ACM International Conference on Systems and

Storage (SYSTOR), 2017.

[27] Hwanjin Yong, Kisik Jeong, Joonwon Lee, and Jin-Soo

Kim. vStream: Virtual Stream Management for Multi-

Streamed SSDs. In the 10th Workshop on Hot Topics in

Storage and File Systems (HotStorage), 2018.

[28] Jing Yang, Shuyi Pei, and Qing Yang. WARCIP: Write

Amplification Reduction by Clustering I/O Pages. In Pro-

ceedings of the 12th ACM International Conference on

Systems and Storage (SYSTOR), 2019.

[29] Kevin Kremer and Andre Brinkmann. FADaC: A Self-

Adapting Data Classifier For Flash Memory. In Proceed-

ings of the 12th ACM International Conference on Systems

and Storage (SYSTOR), 2019.

[30] Chandranil Chakraborttii and Heiner Litz. Reducing Write

Amplification in Flash by Death-time Prediction of Logical

Block Addresses. In Proceedings of the 14th ACM Inter-

national Conference on Systems and Storage (SYSTOR),

2021.

[31] Sungjin Lee, Ming Liu, SangWoo Jun, Shuotao Xu, Ji-

hong Kim, and Arvind. Application-Managed Flash. In

Proceedings of the 14th USENIX Symposium on File and

Storage Technologies (FAST), 2016.

[32] Xiaoyi Zhang, Feng Zhu, Shu Li, Kun Wang, Wei Xu, and

Dengcai Xu. Optimizing Performance for Open-Channel

SSDs in Cloud Storage System. In Proceedings of the 35th

IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2021.

[33] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Joo-

Young Hwang. ZNS+: Advanced Zoned Namespace In-

terface for Supporting In-Storage Zone Compaction. In

Proceedings of the 15th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2021.

[34] Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng

Li, Michael Kaminsky, David G. Andersen, Gregory R.

Ganger, George Amvrosiadis, and Matias Bjørling. RAIZN:

Redundant Array of Independent Zoned Namespaces. In

Proceedings of the 28th ACM International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2023.

[35] Chris Sabol and Smriti Desai. SmartFTL SSDs. https:

//146a55aca6f00848c565-a7635525d40ac1c703001

98708936b4e.ssl.cf1.rackcdn.com/images/c867f

55eaa86f735dc82d649bd18077e9388f07f.pdf.

[36] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and

Sangyeun Cho. The Multi-Streamed Solid-State Drive.

In the 7th Workshop on Hot Topics in Storage and File

Systems (HotStorage), 2015.

[37] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav

Gogte, Sriram Govindan, Dan R. K. Ports, Irene Zhang, Ri-

cardo Bianchini, Haryadi S. Gunawi, and Anirudh Badam.

LeapIO: Efficient and Portable Virtual NVMe Storage on

ARM SoCs. In Proceedings of the 25th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2020.

[38] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin,

Gregory R. Ganger, and Haryadi S. Gunawi. IODA: A

Host/Device Co-Design for Strong Predictability Contract

on Modern Flash Storage. In Proceedings of the 28th

ACM Symposium on Operating Systems Principles (SOSP),

2021.

[39] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin,

Gregory R. Ganger, and Haryadi S. Gunawi. Extending

and Programming the NVMe I/O Determinism Interface

for Flash Arrays. ACM Transactions on Storage, 19(1),

2023.

[40] FDP Enabled Cache. https://cachelib.org/docs/Ca

che Library User Guides/FDP enabled Cache/.

[41] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo

Kim, and Joonwon Lee. CFLRU: A Replacement Al-

gorithm for Flash Memory. In Proceedings of the 2006

international conference on Compilers, Architecture and

Synthesis for Embedded Systems (CASES), 2006.

[42] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the

Lifetime of Flash-based Storage Through Reducing Write

Amplification from File Systems. In Proceedings of the

11th USENIX Symposium on File and Storage Technologies

(FAST), 2013.

[43] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Ja-

gadeesh Shetty, Joo Young Hwang, Sangyeun Cho, Daniel

D. G. Lee, and Jaeheon Jeong. FStream: Managing Flash

Streams in the File System. In Proceedings of the 16th

USENIX Symposium on File and Storage Technologies

(FAST), 2018.

[44] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, My-

oungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul

Lee, and Jihong Kim. Fully Automatic Stream Manage-

ment for Multi-Streamed SSDs Using Program Contexts.

In Proceedings of the 17th USENIX Symposium on File

and Storage Technologies (FAST), 2019.

[45] Eunji Lee, Julie Kim, Hyokyung Bahn, and Sam H. Noh.

Reducing Write Amplification of Flash Storage Through

Cooperative Data Management with NVM. In Proceedings

of the 32nd IEEE Symposium on Massive Storage Systems

and Technologies (MSST), 2016.

[46] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,

Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,

and Sachin Katti. Flashield: a Hybrid Key-value Cache

that Controls Flash Write Amplification. In Proceedings

of the 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2019.

[47] Merge branch “for-4.13/block” of git://git.kernel.dk/linux-

block. 2017. https://github.com/torvalds/linux/

commit/c6b1e36c8fa04a6680c44fe0321d0370400e9

0b6.

[48] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-

drea C. Arpaci Dusseau, and Remzi H. Arpaci Dusseau.

WiscKey: Separating Keys from Values in SSD-conscious

Storage. In Proceedings of the 14th USENIX Symposium

on File and Storage Technologies (FAST), 2016.

[49] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,

Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S

15

https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://cachelib.org/docs/Cache_Library_User_Guides/FDP_enabled_Cache/
https://cachelib.org/docs/Cache_Library_User_Guides/FDP_enabled_Cache/
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6

Berger, Nathan Beckmann, and Gregory R Ganger. Kan-

garoo: Caching Billions of Tiny Objects on Flash. In

Proceedings of the 28th ACM Symposium on Operating

Systems Principles (SOSP), 2021.

[50] Hui Sun, Xiao Qin, Fei Wu, and Changsheng Xie. Mea-

suring and Analyzing Write Amplification Characteristics

of Solid State Disks. In Proceedings of the IEEE Interna-

tional Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS),

2014.

[51] Tomer Lange, Joseph Seffi Naor, and Gala Yadgar. Optimal

SSD Management with Predictions. In Proceedings of the

2025 ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), 2025.

[52] fio – Flexible I/O tester. https://fio.readthedocs.io

/en/latest/fio doc.html.

[53] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-

nathan Sundararaman, Matias Bjørling, and Haryadi S.

Gunawi. The CASE of FEMU: Cheap, Accurate, Scalable

and Extensible Flash Emulator. In Proceedings of the 16th

USENIX Symposium on File and Storage Technologies

(FAST), 2018.

[54] Mendel Rosenblum and John K. Ousterhout. The Design

and Implementation of a Log-Structured File System. In

Proceedings of the 13th ACM Symposium on Operating

Systems Principles (SOSP), 1991.

[55] Bryan S. Kim. Utilitarian Performance Isolation in Shared

SSDs. In the 10th Workshop on Hot Topics in Storage and

File Systems (HotStorage), 2018.

[56] Xiangqun Zhang, Shuyi Pei, Jongmoo Choi, and Bryan S.

Kim. Excessive SSD-Internal Parallelism Considered

Harmful. In the 15th Workshop on Hot Topics in Storage

and File Systems (HotStorage), 2023.

[57] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao

Tong, Swaminathan Sundararaman, Andrew A. Chien, and

Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect Elimina-

tion of Garbage Collection Tail Latencies in NAND SSDs.

In Proceedings of the 15th USENIX Symposium on File

and Storage Technologies (FAST), 2017.

16

https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html

	Introduction
	Background and Motivation
	FDP Characterization
	Testbed and Environment
	Microbenchmarks
	CacheLib
	F2FS

	WARP Design and Implementation
	Design Goals and Contract
	Interface and Placement Model
	GC Architecture
	Configurable Geometry
	Observability and Calibration
	Implementation in Context of FEMU

	Evaluation
	Essential FDP Properties
	Analysis of Three-Stream-Writes and Beyond
	FDP SSD II vs. PI

	WARP Guided Optimization
	WARP WAF optimization
	WARP Latency Optimization

	WARP Use Cases and Future Directions
	Conclusion

