ARTIFACT
EVALUATED

@ usenix

ARTIFACT
EVALUATED

@ usenix

AVAILABLE

Characterizing and Emulating FDP SSDs with WARP

Inho Song, Shoaib Asif Qazi, Javier Gonzalez®, Matias Bj;z)rlingT, Sam H. Noh, Huaicheng Li

Virginia Tech

Abstract

Flexible Data Placement (FDP) promises to reduce
write amplification by steering writes across reclaim
unit handles (RUHs), yet outcomes vary widely across
devices. This paper presents WARP, the first open
emulator and comprehensive study of FDP SSDs. Our
cross-device, cross-workload characterization shows that
FDP sustains near-1 WAF when RUH isolation aligns
with object lifetimes, but fails under misclassification,
RUH interference, or adversarial invalidations. WARP
reproduces hardware WAF trends while exposing
per-RUH dynamics and configurable policies hidden
in real devices. With WARP, we explore the firmware
design space for FDP and demonstrate policies that
reduce WAF beyond current hardware. By combining
empirical characterization with a transparent emulator,
this work advances FDP research from anecdotal reports
to principled understanding and provides a platform for
future FDP-aware system design.

1 Introduction

Flash storage underpins today’s data-intensive applications
such as caching and analytics, but scaling it sustainably
is becoming increasingly challenging. Rising demand
collides with constraints on cost, endurance, and carbon
impact. At the device level, these challenges converge
on the problem of write amplification (WAF), the excess
writes to flash triggered by garbage collection (GC). High
WAF shortens SSD lifetime, inflates replacement cost, and
drives up the environmental footprint of storage fleets [1—
5]. As SSDs dominate cloud infrastructure, reducing WAF
has become a first-order goal for both performance and
sustainability [6-10]. Even single-digit changes in WAF
translate into millions of dollars in cost and significant
gains in device lifetime at hyperscale.

To this end, hyperscalers such as Google and Meta
have championed the Flexible Data Placement (FDP)
interface, now ratified in the NVMe standard [11]. Major
vendors have begun shipping FDP-enabled SSDs [12-14],
making it one of the first endurance-focused interfaces to
see broad commercial traction. FDP lets hosts steer writes

*Samsung Electronics

TWestern Digital

into logical groups called reclaim unit handles (RUHS),
so that data with similar lifetimes are reclaimed together
and WAF approaches 1.0. Unlike prior proposals such as
OpenChannel or Zoned Namespaces (ZNS) [15, 16], FDP
preserves backward compatibility with the block interface,
enabling easy adoption while still promising substantial
lifetime and sustainability gains at scale.

Attractive as this promise is, FDP is a best-effort inter-
face rather than a guarantee. Unlike OpenChannel/ZNS,
FDP leaves GC entirely device-managed. Although hosts
can tag writes with RUHs, reclaim policies remain opaque
to software and device-specific. As a result, FDP only
reduces WAF when workload lifetimes align with RUH
isolation; when they do not, the expected benefit van-
ishes. Commercial FDP SSDs further complicate matters.
Although they expose the same NVMe FDP interface,
each vendor hard-codes different internal choices, such
as RU size, over-provisioning (OP) ratio, the number of
RUHSs, and whether RUHs are Initially Isolated (IT) or
Persistently Isolated (PI). These firmware-level policies
are invisible to the host, yet they fundamentally shape
FDP’s effectiveness. The same workload can therefore
see near-ideal WAF on one device and collapse on another,
even though both advertise “FDP support.” This gap
between specification and practice is the major barrier to
FDP adoption. Our study addresses this gap by asking
three key questions: When does FDP deliver near-1 WAF,
and when does it fail? Which vendor-level configura-
tions drive these differences? What internal mechanisms
explain the variation across devices?

Early efforts have begun to explore FDP’s potential. A
recent study integrated FDP into CacheLib and showed
that it can deliver near-ideal WAF under production traces
without hurting hit ratio [17]. Initial ecosystem support
has also emerged, including NVMe driver patches that
propagate FDP tags and file systems such as F2FS that
expose FDP hints [18]. While encouraging, these steps
leave critical gaps. Existing studies focus on a single appli-
cation stack, do not characterize FDP across devices and
workloads, and, because commercial drives are opaque,
cannot explain why FDP helps in some cases but fails in
others. As a result, the community still lacks a principled

understanding of FDP’s effectiveness, its limits, and the
design choices that determine its benefits.

In this paper we present WARP, the first comprehen-
sive study and open emulator for FDP SSDs. Our work
combines cross-device characterization with a validated
emulator to move FDP research from anecdotal demon-
strations to a principled foundation. Three elements
distinguish our contribution:

Characterization. We provide the first cross-device,
cross-workload study of two commercial FDP SSDs, re-
vealing both their strengths and fragilities. FDP consis-
tently lowers WAF in cache-like workloads, but it breaks
under co-located traffic and adversarial invalidations. Our
results show sharp vendor-dependent variability and un-
cover two previously undocumented phenomena: Noisy
RUH, where invalidations in one handle amplify writes in
others, and Save Sequential, where devices prematurely
reclaim long sequential streams. Together, these findings
show that FDP’s promise of near-1 WAF is not guaranteed;
it is workload- and configuration-dependent.

Emulation. To explain these effects, we build and validate
WARP!, the first open FDP emulator. WARP faithfully
reproduces real-device WAF trends while exposing inter-
nal dynamics that hardware conceals, such as per-RUH
amplification, GC victim choices, and resource sharing
between RUHs. Beyond validation, WARP turns opaque
firmware defaults into tunable research knobs: II vs. PI
isolation, RU size, OP ratio, and GC strategies. With this
visibility, we systematically explore FDP’s design space.

Insights. Our exploration yields new design-level un-
derstanding. We show that PI only outperforms II above
device-dependent OP thresholds, while II is more resilient
under limited slack (§5). Such insights lead to further
research questions. By releasing WARP as an open plat-
form, we enable reproducible and full-stack FDP research
spanning firmware, OS, and applications.

By combining broad characterization with a validated
emulator, this work moves the community from anecdotal
evidence toward a principled understanding of FDP. Our
results show that FDP is flexible but not foolproof: it de-
livers when workloads align with its placement model, but
can fail under others. WARP bridges this gap by providing
both the empirical evidence and the mechanistic insights
necessary to design FDP-aware systems and controllers.

Contributions. We make the following contributions:

* We conduct the first systematic study of commercial FDP
SSDs across synthetic, trace-driven, and file-system
workloads, revealing when FDP sustains near-1 WAF
and when it collapses.

* We identify two previously unreported behaviors that ex-
plain how RUH interference and premature reclamation

'"WARP stands for Write Amplification Research Platform

erode FDP’s benefits.

* We design and validate WARP, the first open FDP emu-
lator that faithfully reproduces hardware trends while
exposing per-RUH amplification, GC victim choices,
and tunable geometry.

* Using WARP, we explore II vs. PI, OP ratios, and
RU sizing, showing that PI outperforms II only above
device-dependent OP thresholds, while II is more robust
under limited slack. We propose firmware strategies
that reduce WAF beyond current hardware.

* We have upstreamed WARP to FEMU at https://gi
thub.com/MoatLab/FEMU.

2 Background and Motivation

FDP primer. FDP is an interface standardized in NVMe
that allows the host to provide placement hints while
keeping all internal implementation details hidden from
the host. Its actual realization in firmware and flash
translation layers (FTLs) is vendor-specific and opaque.
FDP was ratified as NVMe TP4146, a technical proposal
driven by the needs of hyperscalers such as Google and
Meta, who sought to lower WAF at scale without disruptive
application changes [11, 19].

Figure 1 shows the overview of the FDP SSDs and their

internals. At its core, FDP provides three abstractions:
Reclaim Units (RUs), the granularity of GC, usually config-
ured as a NAND Flash Superblock; Reclaim Groups (RGs),
collections of RUs managed together, usually grouped
by NAND Flash Die; and Reclaim Unit Handles (RUHs)
(Figure 1b), logical identifiers that steer host writes to
particular RUs. RUHs may be Initially Isolated (II), where
data can be co-located after GC (Figure 1d), or Persistently
Isolated (PI), which preserves isolation across GC (Fig-
ure le). In other words, II redirects all GC copies into a
shared GC-RUH, while PI keeps copies within the source
RUH. FDP also includes optional visibility features: hosts
can issue RU space queries to check available capacity
and retrieve event logs that record RU allocations, remaps,
and selected GC statistics.
FDP in the context of prior interfaces. Prior studies
reveal intrinsic and unwritten characteristics of Solid-
State Devices, thoroughly investigating and reasoning
about the SSD performance [20-22]. These findings
inspired novel storage systems [23, 24], data classification
strategies, from intuitive and simple solutions [25-27]
to advanced and model-based solutions [2, 4, 28-30],
and hardware-software co-designs [1, 10, 31-34] that
collectively enabled advanced host-device interfaces [15,
16, 35-39].

Among these designs, FDP is the latest in a progres-
sion of host/device co-design interfaces targeting lower
WAPF. Earlier designs gave the host more intrusive control:
OpenChannel-SSDs delegated both placement and GC to

https://github.com/MoatLab/FEMU
https://github.com/MoatLab/FEMU

e

J
Victim for GC Reserved for GC
N\

| iziz Z

Copy valid pages

(il

Copy valid pages

e A |
Z [+
[iii] zizA 17z} . fiii]
22)
T

Reserved for GC Reserved for GC

: }
A L4 “
AN i [] d zlZ 77 le]
U= A A) [d ﬁ% Z
T

Reserved for GC

izl
Zi
7 7
Zi
RUH 7 is Initially Isolated(ll)
Freed block Mixed after GC

Victim for GC

[c]

RUH 7 is Persistently Isolate

Z
Z
Z A7
) 1Z
T

Reserved for GC

Reserved for GC

| [IClean M Valid Ainvalid [+ Write pointer Write pointer for RUH y |

Figure 1: FDP SSD RUH data placement strategies. The figure shows (a) a conventional SSD and (b) an FDP SSD. The
FDP SSD differentiates data using the RUH ID, which is specified by the host system or application in the NVMe request field. (c) An
example of garbage collection in a Reclaim Unit Handle (RUH), where a NAND block is selected from RUH y. (d) With initially
isolated RUHs, victim GC data are co-located. (e) With persistently isolated RUHs, victim GC data are kept separate.

software, at the cost of high complexity [15]. ZNS SSDs
reduced WAF by enforcing sequential zone writes and
host-managed resets, but required invasive application
changes [16]. Multi-streamed SSDs allowed lightweight
tagging of writes, but provided no physical isolation guar-
antees [36]. FDP instead occupies a middle ground: it
preserves backward compatibility and requires no applica-
tion changes, while offering lightweight placement hints
through RUHs. Unlike OpenChannel or ZNS, it keeps
GC entirely opaque and vendor-managed, a property that
fundamentally shapes both its potential and its limitations.

Evolving specification and ecosystem support. Both the
FDP specification and its software ecosystem are still in a
nascent stage. The NVMe standard continues to evolve,
and today’s devices typically implement only a subset
of their capabilities with fixed, vendor-specific defaults
(e.g., RU size, OP ratio, RUH type). On the software
side, Linux offers only early driver support to pass RUHs
via I/O passthrough [18], and application-level prototypes
such as CacheLib have demonstrated initial benefits [40].
However, formal block-layer integration is missing, and
mainstream file systems and applications have yet to adopt
FDP. This immaturity on both specification and ecosystem
fronts makes it difficult to explore FDP’s design space
with hardware alone.

Implications for WAF. Because FDP is limited to place-
ment hints and leaves GC unchanged, its effect on WAF
is inherently workload-dependent. RUH isolation can
align with object lifetimes and drive WAF close to 1, but
adversarial or co-located patterns can erase the benefit.
Vendor-specific defaults, opaque to the host and varying
across devices, further introduce cross-device variability.
Prior write amplification studies build upon conventional
SSDs’ internal resource management [5, 41], system side

changes [23, 24, 42-44], utilizing memory devices [45, 46]
and tailored optimization with application design [47—49],
followed by write amplification modeling for conventional
SSDs [50, 51]. Prior studies have shown promising gains
in narrow contexts, but have not addressed the broader
questions: when does FDP reduce WAF, when does it fail,
and why do devices differ? These open questions directly
motivate our cross-device characterization of commercial
FDP SSDs and our design of WARP, an emulator that
exposes FDP’s hidden dynamics and enables systematic
exploration of alternative policies.

3 FDP Characterization

To understand FDP’s capabilities and limitations, we first
conduct a detailed study on diverse workloads.

3.1 Testbed and Environment

Devices. We evaluate two commercial FDP-capable SSDs
from different vendors, denoted SSD4 (7.68TB, U.3) and
SSDp (3.84TB, E1.S). Both are PCle Gen5, NVMe 2.1
compliant, and expose eight RUHs (Table 1). Each device
delivers peak sequential write throughput of ~5GB/s.
Environment. Experiments run on servers equipped
with Intel(R) Xeon(R) Gold 5416S CPUs (2.0 GHz) and
500GB DRAM. The software stack uses Linux v6.8 with
FDP patches that propagate write hints through NVMe
I/O passthrough. This is currently the only upstream
mechanism for interfacing FDP devices, as transparent
block-layer support is not yet available [19]. We enable
FDP both via direct application integration and file-system
support, depending on the workload.

Workloads. Our evaluation spans three classes: (1) Syn-
thetic microbenchmarks with FIO [52], varying the num-
ber of write streams and access patterns to stress explicit

Workload Tool #Threads I/0O Size R:W #RUHs

kv202206 CacheLib R16W64 4KB 4:1 2
kv202210 CacheLib W64 4KB 0:10 2
kv202401 CacheLib W64 4KB 0:10 2
cdn seal CacheLib R16W64 4KB 1:1.4 2
twitter]2 CacheLib R16W64 4KB 1:8 2
twitter37 CacheLib R16W64 4KB 3:1 2
OLTP Filebench 10 256KB 1:5 6
Fileserver Filebench 200 256KB 14 6
Microbench FIO 1-3 4-256KB 0:10 1-3

Table 1: FDP SSD specifications and experiment en-
vironments. Real FDP devices from different vendors and
detailed environmental setup for testing. R and W denote reads
and writes, respectively.

RUH assignment; (2) Production traces from CacheLib
(kvcache, cdn, and twitter), where CacheLib manages
large-object (LOC) and small-object (SOC) caches sep-
arately, which map to distinct RUHs [17]; and (3) File-
system workloads (FileServer and OLTP) on F2FS, where
RUH assignment is via F2FS’s data classification [23].

3.2 Microbenchmarks

We begin with synthetic workloads to expose FDP’s funda-
mental properties in a controlled setting. Each workload
issues one or more concurrent streams, with each stream
mapped to a distinct RUH and targeting a disjoint LBA
range. By varying stream count, request type, and ac-
cess skew, we isolate how RUH separation impacts write
amplification. We report WAF as a function of written
data volume normalized to device capacity under different
workload mixes. For SSDg, we present only partial re-
sults since the device failed after excessive writes during
evaluation. We use “NoFDP” to denote the baseline mode
where all writes are issued without RUH hints, effectively
reverting the device to conventional SSD behavior.
Single-stream baseline. Figure 2 shows results from
128KB fully random writes across the entire device LBA
space to a single RUH, equivalent to default SSD behavior
without FDP. Both drives show WAF rising quickly from
the ideal 1.0 and plateauing at a device-specific steady
state: SSD4 near 2.0 and SSDg near 3.5. These stable
plateaus indicate that baseline WAF is primarily dictated
by vendor geometry and GC policies.

Two-streams. Running two concurrent streams highlights
how FDP’s RUH isolation reduces write amplification.
Figure 4a considers two sequential streams with mis-
matched block sizes (16KB vs. 256KB), where NoFDP
yields ~1.1 WAF due to misaligned progress and par-
tially filled blocks triggering extra GC. FDP eliminates
this interference, holding WAF near 1.0. Without FDP,
WAPF rises steeply, exceeding 2.3 even at a 90:10 split and

4 s FDP SSDg (3.84TB) ==mmm FDP SSD, (7.68TB)
- 3.51
w3
<<
3
2
2.p0
1
x0 x5 x10 x15 x20 x25

Written Data Volume

Figure 2: One stream write: uniform random. WAF
under the one-stream 128KB random-write workload. The two
commercial FDP SSDs diverge significantly: SSDy stabilizes
around 2.0X, while SSDp reaches about 3.5X%.

peaking at 2.4 under 50:50. In contrast, FDP sustains
near-ideal WAF across all mixes, showing that RUH sep-
aration effectively isolates sequential writes from random
interference. As randomness dominates (10:90), both
FDP and NoFDP climb, but FDP consistently maintains
lower amplification. Overall, FDP’s benefits are most
pronounced in mixed workloads, while purely sequential
streams already achieve near-ideal efficiency without it.

Observation #1: FDP’s RUH isolation consistently low-
ers WAF by shielding sequential streams from random
interference, restoring near-ideal efficiency across mixed
workloads while naturally sequential streams already
achieve close to 1.0 WAF.

Three-stream with overwrites. We extend the two-
stream setup with a third overwrite stream to capture
skewed access, where a small subset of data is updated
disproportionately often. The overwrite stream targets the
sequential region using Zipfian distributions (a=1.2 or
2.2) or an 80/20 pattern, representing common hot-cold
access. For the MixedFDP setup, only two RUHs are used,
with the sequential and overwrite streams intentionally
mapped to the same RUH while the random stream resides
in another. This models misclassification or static RUH
assignments that fail to adapt to shifting data temperature.
For the FDP setup, three RUHs are used, assigning each
data stream to a separate RUH.

Figure 3 shows clear vendor differences. On SSD4
(Figure 3a-c), FDP (blue line) sustains nearly ideal WAF
(~1.0) under both Zipfian workloads, but its benefit col-
lapses under the 80/20 case, where updates spread more
broadly across the LBA space (i.e., 80% of the accesses
go to 20% of the LBAs). On SSDg (Figure 3d-f), overall
WAF is higher: even with FDP, skewed workloads yield
1.3-1.5, and the 80/20 case climbs above 3.0, highlighting
vendor-dependent sensitivity. Across both devices, the
trends are consistent: FDP achieves the lowest amplifica-
tion, NoFDP the highest, and MixedFDP lies in between.
Notably, MixedFDP behaves like FDP when skew is strong
(Zipf 2.2), but quickly converges to NoFDP under 80/20,

4[a] FDP SSD, zipf. 2.2 [b] FDP SSD,4 zipf. 1.2 [c] FDP SSD, 80/20

—— NoFDP
—— mixedFDP
31— ror

§ 7 ./
] ._41/.: ,_4Z:i ‘ ‘

x0 x2 x4 x0 x2 x4 x0 x2 x4
[d] FDP SSDg zipf. 2.2 [e] FDP SSDg zipf. 1.2 [f] FDP SSDg 80/20

IN

x0 x2 x4 x0 X2 x4 x0 X2 x4
Written Data Volume
Figure 3: WATF for the three-stream-write workload.
The x-axis represents data volume from the host, defined as
_ Host Media Writt .

rHMW = %W. SSD4 has 7.68TB capacity and
SSDg has 3.84TB capacity. Internal device configurations are
not disclosed.

confirming that misclassification or lifetime heterogeneity
within an RUH undermines FDP’s effectiveness. These
results suggest that FDP works best when traffic is strongly
skewed and RUH classification is accurate, but vendor
firmware, workload distribution, and adaptive remapping
ultimately dictate how much WAF can be suppressed.
Worst-case stress. Figure 5 shows the WAF results
when the overwrite stream is replaced with a uniform
random invalidation stream, leaving GC no opportunity
to optimize. On SSDy (5a), FDP, MixedFDP, and NoFDP
all rise nearly together, reaching ~2.6-2.9 by 4x device
capacity, with FDP offering only marginal improvement.
On SSDg (5b), the situation is even more severe: WAF
climbs steeply to 4.5 despite FDP, revealing extreme
amplification under this adversarial workload. These
results further underscore that FDP’s benefits are both
vendor- and workload-dependent. While FDP can mitigate
amplification under skewed or structured patterns, its
advantage collapses under uniformly random invalidations,
converging toward conventional SSD behavior.

Observation #2: FDP mitigates WAF when isolating
heterogeneous streams, but its effectiveness depends
on vendor firmware and workload skew; strong Zipfian
patterns allow near-ideal WAF, while 80/20 mixes or
misclassified RUHs collapse toward NoFDP behavior,
underscoring that vendor defaults and RUH assignment
accuracy critically shape the benefits.

3.3 CacheLib

CacheLib manages small and large objects with separate
engines, BigHash for small items (default threshold 2KB,
termed SOC) and BlockCache for large ones (LOC),
making it a natural fit for FDP. SOC stores objects in 4KB

[a] Seq+Seq at 16K+256K [b] Seg+Rand at 90:10

3
—— FDP
o o 2] &
< o
=
N
N
1 | LB & & 8 |
x0 x5 x0 x5 x10 x15
3 [c] Seg+Rand at 50:50 [d] Seg+Rand at 10:90
NoFDP
L = s
< 2| B B
= .—/./__.__._ V:/L
148

x0 x5 x10 x15 X0 x5 x10 x15
Written Data Volume Written Data Volume
Figure 4: SSD WAF in two-stream-write. = WAF of
FDP SSDj under the two-stream-write workload. (a) Mix of
two sequential streams with different request size. (b—d) Mix
of sequential and random write streams changing capacity

proportion.
[a] FDP SSD,4 [b] FDP SSDg [c] WARP
—— NoFDP - >
—— mixedFDP o ?
= ,-/ /
1

x0 x2 x4 x0 x2 x4 x0 x2 x4
Written Data Volume
Figure 5: Three-stream-write for uniform random.
Both SSDs show similar trends but with significantly different
magnitudes. SSDy reaches 2.58% at 4X device capacity, while
SSDp reaches 4.49%, the highest WAF observed in this study.

buckets that are rewritten in their entirety when any object
is updated, generating frequent random writes that inflate
WAF. LOC, by contrast, is log-structured, appending
updates sequentially in large segments (16MB), which is
device-friendly. FDP maps these two engines to distinct
RUHs, preventing their very different write behaviors
from interfering [17, 40]. We evaluate three production
traces, kvcache, cdn2025, and twitter, collected from
Meta, running SOC at 4%, 20%, and 40% of SSD space,
with LOC consuming the remainder. Results are drawn
from SSD4 with CacheLib version v20240621.

Key-value cache. In kvcache, FDP substantially reduces
WAF. As shown in Figure 6, WAF without FDP begins
rising after roughly 1.1 host writes (about 8TB) and grows
to 1.64 at 20% and 1.85 at 40% SOC, meaning more
than 4.6TB of data is rewritten internally. With FDP,
WAPF stays near 1.0 across all allocations; at 20%, WAF is
only 1.08, implying just 8% of data rewritten. Figure 8§
confirms hit ratios are preserved: both FDP and NoFDP
reach about 82% at higher SOC, compared to 61% at 4%.
As SOC capacity increases, the cache can store tens of
millions more objects, improving hit ratio. FDP delivers

[a] SSD4 SOC 4% [b] SSDA SOC 20% [c] SSD4 SOC 40%

" |[— NoFDP
— FDP
TR

X0 x2 x4 x0 x2 x4 X0 x2 x4
Written Data Volume
Figure 6: CacheLib WAF. Write amplification in

kvcache202206 real traces. (a) BigHash engine takes 4%
of the total SSD size; (b) BigHash engine takes 20%; and (c)
BigHash engine takes 40%. BlockCache takes 96%, 80%, and
60% of the SSD size, respectively.

this benefit while suppressing WA, breaking the usual
tradeoff between endurance and cache effectiveness.
CDN and Twitter caches. In Figure 7 for cdn and
twitter traces, both configurations already achieve near-
ideal 1.0 WAF, reflecting naturally device-friendly access
patterns. Here, FDP does not underperform, providing a
safe deployment property: enabling FDP yields gains when
workloads are challenging (e.g., kvcache) but imposes no
regression when workloads are already benign.
Multi-tenant cache. We next simulate co-location, where
CacheLib consumes 60% of the device capacity and other
applications share the remaining 40% with diverse access
patterns. Without FDP, interference is severe: in kvcache,
WAF rises from 1.28 to nearly 3.0 (Figure 9a), a seven-fold
increase at the same elapsed time. FDP sharply mitigates
this effect: noisy tenants contribute little to WAF, and
the highest observed value with FDP is only 2.6, still
below the baseline NoFDP case. This demonstrates FDP’s
robustness in multi-tenant environments.

Observation #3: Across kvcache, cdn2025, and twitter,
FDP sustains near-ideal WAF (1.0-1.2) without degrad-
ing hit ratio, and never regresses when workloads are
device-friendly. FDP eliminates the fundamental hit
ratio vs. WAF tradeoff in kvcache: larger small-object
caches improve hit ratio by 20 percentage points but
normally inflate WAF to 1.6-1.8; with FDP, hit ratio rises
while WAF remains near 1.0. In multi-tenant settings,
FDP isolates cache traffic from noisy neighbors, cutting
WAF by up to 50% compared to NoFDP. This robustness
suggests FDP-enabled devices are well suited to shared
cloud deployments.

34 F2FS

F2FS natively tags data placement with up to six han-
dles based on data type and temperature, making it a
natural candidate to exploit FDP. To evaluate this, we
ran two filebench workloads: Fileserver and OLTP. We
use filebench v1.14. Fileserver. This workload spawns
200 threads, each issuing four writes and one read on

[a] kv202401 SOC 4%

—— NoFDP
— FDP

[b] kv202401 SOC 20%

WAF
N

-

500 1000 1500 2000 2500
[d] cdn2025 SOC 4%

0 500 1000 1500 2000 2500 O
[c] cdn2025 SOC 0%

WAF
N

1
0 2000 4000 6000 8000 O

3[e] twitter cluster12 SOC 4% [f] twitter cluster37 SOC 4%

1000 2000 3000 4000

WAF
N

-

0 5000 10000 0 5000
g] kv202210 SOC 4% h] kv202210 SOC 20%

ez Lt

2000 4000 6000 8000 500 1000 1500
Elasped time(m Elasped time(m

10000

WAF

Figure 7: WAF under different traces. WAF under
kv2024, kv2022, cdn2025, and twitter traces. Cache size is
set to 100% of the SSD capacity. WAF is monitored until it
stabilizes for both NoFDP and FDP cases. Write-only portions
of the kv2024 and kv2022 traces are selected to accelerate

convergence.
[a] DRAM [b] NVM [c] Overall
- FDP

80 NoFDP
L
o 60
S0
=

20

0 4% 20% 40% 4% 20% 40% 4% 20% 40%

SOC(%)
Figure 8: Hit ratio in CacheLib. Average hit ratio from
Figure 6, measured over a 100-minute interval. Cache sizes of
4%, 20%, and 40% correspond to proportional SSD cache sizes
of a 7.68TB device for the small-object cache (BigHash) engine
(i.e., the “NVM cache” in CacheLib).

10 million 540KB files with 256KB I/O requests. After
ten hours, it generates 28TB of writes and yields a WAF
of 1.83. As shown in Figure 10, enabling FDP through
F2FS produces almost identical results: both vendors’
drives stabilize around 2.3-2.5 WAF, with no measurable
improvement. This indicates that FDP support in F2FS,
while present, is ineffective in practice. Detailed workload

[b] FDP+Noise in SSD4

= = CacheLib(FDP)
—— +Noise 10x1(FDP)
—— +Noise 40x1(FDP)

+Noise 10x4 (FDP)

[a] NoFDP+Noise in SSD4
4

CacheLib(NoFDP)
—— +Noise 10x1
+Noise 10x4

O

X

3 2
&

WAF

Y
I

o
2> e

1
0 1000 2000 3000 4000 O 1000 2000 3000 4000
Time(m) Time(m)

Figure 9: CacheLib with noisy neighbors. CacheLib
kvcache202206 trace with 4K random write (QD=1) as noisy
neighbors under the same workload elapsed time. (a) The noisy
workload increases write amplification significantly without
FDP support, whereas (b) the FDP case maintains stable write
amplification.

configurations are listed in Table 1.

To understand why, we traced F2FS I/O hint types
with eBPF and found that 99% of user data is labeled as
WARM, which maps to the generic WRITE_LIFE_NOT_SET hint.
Consequently, nearly all writes are funneled into a single
RUH, collapsing FDP to NoFDP behavior. Figure 11
shows the total number of I/Os with write hints. Although
F2FS does separate node and metadata segments into
different RUHs, this separation alone is insufficient to
reduce WAF. For FDP to help, user data must also be
more finely classified and spread across multiple RUHs.
OLTP. The OLTP workload launches ten writer threads
that perform 256KB writes on 63K files, each issuing 100
asynchronous I/Os before calling dsync(). Results follow
the same trend as Fileserver: despite FDP tagging, WAF
remains virtually unchanged across both devices.

Observation #4: F2FS integrates cleanly with FDP’s
tagging interface, but the benefits depend critically on the
file system’s data classification policy and the device’s
internal GC. Without accurate tagging of user data across
RUHSs, FDP degenerates to conventional SSD behavior.

Across synthetic and real workloads, FDP proves both
powerful and fragile. When host classifications align with
RUH isolation, it sustains near-ideal WAF. But benefits
collapse under misclassification, cross-RUH interference,
or adversarial access patterns, and outcomes vary sharply
across vendors due to opaque internal policies. Commer-
cial devices reveal these effects without exposing their
causes, underscoring the need for our emulator (§4) to
illuminate per-RUH behavior and enable the design of
more effective FDP policies beyond today’s hardware.

4 WARP Design and Implementation
4.1 Design Goals and Contract

WAREP is designed as a faithful, extensible, and open
platform to answer when and why FDP reduces WAF, and
how alternative controller policies affect that outcome. To

3 [a] Fileserver SSD, [b] Fileserver SSDg

[c] OLTP SSDa
—— NoFDP
—— FDP

x2 x3 x4 x0 x1 x2 x3

WAF
N

x0 x1 x4 x0 x1 x2 x3 x4
Written Data Volume
Figure 10: F2FS WAF under Filebench workloads.

Under F2FS, FDP and NoFDP exhibit the same write amplifica-
tion trend, representing the worst case for FDP. For the OLTP
workload, both curves flatten at a WAF of 1.0, which is ideal.
TRIM is enabled by default.

—300 [a] Fileserver [b] OLTP
g 250.06M WRITE_LIFE_NOT_SET(0)
P . [WRITE_LIFE_NONE(1)
7 210.59M 200.47M mmm WRITE_LIFE_SHORT(2)
o 200 WRITE_LIFE_MEDIUM(3)
g_ 138.67M WRITE_LIFE_LONG(4)
o} 99.06% | ™™ WRITE_LIFE_EXTREME(5)
100 99-99% 100.00%

@) 99.93% 70.82M
S 99.99% 6.12M
e

Data Node Meta Data Node Meta

Figure 11: Cumulative write_hint distribution for F2FS
under Fileserver. Total number of I/O writes in the Fileserver
workload over a 10-hour benchmark. Write hints are converted
to RUH IDs in the NVMe driver using kernel patches [18].
However, write hints that are directly translated to RUH IDs are
underutilized in F2FS.

meet this goal, WARP provides three capabilities:

* Isolation semantics. WARP implements both FDP
modes defined in NVMe: [nitially Isolated (II) and
Persistently Isolated (PI). These rules are modeled ex-
plicitly, making RUH identity either discarded (II) or
preserved (PI).

* Configurable geometry and policies. RU size, over-
provisioning ratio, RUH count, GC heuristics, lazy
thresholds, and block remapping are tunable, turning
opaque vendor defaults into explicit research knobs.

¢ Per-RUH observability. WARP instruments counters
and event logs, exposing hidden dynamics such as
Noisy RUH interference and Save Sequential premature
reclamation.

These capabilities rest on a set of explicit design con-
tracts that make WARP predictable and reproducible. First,
RUH mapping is deterministic so that every host tag al-
ways resolves to the same reclaim unit. Second, isolation
semantics are enforced consistently: in II mode all GC
copies are redirected into a shared GC-RUH, whereas in
PI mode copies remain within their original RUH. Finally,
RU granularity is explicitly defined at the start of each
run and remains fixed throughout execution. Together,
these contracts define WARP’s guarantees and form the
foundation for the following design.

4.2 Interface and Placement Model

At the interface level, WARP extends FEMU [53] to parse
FDP placement hints in NVMe commands and to map
tagged writes to Reclaim Units (RUs), which are logical
groupings of NAND blocks (e.g., superblocks). Each RUH
maintains one or more write pointers to its active RUs. 11
semantics provide lightweight isolation: host writes enter
RUH X, but GC copies are redirected into a dedicated
GC-RUH, discarding the original tag. This path requires
only minimal changes to a legacy FTL and explains why
commercial FDP SSDs adopt II in their initial design [17].
PI semantics preserve RUH identity across reclamation
by maintaining a per-RUH GC write pointer. This policy
enforces strict isolation but fragments the over-provisioned
space. WARP is the first open emulator to support both
semantics side by side.

By default, each RUH in WARP appends into a single
active RU until it becomes full and is closed. More ad-
vanced policies may allocate multiple RUs concurrently,
increasing parallelism or alleviating GC pressure. WARP
can be extended to support such advanced designs, includ-
ing alternative II policies. In PI mode, an additional GC
write pointer ensures strict separation of host and GC data.
By exposing these placement choices, WARP turns RUH
management into a controllable design axis rather than an
opaque firmware behavior.

4.3 GC Architecture

WARP generalizes GC into two distinct decisions. The first
decision is which RUH to reclaim from. Policies include
greedy selection, which targets the RUH under highest
pressure, and pressure-based selection, which considers
the ratio of live to free space. The second decision is
which RU within the selected RUH to reclaim. Options
include greedy selection of the RU with the fewest valid
pages and cost-benefit selection, which scores a victim
as %, where u is block utilization and age is the time
since the last invalidation [54].

In addition to these basic policies, WARP implements
optimizations commonly found in enterprise SSD con-
trollers. (1) Lazy GC postpones reclamation until valid
occupancy in a RU falls below a threshold (empirically be-
tween 5-10%). (2) WARP also distinguishes background
GC, triggered at approximately 90% RU allocation, from
foreground GC, triggered near exhaustion (e.g., at approx-
imately 99%). These thresholds reduce wasted copies
of short-lived data. (3) Block remapping further reduces
amplification: when a victim RU contains blocks that are
entirely valid, those blocks are directly remapped into
the destination RU without migration. This optimization
preserves semantics while eliminating redundant writes.
By introducing RUH-aware victim selection, tunable lazy
thresholds, and block remapping, WARP transforms GC

from a fixed background routine in FEMU into an explicit,
per-RUH design surface.

4.4 Configurable Geometry

Commercial SSDs hard-code geometry parameters such
as RU size and OP ratio during the manufacturing phase
and cannot be changed [17]. WARP decouples these
parameters from hardware and exposes them as first-class
knobs to allow evaluations of different RU sizes (e.g.,
128, 256, and 512MB), OP ratios (e.g., ranging from 1
to 28 percent), and RUH count (configurable). By mak-
ing geometry explicit and configurable, WARP enables
researchers to investigate how FDP benefits depend on
controller choices that are otherwise invisible in hardware.

4.5 Observability and Calibration

A key contribution of WARP is its observability through
rich telemetry. For every workload, WARP records statis-
tics at three complementary levels of detail. At the device
level, it reports standard measures such as host bytes, me-
dia bytes, and overall WAF. At the RUH level, it exposes
a deeper view of FDP’s internal behavior by tracking host
bytes, GC copy bytes, remapped blocks, allocations, evic-
tions, and the average number of valid pages reclaimed.
At the per-GC-event level, it logs fine-grained details
including the victim RUH, the specific RU reclaimed,
the destination RUH, the applied policy, the number of
live and copied pages, and the elapsed time. These mea-
surements reveal internal dynamics that are invisible on
commercial devices (§5), such as Noisy RUHs, where
invalidations in one RUH raise amplification in others,
and Save Sequential, where long sequential streams are
reclaimed prematurely. By exporting all data as structured
logs, WARP enables validation against hardware, ensures
reproducibility of experiments, and provides the foun-
dation for systematically analyzing when and why FDP
delivers its intended benefits. It also supports calibration:
in §5, we tune geometry and GC thresholds until WARP
reproduces the steady-state WAF plateaus of real devices,
then validate against multi-stream and trace workloads.

4.6 Implementation in Context of FEMU

Extending FEMU to support FDP required changes at
both the interface and the internal policy levels. At
the interface, we added support for parsing FDP tags in
NVMe commands and mapped them to explicit RU and
RUH abstractions. At the placement level, we introduced
RUH write pointers and implemented both II and PI
semantics, thereby enabling FDP isolation modes. At the
GC level, we replaced FEMU’s fixed background policy
with RUH-aware victim selection, tunable lazy thresholds,
and block remapping, capturing behaviors unique to FDP.

Device Capacity FDP CacheLib WAF
4% 20% 40%

SSDp 7.68TB NoFDP 1.10 1.64 (+49%) 1.85 (+68%)

SSD,y 7.68TB FDP 1.0 1.07 (+7%) 1.27 (+27%)

WARP, 240GB NoFDP 1.16 1.37 (+18%) 2.00 (+72%)

WARP, 240GB FDP 1.0 1.04 (+4%) 1.37 (+37%)
Device Capacity FDP RUH 3Syn WAF

zipf2.2 zipfl.2 80/20

SSDj 7.68TB FDP I 1.03 1.04 1.69
SSDy 7.68TB mixed II 1.03 1.67 2.08
SSDa 7.68TB NoFDP 1I 1.60 1.81 2.09
WARP, 240GB FDP PI 1.04 1.06 124
WARP, 240GB mixed PI 1.70 204 1.82
WARP, 240GB NoFDP PI 2.13 217 207

WARP,, 458GB (14%) FDP 1I 1.05 1.10 1.68
WARP4> 458GB (14%) mixed II 2.19 238 235
WARP4, 458GB (14%) NoFDP 1L 2.48 2.60 2.64

SSDg 3.84TB FDP 11 1.29 145 3.12
SSDg 3.84TB mixed I 1.72 2.13 353
SSDp 3.84TB NoFDP 1I 2.58 295 397
WARP 240GB (20%) FDP PI 1.56 1.71 1.99
WARPg 240GB (20%) mixed PI 2.88 3.10 3.37
WARPg 240GB (20%) NoFDP PI 3.48 3.61 3.55
Table 2: WARP validation. WAF from different vendors

under CacheLib kvcache202206 trace, and three stream write.

At the geometry level, we decoupled RU size and over-
provisioning ratio from FEMU’s static configuration and
exposed them as runtime parameters, making geometry
a design knob rather than a fixed constant. Finally, we
added observability by instrumenting per-RUH counters
and structured GC event logs, which allow researchers to
validate emulator behavior against hardware and reproduce
experiments. Taken together, these enhancements rebase
FEMU'’s pre-FDP FTL into WARP, an emulator that treats
FDP as a first-class feature and exposes it as a configurable,
observable design space for systems research.

5 Evaluation

The evaluation of WARP pursues two complementary
goals. First, we assess fidelity: does WARP reproduce the
key write amplification trends observed on commercial
FDP SSDs across synthetic, trace-driven, and file-system
workloads? Second, we demonstrate insight: does WARP
reveal internal per-RUH dynamics and design tradeoffs
that real devices conceal?

To this end, we configure WARP with calibrated de-
faults (RU=256MB, OP=10%, lazy GC threshold=5%,
block remapping enabled, and eight RUHs) unless other-
wise noted. We evaluate three classes of workloads: (1)
microbenchmarks stressing RUH isolation with controlled
access patterns, (2) production traces from CacheLib
that exercise skewed and multi-tenant caches, and (3)

WARP-Cap.(GB)-RU(MB)-LazyGC(%)-OP(%)

= SSD, (7.68TB)
4 © = SSDg (3.84TB)
2 2 WARP;-128-128-NoLazy-20
w3 e > i WARP,-256-256-0.6-20
< 9’ WARP;-256-256-0.4-20
= o =] o o --=- WARP,-256-512-0.4-20
2 WARP;-256-256-0.05-10
—— WARP;-448-256-0.05-10
1 —— WARP;-448-128-0.05-14
x0 x5 x10 x15 x20 X

Written Data Volume
Figure 12: Revisiting one stream write with WARP.
Under the one-stream 128 KB random-write workload, most
configured WARP settings (WARP»_7) fall between 2.0-3.5X%,
matching the write amplification observed on two commercial
FDP SSDs with relatively simple configuration knobs.

2[a] WARP, SOC. 4% [b] WARP, SOC 20% [c] WARP, SOC 40%

x4 X0 x2 x4

x4 x0 x2
Written Data Volume

X0 x2

Figure 13: WARP resultin CacheLib. Write amplification
in kvcache202206 real traces. (a) BigHash engine takes 4%
of the total SSD size; (b) BigHash engine takes 20%; and (c)
BigHash engine takes 40%. BlockCache takes 96%, 80%, and
60% of the SSD size, respectively.

file-system workloads (FileServer and OLTP on F2FS)
that rely on native FDP tagging. Our analysis proceeds
in stages: we first validate WARP against device-level
WAF baselines, then leverage its observability to uncover
phenomena such as Noisy RUH and Save Sequential,
and finally explore the design tradeoff between II and PI
isolation modes under varying OP budgets.

Unless otherwise noted, all experiments run on WARP
built atop FEMU’s SSD model. We adopt FEMU’s default
SSD configuration: 8 channels, 8 dies per channel, with
a page size of 4KB. Read, program, and erase latencies
follow FEMU’s NAND timing. These parameters are not
altered by FDP, ensuring that WARP preserves FEMU’s
baseline device fidelity while layering FDP-specific ab-
stractions on top.

5.1 Essential FDP Properties

Validation of WAF trend. Since WARP reveals the
hidden dynamics of FDP, it should reproduce fundamental
WATF trends of FDP SSDs. Figure 12 compares two
enterprise FDP SSDs against seven WARP configurations.
As expected, the real devices diverge sharply: SSDy stabi-
lizes near 2.0 while SSDg reaches about 3.5. By varying
RU size, OP ratio, and lazy-GC thresholds, we found
WARP configurations that consistently fall between these
two bounds. For example, under 128KB random writes,
WARP,_7 spans the range from 2.0 to 3.5, mirroring the

4 [a] WARP, zipf. 2.2 [b] WARP, zipf. 1.2 [c] WARP, 80/20
—— CB_NoFDP — = Greedy_NoFDP
CB_mixedFDP — = Greedy_mixedFDP
w3 CB FDP = = Greedy_FDP
‘;‘ g
o B -~
2 s a ,”” ,—_’:—E-.:—
oo ceg] L fectogT] L _gb—T]
x0 x2 x4 x0 x2 x4 x0 x2 x4
4 [d] WARPg zipf. 2.2 [e] WARPg zipf. 1.2 [fl WARPg 80/20
- Pud 94,’—
3 //E'—— /:‘D” /””5
L R /s %7
< 7 o / 0/
= 2 jug) —_—
A / L
=L . =7 . =7 .
x0 x2 x4 x0 x2 x4 x0 x2 x4

Written Data Volume

Figure 14: WARP WAF under the three-stream-write
workload. The x-axis shows data volume written from the host.
WARP4 and WARPg capture real FDP devices with different
GC schemes. Configurations are listed in Table 2.

vendor spread, except WARP;. This confirms that WAF is
not a fixed property but an emergent outcome of hardware
geometry (block/page size, parallelism, OP ratio) and
firmware policy (GC heuristics, scheduling, thresholds).
Despite the complexities, WARP captures the trend with
only a few configuration knobs, validating its fidelity for
subsequent studies.

CacheLib validation. Having established fidelity
on synthetic microbenchmarks, we next validate WARP
against production traces. CacheLib is particularly chal-
lenging: its BigHash engine generates small-object up-
dates that inflate WAF, while BlockCache issues sequential
appends that are device-friendly.

Figure 13 shows that WARP reproduces these dynamics
with high fidelity. As cache size increases, the real FDP
SSD4 reduces WAF from 1.85 (Figure 6 NoFDP) to 1.27
(Figure 6 FDP) at 40% SOC, while WARP mirrors the
same directional improvement (2.00 — 1.37). At smaller
SOC fractions (4% and 20%), both devices maintain near-
ideal WAF around 1.0-1.1, again captured by WARP.
These results confirm that WARP faithfully models FDP’s
central effect: suppressing WAF when workloads are
adversarial while remaining neutral when they are benign.
Moreover, the consistency across SOC ratios highlights
that WARP captures the sensitivity of FDP to workload
composition, sometimes more transparently than vendor
firmware, which conceals internal heuristics.

Complex workload validation. Finally, we validate
WARP under skewed and multi-stream workloads, which
stress FDP more severely than uniform random writes.
These patterns combine sequential, random, and overwrite
streams with varying skew (Zipfian, 80/20), modeling re-
alistic hot/cold dynamics and misclassification scenarios.

Figure 14 shows that WARP reproduces the expected
qualitative hierarchy for SSD4: FDP sustains near-ideal
WAF (1.0), NoFDP escalates toward 2.0, and MixedFDP

10

[a] zipf2.2 [b] zipf1.2
—— NoFDP
—— mixedFDP
L 31— o %] 2.60
=5/ | o
& RANKS W
18 ‘ -—— & ‘ — 88—
x0 x2 x4 x0 x2 x4
4 [c] 8020 [d] uniform
A
3.05
W 31 2.64
>
= 2 NS
1m Sil " S
x0 xé x4 x0 xé x4

Written Data Volume Written Data Volume

Figure 15: Revisiting three-stream-write with WARP.
WAF under the three-stream-write workload with the WARP 45
configuration using the greedy algorithm. WARP 45 follows real
FDP device trends.

remains between the two (1.3-1.6 depending on skew).
While absolute values differ slightly due to vendor-specific
geometry and GC heuristics, the ordering and slopes are
consistent. For SSDg, which exhibits higher amplification
overall, WARP still matches the same hierarchy: FDP near
1.3, MixedFDP rising toward 2.0, and NoFDP exceeding
2.5. With parameter tuning, WARP tracks the device-
specific trends across all skewed workloads.

Additional validation in Figure 15 confirms these results:
under both Zipfian and 80/20 access distributions, WARP
preserves the same ordering of three different use cases,
with WAF values aligned to within 0.2-0.3 of the real
devices. These experiments demonstrate that WARP
faithfully models FDP behavior even under complex,
adversarial workloads, establishing it as a robust platform
for deeper exploration of FDP policies.

Observation #5: WARP reproduces the WAF behavior
of enterprise FDP SSDs across both synthetic and real
workloads, matching vendor trends while remaining
fully transparent and tunable. Its fidelity across devices
and workload classes underscores its value as a general
research platform for exploring FDP design.

5.2 Analysis of Three-Stream-Writes and Beyond

Per-RUH effects. Figure 16 breaks down WAF by individ-
ual RUHs. Two key phenomena emerge: (1) a Noisy RUH,
where overwrite traffic in one handle indirectly inflates
WATF in others by increasing GC pressure; and (2) Save
Sequential, where capacity-dominant sequential streams
are prematurely reclaimed, erasing their natural device-
friendly behavior. Both effects are visible in WARP’s
counters and echoed in real devices, demonstrating FDP’s
fragility under co-location.

Noisy RUH. Figure 16a shows workload distribution

[a] RUH-wise written data volume [b] WAF breakdown per Workload

80/20 4.42 g%}? 0.131 0.070 0.063
’ S O
Zipf12 431 A 0.0438S RUHO
RUH1
" Q o
zipf22 4.45 S | poses RUH2
x0 x1 x2 x3 x4 x5 0 100 200 300

Written Data Volume WAF contribution(GiB)
Figure 16: WAF breakdown for the three-stream-write
workload at SX rHMW in WARP,. (a) Host-written data
volume per RUH in relative terms. 4.42 means 4.42X device
capacity of data was written to RUH 0. (b) WAF breakdown per
RUH, considering only amplified writes. The x-axis shows the
absolute amount of amplified data.

4 [a] zipf 2.2 [b] zipf 1.2 [c] 80/20
& = RUH 0 WAF
= 3] RUH 1 WAF
T RUH 2 WAF
2
o 2]
o
0 1]l—= = =] - -] —-—-—""“ = "'
x0 x5 x10 x15 x0 x5 x10 x15 x0 x5 x10 x15

Written Data Volume

Figure 17: Per-RUH WAF under the three-stream-write
workload in WARP (PI). Per-RUH WAF considers each RUH
as a subset of the SSD (i.e., Per-RUH-WAF = glligCeqpata.)
In (¢), the per-RUH WAF of RUH 1 and RUH 2 rises to 3.8X.

across RUHs. RUH 0, the sequential overwrite stream,
dominates all three workloads, absorbing 4.42—4.45% de-
vice capacity of traffic (88% of writes). RUH 1 (random
writes) and RUH 2 (invalidation) contribute only 0.26—
0.32 and 0.22-0.40x capacity respectively (5-6% each).
Figure 16b shows amplification contributions. Under
Zipfian workloads, most amplification comes from RUH 0
(WAF 0.038-0.043), with RUH 1 and RUH 2 nearly negli-
gible. Under the 80/20 workload, however, amplification
rises across all RUHs: RUH 1 contributes 0.131 (26% of
total) and RUH 2 contributes 0.070 (14%), even though
their traffic volumes barely change. The culpritis RUH 2’s
invalidation stream, which forces more aggressive GC and
indirectly raises RUH 1°s WAF. This interference effect
breaks RUH isolation.

We call this Noisy RUH: a single RUH can degrade
global amplification across others. Notably, the same pat-
tern appears on real FDP SSDs (Figure 3c&f), indicating
it is a general property of current FDP implementations.

Observation #6: Our per-RUH breakdown reveals criti-
cal pitfalls of FDP: “Noisy RUHs” propagate garbage-
collection pressure across handles, inflating global WAF.
FDP’s effectiveness depends not only on RUH isolation
but also on balanced workloads and device-level slack.

Save Sequential. Figure 16b also shows that RUH 0,
although sequential, contributes the majority of WAF
(0.131-0.264 depending on workload). Ideally, sequential

11

streams should self-invalidate and incur little amplification.
Yet limited OP and GC heuristics cause the device to
prematurely reclaim RUH 0, even when its data would soon
be overwritten. This Save Sequential effect means that
even sequential, capacity-dominant streams can dominate
WAF if they collide with GC policy.

Observation #7: The apparent “victim” of WAF is often
the capacity-dominant RUH, not the noisy RUH. In FDP
SSDs, even long sequential streams cannot be assumed
safe; when their scale collides with device internals, they
may erode the isolation benefits of FDP.

5.3 FDP SSD Il vs. PI

OP tradeoff. The balance between Initially Isolated
(I) and Persistently Isolated (PI) schemes is governed
primarily by the amount of over-provisioned flash available.
Figure 18 summarizes this tradeoff across different RU
sizes and OP ratios under the 80/20 workload, a stress
case that produces widespread invalidations.

Figure 18a shows results for 256MB RUs. When OP
is limited (3—-5%), II achieves a lower WAF (OP3% 2.92,
OP5% 2.178) than PI (OP3% 3.8, OP5% 2.365). The
crossover occurs around 7-9% OP, illustrating that PI only
surpasses Il once sufficient spare capacity is available
to absorb the fragmentation induced by strict per-RUH
isolation. Figure 18b repeats the experiment with smaller
128MB RUs. Here the crossover point shifts upward. With
3% OP, II again performs better (WAF 2.521 vs. 2.781
for PI), but even at 5% OP, II maintains an advantage
(1.74 vs. 1.908). Only at higher OP (7-10% and above)
does PI reach parity (1.129 vs. 1.091 for PI, OP 10%).
Smaller RUs thus require more generous OP budgets for
PI to exploit its theoretical lower bound. Figure 18c and
(d) highlight this effect directly by fixing OP at 5% and
10% respectively for 256MB RUs. At 5%, II’s WAF is
2.187 while PT’s is 2.365, confirming that under tight OP
budgets PI’s fragmentation penalty dominates. At 10%,
IT achieves 1.338 while PI drops to 1.181, showing that PI
only begins to pull ahead at higher OP levels.

IT and PI: why and when. These results reflect how
each scheme leverages spare space. PI enforces strict RUH
isolation even for GC copies, fragmenting the spare pool.
Under tight OP budgets, this starves each RUH of slack and
triggers frequent GC, inflating WAF. 11, in contrast, pools
spare space in the GC-RUH and can flexibly amortize GC
overhead across streams, making it more resilient under
scarce OP. When OP is plentiful, however, PI’s isolation
pays off: each RUH has its own slack, minimizing cross-
stream interference and yielding lower WAF than II. Thus
PI’s potential lower bound is below II's, but only if OP is
sufficient to offset its fragmentation.

Fragility of PI. Although PI can outperform II, it is the

H H 0, 0,
_ [a] RU256MiB [b] RU128MiB 2000 1CLOP 5% . [d] OP 10%
o 3.809
G 3000 3000 1500 2.365
c
S 2.921 2781 2.187 40011338
=)
52000 2365, 2000 2.521 1000
g 197 1.908 1181
8 1000 .83 1000 1.740 500 200
w 1.338
g 1.1811 0871060 1:2851.223) 1201 0911.0671.062
0 P3 I3 P5 15 P7 17 110 P10 114 P14 0 P3 I3 P5 15 17 P7 110 P10 114 P14 0 I Pl 0 Il PI

Figure 18: WARP FDP II vs. PI design OP tradeoff. Two RUH types—Initially Isolated and Persistently Isolated—show
WAF across different OP ratios and RU sizes. Lower is better. All WAF collected from the 80/20 workload at 5xX rHMW (224GB). (a)
WAF with RU 256MB for all OP settings. (b) WAF with RU 128MB for all OP settings. (c) WAF at OP 5% for the RU 256MB setting

only. (d) WAF at OP 10% for the RU 256 MB setting only.

[a] llvsP1 RU256MiB [b] llvsP1 RU128MiB

4.0 4.0
—e— PI, RU256 —e— PI,RU128
3.0 3.0
%25 25
2.0 N 2.0
15 15 .
1.0 *'\---* —#] 1.0 S eS—sno—s
3 5 7 9 11 13 15 17 3 5 7 9 1113 15 17
OP (%) OP (%)

Figure 19: 1II vs. PI design tradeoff for the 80/20
workload at 5x written data volume in WARP. (a)
WARP RU256MB setting shows the crossover point around 7—
9% OP. (b) WARP RU128MB setting shows the crossover point
around 5—7% OP (224GB).

more fragile mode. As the number of RUHSs grows, or as
workloads become heterogeneous and device-unfriendly,
PI requires disproportionately larger OP budgets to main-
tain its advantage. Under such conditions, PI may exhibit
higher WAF than II. By contrast, II's lower bound is higher,
but it demonstrates robustness across workloads with tight
OP and high interference. The dedicated GC-RUH ab-
sorbs much of the GC-induced contention, shielding II
from pathological amplification.

The 80/20 workload used here is more adversarial than
Zipfian skewed writes, since invalidations are spread more
broadly across the address space. This highlights the
circumstances under which PI can be beneficial: (1) work-
loads with well-classified lifetimes, and (2) devices with
abundant OP. In contrast, II would be a robust choice
under irregular or mixed workloads and when OP budgets
are constrained. For system designers, this tradeoff im-
plies that PI requires coordinated host classification and
generous OP allocation, while II provides resilience with
less host knowledge.

Observation #8: II achieves lower WAF when OP is
scarce, while PI delivers the lowest WAF only when
OP is abundant. PI is potentially more powerful but
fragile: under limited OP or heterogeneous workloads,

12

‘ its benefits collapse and it can perform worse than II.

6 WARP Guided Optimization
6.1 WARP WAF optimization

In this section, we demonstrate how WARP enables design
exploration through a simple yet effective optimization in
CacheLib. Figure 20 reports WAF for the kvcache202206
trace at 40% SOC. In addition to the NoFDP and FDP base-
lines, we evaluate a device-level optimization in WARP
that assigns a small RU to the SOC handle (RUH 0).
The idea is straightforward: we configure a small RU
(i.e., a single-channel-mapped RU), so that all writes from
RUH 0 fill one NAND block completely before moving to
another channel. The improvement is evident: while FDP
alone reduces WAF from 2.0 (NoFDP) to 1.37, adding the
small-RU optimization lowers it further to 1.16. The effect
is substantial under heavy SOC (40%) but the benefit is
minimal in light SOC settings (4%). The gains are twofold.
First, smaller RUs can reduce GC overhead by collecting
fewer pages per cycle. Second, constraining an RU to a
single channel implicitly throttles the small-object cache,
preventing it from overwhelming the device with parallel
GC activity. As aresult, the Noisy RUH effect is suppressed.
WARP provides the foundation for exploring such co-
design opportunities between host software and device-
level policies. Particularly, this case opens a promising
direction: adaptive RU sizing (i.e., dynamic RU sizing) for
FDP SSDs. Shrinking RUs for noisy workloads reduces
amplification, while larger RUs preserve throughput for
benign workloads [55]. This aligns with findings from
prior work [56]. Furthermore, throughput sensitivity
interacts with WAF, suggesting the need for FDP-aware
schedulers that consider RUHs for request scheduling.

6.2 WARP Latency Optimization

Latency matters as much as write amplification in system
performance. WARP builds on FEMU’s validated timing
model and, with our documented tuning, provides pre-
dictable, repeatable latency behavior that closely tracks

2.0
—— NoFDP ‘%
—— FDP
|?<|_ 15 +Small RU Opt
=
1.0
x0 x1 X2 x3 x4

Written Data Volume

Figure 20: Optimization for CacheLib SOC. WAF for
the kvcache202206 trace at 40% SOC in WARP.

real FDP SSDs, making it a strong platform beyond just
FDP emulation. In Table 3, under 4KB high-queue-depth
workloads, WARP sustains 335K IOPS versus 460K on a
real SSD (SSDj,), with nearly identical median and main
tail latencies (p5S0-p99 around 70-80us) and realistic
GC-driven tail spikes (457us vs. 967us for p99.999),
while maintaining latency stability up to the five-nines.
Proper tuning for WARP involves removing the expensive
VM-exit system call overhead by disabling the NVMe
doorbell write. In this way, the expensive MMIO doorbell
write operation is mitigated, resulting in a high-quality
emulation platform in userspace (QEMU).

Table 3 shows identical median latency and stable
p99.999 latency compared to FDP SSD. Together with
other findings, WARP is not only a faithful FDP SSD
emulator but also a high-quality emulation platform for
latency-sensitive SSD research [38, 39, 57].

7 WARP Use Cases and Future Directions

Beyond validating FDP fidelity and revealing hidden
phenomena, WARP enables a wide range of use cases that
are impractical or impossible with commercial SSDs. We
highlight several opportunities where WARP can serve as
a platform for both systems research and device co-design.

* Policy exploration beyond hardware. Today, commer-
cial devices expose only II semantics. WARP makes
it possible to evaluate PI mode, hybrid schemes (e.g.,
adaptive isolation), or new victim-selection heuristics
that vendors have not yet implemented. This supports
head-to-head comparisons of design choices that remain
invisible in hardware.

* Cross-layer co-design. File systems (e.g., F2FS) and
KV stores (e.g., CacheLib) can be run unmodified atop
WARP to measure how FDP semantics interact with
tagging policies. Researchers can quantify the cost of
misclassification and explore whether tagging by file
type, hot/coldness, or application hints yields the best
isolation. Such studies are infeasible on opaque devices.

* Multi-tenancy and resource sharing. FDP’s intended

role is to isolate tenants, yet our results reveal fragility
(Noisy RUH, Save Sequential). WARP enables con-

13

Device Avg Stdev p50 p99 p99.9 p99.99 p99.999

SSDs 70us 9.8 70us 8Ous 92us 200us 967us

WARP 77us 12.1 T0us 77us 82us 102us 457.4us
Table 3: Latency in WARP and real SSD. Baseline

latency for 4K random read workload (QD=1). With proper
tuning, WARP shows predictable latency compared to real SSD.

trolled experiments with co-located workloads, testing
whether new GC or RUH assignment policies improve
fairness and reduce interference.

* Dynamic policy adaptation. With fine-grained observ-
ability, WARP can serve as a foundation for adaptive
controllers. Examples include dynamically resizing
RUs for noisy workloads, adjusting GC thresholds in
response to workload intensity, or switching between
IT and PI modes depending on OP availability. These
experiments are only possible with an open emulator.

These use cases illustrate that WARP is not only a
faithful emulator but also a general research and education
platform. By making opaque firmware knobs explicit and
tunable, it opens new opportunities for systematic study
of FDP and related flash-management policies.

8 Conclusion

We presented WARP, the first open emulator and sys-
tematic study of FDP SSDs. Our cross-device charac-
terization shows that FDP can achieve near-ideal WAF
when RUH isolation aligns with object lifetimes, but its
benefits collapse under misclassification, interference, or
adversarial patterns, with outcomes varying sharply across
vendors. WARP bridges this gap by reproducing hardware
trends while exposing per-RUH dynamics and tunable
design knobs. With this visibility, we uncovered new
pitfalls, such as the Noisy RUH and Save Sequential ef-
fects, demonstrating that FDP’s benefits are not automatic
and require careful stream classification and device-level
awareness. Beyond validation, WARP enables exploration
of new firmware strategies, OS-level policies, and applica-
tion designs that can push FDP beyond current hardware
limits with transparent full-stack interaction. WARP is
open-source and publicly available; we hope it will fos-
ter co-design research that fully realizes FDP’s promise
across diverse storage workloads.

Acknowledgments

We thank Reza Salkhordeh, our shepherd, and the anony-
mous reviewers for their valuable feedback and comments.
We also would like to thank Vivek Shah and Arun George
for their helpful discussions. This research was partially
supported by the NSF CAREER Award CNS-2339901
and NSF Grant CNS-2312785.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

[10]

(11]

[12]

Sara McAllister, Yucong “Sherry” Wang, Benjamin Berg,
Daniel S. Berger, George Amvrosiadis, Nathan Beckmann,
and Gregory R. Ganger. FairyWREN: A Sustainable Cache
for Emerging Write-Read-Erase Flash Interfaces. In Pro-
ceedings of the 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2024.

Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao Ouyang,
Chao Shi, and Lilong Huang. Separating Data via Block
Invalidation Time Inference for Write Amplification Re-
duction in Log-Structured Storage. In Proceedings of the
20th USENIX Symposium on File and Storage Technologies
(FAST), 2022.

Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the
Lifetime of Flash-based Storage Through Reducing Write
Amplification from File Systems. In Proceedings of the
11th USENIX Symposium on File and Storage Technologies
(FAST), 2013.

Seonggyun Oh, Jeeyun Kim, Soyoung Han, Jaechoon Kim,
Sungjin Lee, and Sam H. Noh. MIDAS: Minimizing
Write Amplification in Log-Structured Systems Through
Adaptive Group Number and Size Configuration. In Pro-
ceedings of the 22nd USENIX Symposium on File and
Storage Technologies (FAST), 2024.

Minji Kang, Soyee Choi, Gihwan Oh, and Sang-Won Lee.
2R: Efficiently Isolating Cold Pages in Flash Storages. In
Proceedings of the 46th International Conference on Very
Large Data Bases (VLDB), 2020.

Swamit Tannu and Prashant J. Nair. The Dirty Secret
of SSDs: Embodied Carbon. In the 2nd Workshop on
Sustainable Computer Systems (HotCarbon), 2023.

Sara McAllister, Fiodar Kazhamiaka, Daniel S. Berger,
Rodrigo Fonseca, Kali Frost, Aaron Ogus, Maneesh Sah,
Ricardo Bianchini, George Amvrosiadis, Nathan Beck-
mann, and Gregory R. Ganger. A Call for Research on
Storage Emissions. In the 3rd Workshop on Sustainable
Computer Systems (HotCarbon), 2024.

Gabriel Haas, Bohyun Lee, Philippe Bonnet, and Vik-
tor Leis. SSD-iq: Uncovering the Hidden Side of SSD
Performance. In Proceedings of the 51st International
Conference on Very Large Data Bases (VLDB), 2025.

Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards SLO
Complying SSDs Through OPS Isolation. In Proceed-
ings of the 13th USENIX Symposium on File and Storage
Technologies (FAST), 2015.

Alberto Lerner and Philippe Bonnet. Not your Grandpa’s
SSD: The Era of Co-Designed Storage Devices. In Proceed-
ings of the 2021 ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2021.

Michael Allison. Flexible Data Placement using NVM
Express - Specification Perspective. https://www.yout
ube . com/watch?v=ZEISXHcNmSk.

Eliminating the I/O Blender: The Promise of Flexible Data
Placement. https://sg.micron.com/about/blog/com
pany/innovations/eliminating-the-io-blender-p
romise-of-flexible-data-placement.

14

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

NVMe FDP - A Promising New SSD Data Placement
Approach. https://www.storagenewsletter.com/20
25/02/05/nvme-fdp-a-promising-new-ssd-data-p
lacement-approach/.

Introduction to Flexible Data Placement: A New Era of Op-
timized Data Management. https://download.semic
onductor.samsung.com/resources/white-paper/F
DP_Whitepaper_102423_Final_10130020003525. pdf.

Matias Bjgrling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem. In
Proceedings of the 15th USENIX Symposium on File and
Storage Technologies (FAST), 2017.

Matias Bjgrling, Abutalib Aghayev, Hans Holmberg, Ar-
avind Ramesh, Damien Le Moal, Greg R. Ganger, and
George Amvrosiadis. ZNS: Avoiding the Block Interface
Tax for Flash-based SSDs. In Proceedings of the 2021
USENIX Annual Technical Conference (ATC), 2021.

Michael Allison, Arun George, Javier Gonzalez, Dan
Helmick, Vikash Kumar, Roshan R. Nair, and Vivek Shah.
Towards Efficient Flash Caches with Emerging NVMe
Flexible Data Placement SSDs. In Proceedings of the 2025
EuroSys Conference (EuroSys), 2025.

Support Flexible Data Placement (FDP). https://gith
ub.com/SamsungDS/1linux/commit/879822d2528090
ce45bb54c4bf66344290fe037a.

Flexible Data Placement. https://lwn.net/Articles
/1018642/.

Feng Chen, David A. Koufaty, and Xiaodong Zhang. Under-
standing intrinsic characteristics and system implications
of flash memory based solid state drives. In Proceedings of
the 2009 ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), 20009.

Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. The Unwritten Contract of
Solid State Drives. In Proceedings of the 2017 EuroSys
Conference (EuroSys), 2017.

Nangqinqgin Li, Mingzhe Hao, Huaicheng Li, Tim Emami,
and Haryadi S. Gunawi. Fantastic SSD Internals and
How to Learn and Use Them. In Proceedings of the 15th

ACM International Conference on Systems and Storage
(SYSTOR), 2022.

Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash Stor-
age. In Proceedings of the 13th USENIX Symposium on
File and Storage Technologies (FAST), 2015.

Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won
Lee, and Young Ik Eom. SFS: Random Write Considered
Harmful in Solid State Drives. In Proceedings of the 10th
USENIX Symposium on File and Storage Technologies
(FAST), 2012.

Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and
Onur Mutlu. WARM: Improving NAND Flash Mem-
ory Lifetime with Write-Hotness Aware Retention Man-
agement. In Proceedings of the 8th ACM International
Conference on Systems and Storage (SYSTOR), 2015.

Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,

https://www.youtube.com/watch?v=ZEISXHcNmSk
https://www.youtube.com/watch?v=ZEISXHcNmSk
https://sg.micron.com/about/blog/company/innovations/eliminating-the-io-blender-promise-of-flexible-data-placement
https://sg.micron.com/about/blog/company/innovations/eliminating-the-io-blender-promise-of-flexible-data-placement
https://sg.micron.com/about/blog/company/innovations/eliminating-the-io-blender-promise-of-flexible-data-placement
https://www.storagenewsletter.com/2025/02/05/nvme-fdp-a-promising-new-ssd-data-placement-approach/
https://www.storagenewsletter.com/2025/02/05/nvme-fdp-a-promising-new-ssd-data-placement-approach/
https://www.storagenewsletter.com/2025/02/05/nvme-fdp-a-promising-new-ssd-data-placement-approach/
https://download.semiconductor.samsung.com/resources/white-paper/FDP_Whitepaper_102423_Final_10130020003525.pdf
https://download.semiconductor.samsung.com/resources/white-paper/FDP_Whitepaper_102423_Final_10130020003525.pdf
https://download.semiconductor.samsung.com/resources/white-paper/FDP_Whitepaper_102423_Final_10130020003525.pdf
https://github.com/SamsungDS/linux/commit/879822d2528090ce45bb54c4bf66344290fe037a
https://github.com/SamsungDS/linux/commit/879822d2528090ce45bb54c4bf66344290fe037a
https://github.com/SamsungDS/linux/commit/879822d2528090ce45bb54c4bf66344290fe037a
https://lwn.net/Articles/1018642/
https://lwn.net/Articles/1018642/

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

and Vijay Balakrishnan. AutoStream: automatic stream
management for multi-streamed SSDs. In Proceedings of
the 10th ACM International Conference on Systems and
Storage (SYSTOR), 2017.

Hwanjin Yong, Kisik Jeong, Joonwon Lee, and Jin-Soo
Kim. vStream: Virtual Stream Management for Multi-
Streamed SSDs. In the 10th Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2018.

Jing Yang, Shuyi Pei, and Qing Yang. WARCIP: Write
Amplification Reduction by Clustering I/O Pages. In Pro-
ceedings of the 12th ACM International Conference on
Systems and Storage (SYSTOR), 2019.

Kevin Kremer and Andre Brinkmann. FADaC: A Self-
Adapting Data Classifier For Flash Memory. In Proceed-
ings of the 12th ACM International Conference on Systems
and Storage (SYSTOR), 2019.

Chandranil Chakraborttii and Heiner Litz. Reducing Write
Anmplification in Flash by Death-time Prediction of Logical
Block Addresses. In Proceedings of the 14th ACM Inter-
national Conference on Systems and Storage (SYSTOR),
2021.

Sungjin Lee, Ming Liu, SangWoo Jun, Shuotao Xu, Ji-
hong Kim, and Arvind. Application-Managed Flash. In
Proceedings of the 14th USENIX Symposium on File and
Storage Technologies (FAST), 2016.

Xiaoyi Zhang, Feng Zhu, Shu Li, Kun Wang, Wei Xu, and
Dengcai Xu. Optimizing Performance for Open-Channel
SSDs in Cloud Storage System. In Proceedings of the 35th
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2021.

Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Joo-
Young Hwang. ZNS+: Advanced Zoned Namespace In-
terface for Supporting In-Storage Zone Compaction. In
Proceedings of the 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2021.

Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng
Li, Michael Kaminsky, David G. Andersen, Gregory R.
Ganger, George Amvrosiadis, and Matias Bjgrling. RAIZN:
Redundant Array of Independent Zoned Namespaces. In
Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2023.

Chris Sabol and Smriti Desai. SmartFTL SSDs. https:
//146a55aca6f00848c565-a7635525d40ac1c703001
98708936b4e.ssl.cf1.rackcdn.com/images/c867f
55eaa86f735dc82d649bd18077e9388f07f . pdf.

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The Multi-Streamed Solid-State Drive.
In the 7th Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2015.

Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav
Gogte, Sriram Govindan, Dan R. K. Ports, Irene Zhang, Ri-
cardo Bianchini, Haryadi S. Gunawi, and Anirudh Badam.
LeaplO: Efficient and Portable Virtual NVMe Storage on
ARM SoCs. In Proceedings of the 25th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

15

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin,
Gregory R. Ganger, and Haryadi S. Gunawi. IODA: A
Host/Device Co-Design for Strong Predictability Contract
on Modern Flash Storage. In Proceedings of the 28th
ACM Symposium on Operating Systems Principles (SOSP),
2021.

Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin,
Gregory R. Ganger, and Haryadi S. Gunawi. Extending
and Programming the NVMe I/O Determinism Interface
for Flash Arrays. ACM Transactions on Storage, 19(1),
2023.

FDP Enabled Cache. https://cachelib.org/docs/Ca
che_Library_User_Guides/FDP_enabled_Cache/.
Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo
Kim, and Joonwon Lee. CFLRU: A Replacement Al-
gorithm for Flash Memory. In Proceedings of the 2006

international conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2006.

Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the
Lifetime of Flash-based Storage Through Reducing Write
Amplification from File Systems. In Proceedings of the
11th USENIX Symposium on File and Storage Technologies
(FAST), 2013.

Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Ja-
gadeesh Shetty, Joo Young Hwang, Sangyeun Cho, Daniel
D. G. Lee, and Jacheon Jeong. FStream: Managing Flash
Streams in the File System. In Proceedings of the 16th
USENIX Symposium on File and Storage Technologies
(FAST), 2018.

Taejin Kim, Duwon Hong, Sangwook Shane Hahn, My-
oungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul
Lee, and Jihong Kim. Fully Automatic Stream Manage-
ment for Multi-Streamed SSDs Using Program Contexts.
In Proceedings of the 17th USENIX Symposium on File
and Storage Technologies (FAST), 2019.

Eunji Lee, Julie Kim, Hyokyung Bahn, and Sam H. Noh.
Reducing Write Amplification of Flash Storage Through
Cooperative Data Management with NVM. In Proceedings
of the 32nd IEEE Symposium on Massive Storage Systems
and Technologies (MSST), 2016.

Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a Hybrid Key-value Cache
that Controls Flash Write Amplification. In Proceedings
of the 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2019.

Merge branch “for-4.13/block” of git://git.kernel.dk/linux-
block. 2017. https://github.com/torvalds/linux/
commit/c6b1e36c8fa04a6680c44fe0321d0370400e9
ob6.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci Dusseau, and Remzi H. Arpaci Dusseau.
WiscKey: Separating Keys from Values in SSD-conscious
Storage. In Proceedings of the 14th USENIX Symposium
on File and Storage Technologies (FAST), 2016.

Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S

https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/c867f55eaa86f735dc82d649bd18077e9388f07f.pdf
https://cachelib.org/docs/Cache_Library_User_Guides/FDP_enabled_Cache/
https://cachelib.org/docs/Cache_Library_User_Guides/FDP_enabled_Cache/
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6

(50]

[51]

(52]

(53]

Berger, Nathan Beckmann, and Gregory R Ganger. Kan-
garoo: Caching Billions of Tiny Objects on Flash. In
Proceedings of the 28th ACM Symposium on Operating
Systems Principles (SOSP), 2021.

Hui Sun, Xiao Qin, Fei Wu, and Changsheng Xie. Mea-
suring and Analyzing Write Amplification Characteristics
of Solid State Disks. In Proceedings of the IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS),
2014.

Tomer Lange, Joseph Seffi Naor, and Gala Yadgar. Optimal
SSD Management with Predictions. In Proceedings of the
2025 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2025.
fio — Flexible I/O tester. https://fio.readthedocs.io
/en/latest/fio_doc.html.

Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjgrling, and Haryadi S.
Gunawi. The CASE of FEMU: Cheap, Accurate, Scalable
and Extensible Flash Emulator. In Proceedings of the 16th

16

[54]

[55]

[56]

[57]

USENIX Symposium on File and Storage Technologies
(FAST), 2018.

Mendel Rosenblum and John K. Ousterhout. The Design
and Implementation of a Log-Structured File System. In
Proceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP), 1991.

Bryan S. Kim. Utilitarian Performance Isolation in Shared
SSDs. In the 10th Workshop on Hot Topics in Storage and
File Systems (HotStorage), 2018.

Xiangqun Zhang, Shuyi Pei, Jongmoo Choi, and Bryan S.
Kim. Excessive SSD-Internal Parallelism Considered
Harmful. In the 15th Workshop on Hot Topics in Storage
and File Systems (HotStorage), 2023.

Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A. Chien, and
Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect Elimina-
tion of Garbage Collection Tail Latencies in NAND SSDs.
In Proceedings of the 15th USENIX Symposium on File
and Storage Technologies (FAST), 2017.

https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html

	Introduction
	Background and Motivation
	FDP Characterization
	Testbed and Environment
	Microbenchmarks
	CacheLib
	F2FS

	WARP Design and Implementation
	Design Goals and Contract
	Interface and Placement Model
	GC Architecture
	Configurable Geometry
	Observability and Calibration
	Implementation in Context of FEMU

	Evaluation
	Essential FDP Properties
	Analysis of Three-Stream-Writes and Beyond
	FDP SSD II vs. PI

	WARP Guided Optimization
	WARP WAF optimization
	WARP Latency Optimization

	WARP Use Cases and Future Directions
	Conclusion

