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Abstract
We present Cylon, a fast and extensible full-system emulator
for CXL-SSDs built on FEMU. Cylon bridges the gap between
closed hardware prototypes and slow software simulators
by faithfully reproducing sub-µs cache hits and tens-of-µs
misses that fall to NAND through a hybrid execution path
that mitigates hypervisor trap overheads. Cylon supports
configurable caching policies and provides an application-
level interface for hardware-software co-design. Validated
against a real CXL-SSD prototype, Cylon accurately models
performance across a wide range of applications, from mi-
crobenchmarks to full-scale workloads. Our evaluation shows
that Cylon reproduces realistic latency distributions, executes
unmodified applications at near bare-metal speed, and scales
to system-level studies. By combining speed, fidelity, and
extensibility, Cylon fills a critical gap for evaluating today’s
CXL-SSDs and exploring next-generation architectures that
blend CXL-enabled memory and storage semantics.

1 Introduction
Modern data-intensive workloads such as ML/AI and graph
processing increasingly strain the memory wall: processors
and datasets continue to grow rapidly, while DRAM remains
costly and difficult to scale, making it a dominant bottleneck
for many applications. Compute Express Link (CXL) offers a
promising path forward by enabling heterogeneous memory
devices to attach directly to CPUs over a load/store interface.
A notable option is to attach SSDs behind CXL as a byte-
addressable tier: a small DRAM cache serves hot data at sub-
µs latency, while large NAND flash provides multi-terabyte
capacity with tens-of-µs misses [1–7]. This pairing aims to
deliver memory-like programmability at storage-like cost.

While CXL-SSDs are promising to collapse the long-
standing boundary between memory and storage, enabling
new OS abstractions and near-data execution models that
assume a fast tier for hits and tolerate tens-of-µs misses, the
design space is still in its early stages. Yet the community
lacks the tools to move from promise to practice. There is a
lack of systematic understanding of how tens-of-µs misses
translate into end-to-end stalls across full software stacks and
real applications, which cache management and prefetching
policies best blunt these stalls under mixed locality, or how
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to co-design hardware and software so that memory-like and
storage-like semantics reinforce each other rather than conflict.
Answering these questions requires a platform that is faithful
enough to expose the true fast and slow paths, fast enough
to run real workloads, and open enough to let researchers
explore the policy levers that will define the next generation
of CXL-SSD designs.

Industry prototypes validate feasibility but are poor research
vehicles. Samsung’s CMM-H, for example, demonstrates cost-
effective expansion but is largely opaque: cache management
is firmware-controlled, policy knobs are absent, and meaning-
ful exploration requires hardware modification [1, 4, 8]. More
broadly, hardware platforms are scarce, costly to access, and
often demand the latest servers and firmware. Their black-box
nature makes it difficult to study cache policies, prefetching,
or hardware-software co-design, limiting the community’s
ability to evaluate designs or optimize system software.

Academic and community efforts provide useful but in-
complete alternatives. FPGA-based frameworks such as
OpenCXD allow functional experimentation but abstract away
NAND behavior and thus cannot evaluate latency or bandwidth
[9]. Trace-driven simulators [3, 10] provide rich configurabil-
ity, yet they operate orders of magnitude slower than real time
and cannot capture dynamic interactions with full software
stacks. Cycle-accurate simulators [11, 12] improve device
fidelity but are prohibitively slow for system-level studies.
Functional emulators such as QEMU run unmodified OSes
and applications, but lack the speed, fidelity, and extensibility
needed for policy or hardware evaluation.

Cylon is, to our knowledge, the first full-system platform
that provides true CXL.mem load/store semantics with latency
asymmetry (sub-µs hits vs. tens-of-µs misses) and config-
urable caching policies. Unlike QEMU-CXL [13], which
forces all accesses through MMIO/VM-exit paths, Cylon’s
Dynamic EPT Remapping (DER) enables cacheline-granular
load/stores to complete without VM-exits. Unlike block-based
emulators such as FEMU [14] and NVMeVirt [15], Cylon ex-
poses CXL.mem interfaces, making it fundamentally different
from NVMe SSD emulation.

This gap is especially pressing because the design space
of CXL-SSDs is broad and unsettled. Beyond CMM-H, pro-
posals envision tighter coupling between CXL and NVMe
for coherent memory sharing [7], collapsing the boundary
between CXL and SSD controllers to expose NAND paral-
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lelism [16], or even merging memory and storage semantics
so software can steer capacity directly [5]. These direc-
tions raise open questions: how severe are end-to-end stalls
from tens-of-µs misses in practice, which cache policies best
mitigate them, and how hardware and software should be
co-designed to balance memory-like and storage-like seman-
tics. Addressing these questions requires a platform that
faithfully models CXL-SSD behavior while supporting rapid,
full-system exploration.

Building such a platform is technically challenging. Unlike
block I/O emulation, a CXL-SSD must be exposed as byte-
addressable memory mapped into the CPU’s physical address
space. Capturing sub-µs cache hits alongside tens-of-µs
cache misses that fall to NAND requires avoiding hypervisor
overheads that plague conventional emulators. At the same
time, the emulator must support flexible cache management
policies and application-level hints, while remaining fast
enough to run unmodified OSes and full workloads. Meeting
all three demands, fidelity, speed, and extensibility, requires
rethinking how full-system emulation integrates virtualization,
cache modeling, and SSD timing.

We present Cylon, the first FEMU-based full-system em-
ulator for CXL-SSDs that combines speed, fidelity, and ex-
tensibility. At its core is a hybrid access path that eliminates
hypervisor VM-exit overhead [17–20] on cache hits while
accurately trapping misses into FEMU for faithful SSD emu-
lation. Validated against a commercial CXL-SSD prototype
(CMM-H), Cylon reproduces sub-µs cache hits and tens-of-µs
cache misses, matches bandwidth and latency distributions
across microbenchmarks, and closely tracks application-level
performance trends for Redis and graph analytics. By combin-
ing these properties, Cylon enables both faithful reproduction
of today’s hardware and rapid exploration of next-generation
designs, filling a critical gap for evaluating CXL-SSDs and
guiding the development of future CXL-enhanced storage
architectures. In sum, we make the following contributions:
• We design and implement Cylon, the first fast, full-system

CXL-SSD emulator that faithfully captures both cache hits
and cache misses.

• We introduce a hybrid access path combining dynamic EPT
remapping and shared EPT memory to eliminate VM-exit
overheads on hits and reduce transition costs on misses.

• We provide a flexible caching framework with configurable
policies and an application-level interface, enabling system-
atic study of hardware-software co-design.

• We demonstrate that Cylon extends beyond CMM-H, sup-
porting exploration of alternative CXL-storage designs that
expose memory, storage, or hybrid semantics.

• We have upstreamed Cylon to FEMU at https://github
.com/MoatLab/FEMU.
The rest of this paper is organized as follows. §2–§3 provide

background and related work. §4 presents Cylon design, while
§5 evaluates its fidelity, performance, and extensibility against
CMM-H and applications. §6 concludes.

Throughout the paper, we use the term cache to refer
specifically to the DRAM cache inside CXL-SSDs, and all
eviction and prefetching policies we discuss are for CXL-
SSDs, not for CPU caches or SSD-internal mechanisms.

2 Background and Motivation
Compute Express Link (CXL). CXL is a new interconnect
that exposes memory semantics over a load/store interface [21].
Through the CXL.mem protocol, CPUs can issue cacheable
loads and stores directly to attached devices, making them
appear as part of the physical address space. This ability to
integrate heterogeneous memory tiers transparently underpins
the design of CXL-SSDs.
CMM-H as a representative CXL-SSD. CXL-SSDs pair
a small DRAM cache with large-capacity NAND flash and
present the entire SSD address space to the CPU through
CXL.mem [16]. The DRAM cache serves frequent accesses at
sub-µs latency, while NAND provides multi-terabyte capacity
at far lower cost than DRAM but incurs tens of µs per miss [4].
Prototypes such as Samsung’s CMM-H [4, 8] demonstrate
feasibility, yet also highlight the stark latency asymmetry
that makes cache management central: a single cache miss
can stall the CPU pipeline, whereas effective eviction and
prefetching are essential to narrow the gap.

CMM-H is a hybrid CXL memory prototype that integrates
a 48GB DRAM cache (4KB cacheline) with a 1TB NVMe
SSD backend, coordinated by an Intel Agilex FPGA controller
over PCIe Gen5 [8]. By using DRAM as a write-back cache
with LRU replacement (or MRU insertion) [4], CMM-H aims
to hide much of the SSD latency while exposing terabyte-
scale, byte-addressable memory to the host. The device also
supports prefetching, though the precise policy is opaque. Its
performance peaks when working sets fit in cache, reaching
near-PCIe saturation bandwidth, but degrades significantly as
accesses exceed cache capacity.
Challenges in CXL-SSD research. Despite their promise,
CXL-SSDs pose three fundamental challenges for researchers
and system designers: (a) Opaque prototypes. Commercial
platforms expose only narrow firmware knobs and provide
little visibility into cache dynamics, preventing systematic
policy exploration. (b) Memory-semantic modeling. Un-
like block devices, CXL-SSDs must be modeled as byte-
addressable memory, capturing DRAM/NAND asymmetry
and fine-grained load/store concurrency. (c) Full-system con-
text. The effectiveness of cache management depends on fast
interactions with a real OS and applications.
FEMU as the SSD backend. FEMU [14] is a popular open-
source SSD emulator built on QEMU that stores backend data
in host DRAM and uses dedicated threads to model NAND
flash timing, including channel, die, and plane parallelism,
read/program/erase latencies, and garbage-collection interfer-
ence. Cylon extends FEMU as its CXL-SSD backend: on a
cache miss, the request is forwarded to FEMU, which returns
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Table 1: CXL-SSD platforms. Cylon uniquely couples validated,
high-performance full-stack emulation with extensible policies.

System
Validation

Performance
Full-stack

Transparency
Extensibility

MQSim-CXL [3] no low no – yes
ESF [10] no low no – yes
CXL-SSD-Sim [11] no very low no – no
CXL-DMSim [12] no very low no – yes
OpenCXD [9] – low yes yes –
QEMU [22] – low yes yes –
Cylon yes high yes yes yes

data after applying the appropriate NAND timing delay.
The need for Cylon. Studying CXL-SSDs requires a plat-
form that unifies three properties: (1) full-stack execution,
to run unmodified operating systems and applications; (2)
near bare-metal speed, to reproduce sub-µs cache hits and
tens-of-µs cache misses; and (3) accurate device modeling,
capturing DRAM cache dynamics and NAND timing. Ex-
isting prototypes and simulators each deliver only a subset
of these goals, forcing trade-offs between fidelity, speed, and
transparency. Cylon closes this gap as the first fast, faithful,
and extensible full-system emulator for CXL-SSDs.

3 Related Work
Table 1 groups prior CXL-SSD platforms by how they balance
fidelity, execution speed, and accessibility to software stacks.
Despite rapid progress, no existing framework simultane-
ously exposes real-time, full-system execution while offering
validated device-model fidelity sufficient to study CXL-SSDs.
Prototype hardware. Early demonstrations rely on propri-
etary hardware prototypes. Commercial CMM-H devices and
reference platforms [1, 16] highlight the promise of attaching
commercial SSDs with a frontend DRAM cache over CXL,
but vendors only expose narrow firmware knobs and provide
little visibility into eviction or prefetching behavior. Hybrid
approaches such as OpenCXD [9] combine host software with
hardware, yet they remain gated by limited device availability,
lack public extensibility, and cannot run arbitrary applica-
tions against modified controller logic. As a result, prototype
platforms showcase feasibility but offer little flexibility for
researchers exploring new policies.
Functional emulation. The community has therefore grav-
itated toward software emulators. QEMU’s upstream CXL
support [13] inherits the ability to boot unmodified guests,
making it attractive for OS and application integration studies.
However, its device model focuses solely on CXL protocol
functionality, without modeling any hardware components
behind CXL, such as DRAM cache, SSD internals, etc. Worse,
execution relies on emulated MMIO and VM-exits for ev-
ery access, inflating latency to ∼15 µs, orders of magnitude
slower than CXL-SSD targets. This functional-only approach

provides transparency but sacrifices realism and performance.

Trace-driven simulators. Trace-driven infrastructures such
as MQSim-CXL [3] and ESF [10] emphasize device config-
urability. By decoupling host execution from device timing,
they can sweep buffer sizes and eviction heuristics while
modeling flash pipelines. Yet they depend on pre-recorded
traces, meaning (1) they cannot capture dynamic interactions
with unmodified software stacks, (2) they are extremely slow
due to cycle accuracy, and (3) they have not been validated
against real CXL-SSDs. Thus, their results are analytically
rich but detached from full-system context.

Cycle-accurate simulators. Cycle-level tools such as
CXL-SSD-Sim [11] and CXL-DMSim [12] integrate with
gem5 [23], pushing fidelity further by modeling controller
pipelines in detail. However, their simulation is extremely
slow. To run practical studies, researchers must shrink work-
loads or abstract away software behavior, precisely the layers
most relevant to cache policy and end-to-end performance.
Related efforts like CXLMemSim [? ] focus exclusively on
CXL.mem timing, without SSD semantics, leaving caching-
policy evaluation out of scope.

Summary of limitations. Taken together, existing emulation
platforms face three fundamental drawbacks. First, slow emu-
lation throughput: cycle-accurate simulators like gem5 yield
faithful timing but are impractically slow for system-level
studies. Second, limited full-stack visibility: trace-driven
simulators capture device-side timing but cannot run unmod-
ified operating systems or applications. Third, incomplete
modeling of CXL-SSD features: while QEMU supports CXL
type-3 devices, it does not capture NAND flash characteristics
such as µs-scale program/read latencies, or the performance
gap between DRAM cache hits and cache misses. More-
over, QEMU’s reliance on MMIO-driven VM-exits inflates
latency into the microsecond regime, misrepresenting the
sub-µs hit path of CXL memory. An ideal emulator must
therefore combine (1) full-stack execution to reveal end-to-end
implications, (2) near bare-metal speed to maintain realism,
and (3) accurate device modeling, including both host-visible
behavior and device-side timing. Support for host-provided
hints and prefetching interfaces is equally important to enable
hardware-software co-design.

Positioning of Cylon. Cylon bridges these divides: it re-
tains QEMU’s commodity software compatibility and real-
time execution, eliminates per-access VM-exits to achieve
nanosecond-scale cache-hit latencies, and integrates analyz-
able models of DRAM-cache dynamics and SSD backend
behavior. These properties enable simultaneous study of
host-visible performance, algorithmic caching policies, and
hardware-software co-designs, capabilities absent in all prior
work. In short, whereas existing tools force researchers to
choose between fidelity, speed, or transparency, Cylon is the
first platform to combine all three.
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4 Cylon Design and Implementation
This section presents the design of Cylon. We begin with
high-level goals and challenges, then describe the architecture,
followed by the core techniques for efficient and faithful emu-
lation of CXL-SSDs. On top of these mechanisms we build
configurable caching policies and application-level interfaces
that enable hardware-software co-design.

4.1 Design Goals and Challenges

Cylon is designed with three key goals in mind. First, it
must support full-stack execution of unmodified applications
while accurately emulating CXL-SSD internals, including
the CXL interface, the DRAM cache, and its interactions
with the backend SSD. Second, it must reproduce realistic
access latencies and bandwidth by eliminating overheads
introduced by conventional emulators. Third, it must provide
both application-level and hardware-level control over cache
management to enable co-design. Achieving these goals
requires addressing three challenges:

(1) Fidelity through load/store interface. CXL-SSDs
support CXL.mem semantics: byte-addressable, cacheable
memory accessible via load/store instructions. While FEMU
and NVMeVirt model NAND behavior through a block I/O
interface, Cylon’s CXL-SSD exposes its capacity directly
in the CPU physical address space and is accessed through
load/store instructions over CXL.mem. To emulate this model,
Cylon must map the entire SSD logical address space into
guest-physical memory address space, making it directly
accessible and cacheable while preserving CXL semantics.

(2) Efficiency under strict latency constraints. Each
memory-mapped I/O (MMIO) operation in QEMU incurs
several microseconds of VM-exit latency, already an order
of magnitude too slow to emulate cache hits that complete
in a few hundred nanoseconds. Device logic in software
adds further overhead. A new execution path is required to
faithfully capture both sub-µs cache hits and tens-of-µs cache
misses that fall to NAND.

(3) Extensibility for co-design. Future CXL-SSD systems
will rely on sophisticated cache management. Eviction and
prefetching policies, as well as application-provided hints/con-
trols, will critically influence performance, alongside novel
CXL-storage architecture designs. Cylon must therefore pro-
vide a configurable caching layer and interfaces that allow
applications to influence placement, eviction, and prefetching
strategies to mitigate the significant performance gap between
DRAM cache and SSDs.

To address these challenges, Cylon integrates QEMU’s CXL
emulation with FEMU, combining full-system execution with
accurate device-level timing. QEMU supplies the CXL type-3
device model, virtual machine management, and unmodified
guest OS support, while FEMU contributes its proven SSD
timing engine for faithful NAND latency emulation. On top
of this foundation, Cylon introduces a hybrid access path that

Guest
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DRAM Cache
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KVM / EPT
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trap on miss fetch
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Figure 1: Cylon architecture. Cylon with fast path (green, 150ns)
for cache hits and slow path (red, 40𝜇s) for cache misses requiring
SSD access. Blue dashed arrows show KVM/EPT updates.
separates fast cache hits from slow cache misses, together
with a configurable caching layer for policy exploration. The
following sections describe the architecture and mechanisms
that enable this integration.

4.2 Cylon Overview

Figure 1 shows the overall architecture of Cylon across three
domains: the unmodified guest VM, a lightly modified host
kernel/hypervisor, and host userspace with FEMU. To the
guest, the emulated CXL-SSD appears as a standard CXL
2.0 Type-3 device, visible either as a DAX region or as a
CPU-less NUMA node. The guest-visible capacity equals the
backend SSD, while the DRAM cache is hidden and managed
transparently, faithfully emulating a hardware-managed cache
(e.g., similar to Samsung CMM-H). This design requires no
guest driver changes and remains compatible with existing
CXL software stacks.

Guest applications use it as regular memory by issuing
ordinary load/store instructions over CXL.mem. The access
path diverges into two cases. On a cache hit, the Extended
Page Table Entry (EPTE) [24] points directly to the DRAM
cache, and the access completes at DRAM speed with no
VM-exit overhead. On a cache miss, the EPTE is marked as
trapping, causing a VM-exit into KVM, where it is handled
by the EPT page fault handler. KVM forwards the request
to QEMU’s CXL emulation, which maps the guest-physical
address (GPA) to an SSD offset and fetches data from the
backend. Once the data returns, Cylon inserts it into the cache,
evicting if necessary, and updates the EPTE to Direct state
so subsequent accesses bypass VM-exits (more later). If the
page is later evicted, the entry reverts to Trap state.

By combining direct mapping for hits and trapping for
misses, Cylon faithfully reproduces the performance spectrum
of CXL-SSDs: sub-µs cache hits and tens-of-µs misses. This
hybrid design provides both fidelity to hardware semantics
and efficiency within a full-system emulator.

4.3 Overcoming VM-Exit Overhead via Hybrid Path

Conventional QEMU/KVM device models (including QEMU
CXL [13]) use MMIO, where each access traps into the
hypervisor. While adequate for PCIe devices, MMIO is far
too slow for modeling sub-microsecond DRAM cache hits in
CXL-SSDs: a single guest load expands into tens of thousands
of host instructions, with each VM-exit taking microseconds.
Our measurements show that QEMU’s default CXL support
relies on binary translation (TCG) [25], sustaining only a few
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MB/s of bandwidth with highly unpredictable latencies, even
when backed by DRAM. Without substantially improving
QEMU’s baseline performance under CXL emulation and
avoiding its slow execution path, an emulator cannot faithfully
capture the performance characteristics of CXL-SSDs.

Cylon introduces three key optimizations to QEMU/KVM.
First, Dynamic EPT Remapping eliminates VM-exits on cache
hits. Second, Shared EPT Memory enables constant-time
cache residency updates, reducing the overhead of miss and
trap handling. Third, a modular caching layer with plug-
gable policies supports systematic evaluation of eviction and
prefetching strategies. Together, these techniques capture
both the fast path of sub-µs cache hits and the slow path of
tens-of-µs misses while providing the flexibility for policy
exploration. Algorithm 1 presents a high-level view of our
optimizations. We next describe each component in detail.

4.3.1 Dynamic EPT Remapping (DER)

How can we avoid VM-exits for cache hits while preserving
accurate emulation for cache misses? Every guest access
undergoes address translation through Intel’s Extended Page
Tables (EPT), which translate guest-physical addresses (GPAs)
into host-physical addresses (HPAs) [24]. EPT is managed
by CPU and KVM, where its leaf entry in this walk, the
EPTE, encodes the target address and access permissions
(R, W, X) as well as memory type. By manipulating EPTEs
dynamically, Cylon toggles whether a page access is served
directly from the cache or routed through the emulator. We
call this mechanism Dynamic EPT Remapping (DER).

States. DER defines two legal states for each page. In the
Direct state, the EPTE is set to [HPA | DIRECT MASK] with
read (or read+write) permission enabled, execute cleared, and
memory type of Write-Back (WB). The DIRECT MASK allows
the EPT walk to complete without trapping and points directly
to the target HPA, which corresponds to a physical address in
the CXL-SSD DRAM cache. In the Trap state, the EPTE
has R=W=X=0, which forces an EPT violation on any access.
Although the PFN field is ignored by hardware in this state,
Cylon programs it with a sentinel HPA to maintain tooling
consistency and record the corresponding SSD address, which
will later be used during miss handling (i.e., fetching data
from SSD into the cache).

Transitions. DER uses a strict protocol to move pages
between the cache and the SSD, ensuring both correctness
and efficiency. On a cache fill operation, the requested data
is copied into the cache, the EPTE is updated to [HPA |

DIRECT MASK] so that subsequent accesses bypass the emulator,
and an INVEPT single-context (or range) operation is issued
to flush stale TLB entries before the guest is resumed. On a
clean eviction, the page can be discarded without writeback;
the EPTE is simply reset to R=W=X=0, and a targeted INVEPT

invalidation is performed to maintain consistency. For a
dirty eviction, the cached data is first written back to the
SSD model (FEMU) to ensure persistence; only after the

write completes is the EPTE cleared and the corresponding
TLB entries invalidated. Together, these transitions preserve
correct memory ordering and durability semantics, matching
the behavior expected of a real CXL-SSD.

Invalidation. A central challenge in DER is maintaining
consistency when EPTEs are updated. Naively issuing a
global TLB shootdown on every transition would quickly
overwhelm the system and destroy scalability. To avoid
this, DER leverages hardware-supported primitives that target
only the necessary entries. Specifically, INVEPT (Invalidate
EPT) is used for page or range invalidations, ensuring that
any stale translations are removed, and INVVPID is used to
maintain consistency across guest contexts. Rather than
issuing these invalidations one by one, Cylon KVM further
improves efficiency by batching and coalescing them. For
example, when many cache status flips occur close together,
as in a prefetch burst, they are grouped into a small number
of invalidate operations. This approach preserves correctness
while keeping residency transitions lightweight and scalable,
allowing DER to support high update rates without introducing
prohibitive overhead.

Scalability. Cylon minimizes TLB shootdown overhead
through: (1) Batching: We don’t issue a shootdown for every
page flip; updates are batched (e.g., during prefetching); (2)
Range Invalidation: We invalidate only the specific GPA
range of the buffer, not the entire TLB; and (3) Miss-path
only: EPT invalidation occurs strictly on the miss path. While
broadcast costs increase with core count, the overhead remains
negligible compared to the 40µs NAND fetch. Our validation
with CMM-H shows performance saturating at 4 threads due to
insufficient device parallelism, confirming device constraints,
not host coherency, are the dominant bottleneck.

Safety. At VM creation, Cylon registers two immutable
regions with KVM: (1) the pinned host-physical range that
serves as the DRAM cache, and (2) the full guest-physical
address range representing the backend SSD managed by
FEMU. Cache residency transitions are constrained to flip
EPTEs only between these two regions. Any attempt to install
EPTEs outside these ranges is rejected. When updating an
EPTE, KVM masks the operation so only the PFN selector and
R/W/X bits are mutable; memory type and reserved bits remain
under kernel control. Per-EPTE locks serialize concurrent
updates, ensuring determinism under racing evictions or
prefetches. Because DER manipulates only architected EPT
permission bits, the design also maps cleanly to AMD’s Nested
Page Tables (NPT) and ARM Stage-2 page tables [24], where
equivalent permission bits and invalidation primitives exist.

4.3.2 Shared EPT Memory

While DER removes VM-exits from the hit path, residency
transitions triggered by demand-read from FEMU or prefetch-
ing in QEMU still require modifying EPTEs. This requires a
reliable and efficient mechanism for userspace-based QEMU
to communicate with KVM for such EPTE updates. A straight-
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Algorithm 1: Dynamic EPT Remapping and Shared EPT
Memory across Guest, FEMU, and KVM

Input: Guest physical address (GPA)
// Guest access (EPTE checking done by hardware)
EPTE← EPT[GPA];
if EPTE.perm == Direct then

Issue ld/st to Cylon cache; return data;
else

Trigger EPT violation; transfer control to KVM;
// KVM miss handling
LPN, Offset← map(GPA);
Enqueue Fill request with LPN, Offset to FEMU;
Suspend guest vCPU until completion;
// Cylon cache controller actions
if request.type == Fill then

Data← backend.read(Offset);
HPA← cache.allocate(LPN);
UpdateEPTE(LPN, Direct, HPA);
Resume guest vCPU;

else
if request.type == EvictClean then

cache.release(LPN);
UpdateEPTE(LPN, Trap, ⊥);

else
if request.type == EvictDirty then

backend.write(Offset, cache.data(LPN));
cache.release(LPN);
UpdateEPTE(LPN, Trap, ⊥);

else
foreach LPN’ in policy.pick(LPN) do

if EPTE[LPN’].perm == Trap then
Data← backend.read(Offset(LPN’));
HPA← cache.allocate(LPN’);
UpdateEPTE(LPN’, Direct, HPA);

// KVM primitive: UpdateEPTE (index, state, HPA)
if state == Direct then

epte← ComposeEPTE(hpa, perms=RW, type=WB)
else

epte← ComposeEPTE(sentinel hpa, perms=0)
Write epte to shared EPTE table at index;
INVEPT(index);

forward approach is for FEMU to invoke a KVM ioctl() on
every fill or eviction. Unfortunately, this introduces two
forms of overhead. First, each syscall requires a kernel-
userspace crossing, which takes microseconds even when the
update itself is simple. Second, KVM must locate the relevant
EPTE in host memory by walking internal data structures,
since by default EPT pages are allocated lazily and scattered.
Both costs add up quickly when workloads generate frequent
cache transitions. Such overheads also lead to emulation
inaccuracies due to potentially delayed EPTE updates with
the latest DRAM cache status.

How can we update EPTEs in constant time without re-

peated syscalls or costly walks? To eliminate this bottleneck,
Cylon pre-allocates all leaf EPTEs in a single contiguous
region at VM initialization. This region is mapped into both
kernel space and userspace QEMU/FEMU. With this design,
an EPTE can be addressed directly by its logical page number
(LPN, the SSD address) using array-style indexing, without a
syscall or page-table walk. The result is an 𝑂 (1) lookup and
update cost per transition.

Update mechanism. FEMU does not update raw EPTEs
directly. Instead, it issues small descriptors of the form
<index, desired state, cookie> into shared memory. The
kernel validates the descriptor, masks out any illegal fields, and
applies the update. Only two fields are allowed to change: the
PFN selector (choosing either the cache or the SSD region)
and the R/W/X permission bits. All other fields, including
memory type and reserved bits, remain fixed under kernel
control. This ensures that userspace cannot create unsafe or
illegal mappings.

Efficiency. Because updates are array-indexed and vali-
dated in constant time, Cylon can sustain very high transition
rates. Moreover, when many updates occur close together
(e.g., during a prefetch burst), KVM coalesces them into a sin-
gle TLB invalidation. This amortizes the cost of invalidation
and avoids flooding the hardware with redundant requests.

This design also brings another benefit: it enables Cylon
to expose cache status back to the guest VM through a clean
interface (i.e., an EPTE array), supporting more flexible data-
placement decisions. Applications can, for example, guide
caching or prefetching policies based on access patterns (§4.4).
Overall, shared EPT memory eliminates syscall overhead and
page-table walks, while preserving strong safety invariants.
Even under workloads with frequent cache churn, residency
updates remain both accurate and scalable.

4.4 Configurable Caching Policies

The large latency gap between DRAM (∼100ns) and SSDs
(tens of µs) makes cache management central to CXL-SSD
performance. When a request hits in the DRAM cache,
it completes quickly at near-memory speed. However, a
miss that falls to NAND can take hundreds of times longer.
Because CPUs can only track a limited number of outstanding
misses through their Miss Status Holding Registers (MSHRs),
even a single long-latency miss can block the pipeline. If
multiple misses accumulate, the MSHR slots fill, preventing
new memory operations from being issued. This creates a
cascading effect where independent instructions that could
otherwise execute in parallel are forced to wait, amplifying
the impact of each miss. Effective cache management policies
are therefore essential to minimize stalls and keep the CPU
fully utilized. In short, the efficiency problem is two-fold: the
long latency of cache misses and the loss of CPU throughput
when those misses stall execution.

The choice of eviction and prefetching policies has a de-
cisive impact on overall system efficiency. For instance,
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CMM-H supports both eviction and prefetching to reduce the
performance gap between the DRAM cache and the SSD back-
end. Yet because CXL-SSD designs are still in their infancy,
the design space of caching policies remains largely unex-
plored [3]. System designers therefore need a flexible platform
to evaluate existing policies, experiment with combinations
of eviction and prefetching, and test new mechanisms.

To address this need, Cylon provides caching as a config-
urable framework with pluggable modules. At initialization,
users can select from a range of standard eviction policies
(e.g., FIFO, S3FIFO [26], CLOCK, etc.) and prefetching
strategies (e.g., next-line prefetching). More importantly, the
framework enables researchers to implement new policies
with minimal effort. Each policy is defined through a clean
interface that specifies how pages are retained, evicted, or
prefetched, when the policy logic is triggered, and what statis-
tics are collected. This design makes it straightforward to
explore workload-aware heuristics, predictive prefetching, or
other advanced strategies, positioning Cylon as a practical
platform for systematic caching policy exploration.

Observability. A key feature of Cylon is its support for
observability, enabling researchers to qualify and compare
caching policies through detailed hit and miss statistics. Un-
like cache misses, which trigger VM-exits and are naturally
visible to Cylon, cache hits complete as direct loads and there-
fore leave no trace in the emulator. To expose this information,
Cylon provides two complementary mechanisms. First, it
can periodically clear EPT “accessed” bits and let the kernel
record which pages were subsequently touched, leveraging
existing infrastructure such as the Linux DAMON subsystem
[27]. Second, it can optionally use hardware-assisted sam-
pling (e.g., Intel PEBS) to capture references into the cache
directly from the CPU. Both approaches involve accuracy-
overhead trade-offs: access-bit sampling provides coarse but
low-cost coverage, while PEBS offers fine-grained precision
at the expense of higher overhead. At modest sampling rates
(e.g., 1-in-1000), PEBS overhead remains low enough to
make fine-grained profiling practical [28–30]. By combin-
ing these mechanisms, Cylon enables systematic profiling of
cache behavior, allowing researchers to observe how different
eviction and prefetching strategies translate into hit rates, miss
penalties, and overall efficiency in realistic workloads.

4.5 Application-Level Interface for CXL-SSD Control

Another important goal of Cylon is not only to emulate
device-side policies, but also to enable systematic study of
how applications can directly influence CXL-SSD behavior,
i.e., application-managed CXL-SSDs, in the same spirit as
OpenChannel-SSDs for host-managed FTLs [31, 32]. Device-
managed caching policies are necessary, yet they are funda-
mentally limited: the device can only react to observed access
patterns and cannot anticipate higher-level intent. Many appli-
cations, however, possess domain knowledge that is invisible
to the hardware. For example, a database engine knows when

a join will scan an entire table, a graph analytics framework
can predict which vertices will be revisited across iterations,
and a machine learning pipeline knows which mini-batches
will be consumed in the next training step. Without a way to
convey this knowledge, the device is forced to rely on generic
heuristics, often leading to suboptimal placement, eviction,
or prefetching.

To address this gap, Cylon provides a lightweight
application-level interface that extends the CXL device model
with a simple control plane. This interface allows guest soft-
ware to issue commands such as: (i) explicit cache prefetch,
pin, and evict operations; (ii) dynamic policy selection or
parameter tuning; and (iii) queries for fine-grained statistics.
The interface is implemented through a ring queue in shared
memory for low-latency command and completion, but can
also be accessed via a kernel-mediated ioctl() path for un-
modified guests. A thin userspace library wraps the supported
commands and exposes them as a straightforward API.

With this structured API, Cylon enables cooperative
caching, where hardware-managed policies are augmented
with application hints. For example, a database can prefetch a
table before a join, a graph engine can pin a frontier to avoid
eviction, and a training pipeline can prefetch mini-batches
ahead of the next epoch. This capability transforms Cylon
from a pure emulator into a platform for exploring hybrid
caching designs and is critical for studying the next generation
of CXL-SSD systems, which will demand tighter cooperation
between hardware and software.

4.6 Extensibility for CXL-SSD Architecture Exploration

The optimizations described so far allow Cylon to faithfully
emulate the behavior of Samsung’s CMM-H, a first-generation
CXL-SSD design that pairs a hardware-managed DRAM
cache with a backend SSD. However, CMM-H represents
only a single point in a much larger design space. CXL
fundamentally decouples the host memory hierarchy from
the storage stack, opening up numerous opportunities for
how SSDs may be architected [5–7, 33–35]. A key strength
of Cylon is its extensibility: by combining accurate CXL
interface modeling with a pluggable backend emulator, it
enables researchers to explore alternative designs well beyond
CMM-H while still running unmodified OS and applications.

Beyond CMM-H. One path is tighter integration of CXL
and NVMe interfaces. Proposals such as NVMe-oC [7]
extend SSDs with memory-like regions that allow coherent
sharing between host and device, eliminating data movement
for fine-grained accesses. Another direction, championed
by Kioxia [6], is to pair CXL with low-latency flash media,
narrowing the gap between DRAM and NAND. Modeling
such coherence and NAND requires an emulator capable
of faithfully representing memory semantics at load/store
granularity, a capability that Cylon already provides.

CXL–FTL integration. Another direction is to collapse
the traditional boundary between the host interface and the
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Flash Translation Layer (FTL). Rather than funneling all
requests through NVMe queue pairs, the SSD controller can
adopt CXL.mem directly, exposing internal parallelism more
transparently to the host. This allows software to map requests
to NAND channels, dies, and planes in ways that better
exploit raw device bandwidth. Such designs require accurate
emulation of CXL transaction semantics as well as NAND-
level concurrency, both of which are naturally supported by
Cylon’s flexible FEMU-based backend.

Other opportunities. The design space is even broader.
Researchers can use Cylon to investigate multi-device topolo-
gies where several CXL-SSDs share a fabric; hybrid designs
that combine host-managed and device-managed policies; or
software-driven abstractions that treat CXL-SSDs as elastic
memory pools [36, 37] rather than block devices. Beyond
hardware architecture, Cylon can also support exploration
of software stacks for CXL-SSDs, such as building filesys-
tems on top of DAX interfaces or developing new runtimes
that exploit byte-addressable capacity. By reconfiguring the
caching layer, customizing backend flash models, or extending
the application-level API, new directions can be prototyped
rapidly without sacrificing fidelity.

Role of Cylon. In short, Cylon is not limited to replicating
CMM-H. It serves as a general platform for exploring the
next generation of CXL-based SSD designs, from incremental
policy refinements to entirely new architectural paradigms. By
offering speed, fidelity, and flexibility in a single framework,
Cylon provides the research community with the means to
systematically chart this emerging design space.

4.7 Put It All Together

The hybrid path in Cylon unifies the mechanisms described
above into a single flow. When the guest issues a memory
access, the MMU performs a page table walk. If the page is
uncached, its EPTE is in the Trap state, triggering a VM-exit
into FEMU, which models NAND access and consults the
caching framework. On a fill, data is copied into the DRAM
cache, the EPTE is remapped to the Direct state via Dynamic
EPT Remapping, and stale TLB entries are invalidated with
INVEPT/INVVPID. On eviction, the chosen policy determines
whether to discard or write back the page, after which the
EPTE is reset to Trap. If the page is cached, the EPTE points
directly to the DRAM cache and the guest executes native
loads/stores without VM-exits.

Together, these components ensure accurate modeling of
cache hits (hundreds of nanoseconds) and cache misses (tens
of µs). Dynamic EPT Remapping and Shared EPT Mem-
ory minimize residency overhead, the pluggable caching
framework enables systematic policy exploration, observ-
ability exposes hit/miss statistics, and the application-level
API supports cooperative caching. With a modular backend,
Cylon extends naturally beyond CMM-H to study designs
such as CXL–NVMe integration, CXL–FTL mappings, and
low-latency flash. In short, Cylon brings together efficient

mechanisms, flexible policies, and extensible interfaces into a
faithful full-system emulator for CXL-SSD research.

4.8 Implementation

Cylon is implemented as a set of extensions to QEMU, FEMU,
and the Linux KVM kernel module, adding approximately
6,282 lines of code to FEMU (v8.0.0) and 1,261 lines to the
Linux kernel (v6.4.6). Below we describe the key components.

Backend memory allocation. To provide a physically
contiguous DRAM cache for the emulated CXL-SSD, we
reserve memory on NUMA node 1 using the Linux boot pa-
rameter "memmap=[size]![offset]". Guest vCPUs are pinned
to NUMA node 0 so that guest accesses to this region incur
remote-NUMA latency (∼150ns).

Cache-hit latency. Cylon’s cache-hit latency is determined
by the host’s remote-NUMA DRAM access time (∼150ns),
which is close to but lower than the hit latency observed on
CMM-H (∼800ns, due to FPGA controller overhead). This
provides an idealized baseline that isolates cache-policy effects
from prototype artifacts. The current design does not support
independently configuring hit latency; adding calibrated delay
injection on the hit path to match a specific target device is
straightforward future work.

Sharing EPTE. When the guest first touches a page in
the MMIO region, an EPT VIOLATION occurs and the KVM
module installs the corresponding EPTE. We intercept this
process to place the EPTE into a userspace-shared memory
buffer rather than a kernel data structure. To distinguish
Cylon’s memory region from regular guest memory, we
introduce a new KVM memslot flag, KVM MEMSLOT DUAL MODE.
During VM initialization, we allocate an anonymous memory
area in userspace to store the EPTE and pass its address to
the kvm ioctl argument. In EPT VIOLATION handling, if the
fault address belongs to Cylon’s memslot, our customized
handler allocates the necessary EPT blocks and maps them
into userspace memory region.

Integration with QEMU/FEMU. Cylon builds on
QEMU’s CXL Type-3 device (ct3d) for transparent guest
access and leverages FEMU’s precise SSD emulation [13, 14].
When the guest issues a memory request (MMIO) to the CXL-
SSD region, ct3d forwards the operation to the FEMU-side
handler, which enqueues it to a dedicated FTL thread. The
FTL thread performs in-storage mechanisms such as buffer
management, NAND emulation, and garbage collection (GC).

Backend Storage and Capacity. Cylon currently stores
backend SSD data in host DRAM, to prioritize speed and
simplicity of implementation. This limits emulated capacity to
the host’s available memory. The architecture, however, is not
fundamentally tied to DRAM as the backend. Because DER
and the CXL.mem frontend are agnostic to the storage backend,
we can replace FEMU’s DRAM store with an SPDK-based
NVMe backend to enable multi-terabyte emulated devices.
This extension is ongoing work.
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Figure 2: Cylon vs. QEMU latency breakdown. Cylon
(100%) shows cache-hit latency, while Cylon-S and Cylon-I show
MMIO-path (cache-miss) latency using shared-EPT and ioctl()

based EPT remapping, respectively. NAND latency is set to zero.

NAND timing and parallelism. Cylon reuses FEMU’s
validated timing model for NAND flash. On a cache miss, the
request is passed to FEMU, which simulates channel, die, and
plane parallelism; read/program/erase latencies; queueing and
GC interference; and FTL state-dependent latency. We do
not use fixed miss delays; latency depends on the current FTL
and NAND state, naturally capturing GC interference and
contention. This provides realistic tens-of-µs miss latencies
that vary with device state and workload patterns.

5 Cylon Evaluation
Our evaluation aims to answer three questions:
• Does Cylon faithfully reproduce the latency asymmetry of

real CXL-SSD prototypes?
• Can Cylon execute unmodified workloads at near bare-metal

speed?
• Does its flexibility enable exploration of cache management

and hardware-software co-design?
To address these questions, we compare Cylon against real

CXL-SSD hardware (Samsung CMM-H) and baseline soft-
ware emulators (QEMU-CXL), using a mix of microbench-
marks and full applications. We use QEMU-CXL as the
baseline because it is the only open-source full-system CXL
emulator capable of running unmodified guest OSes. The other
platforms listed in Table 1 are either trace-driven (MQSim-
CXL, ESF), require gem5 and cannot execute full workloads at
interactive speed (CXL-SSD-Sim, CXL-DMSim), or depend
on specialized FPGA hardware (OpenCXD), making direct
comparison infeasible.

5.1 Experiment setup

5.1.1 System Configuration

Host Platform. Experiments run on a dual-socket Intel Xeon
Gold 6242 server with 384GB DDR4 DRAM (192GB per
socket). Local and remote DRAM latencies, measured with
Intel MLC [38], are 90ns and 150ns, respectively. The host
runs Ubuntu 20.04 with a modified Linux kernel v6.4.6. Guest
vCPUs are pinned to NUMA node 0, while backend memory
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Figure 3: Cylon vs. QEMU latency. CDF of access latencies
(log-scale) for sequential pointer chasing with an 8GB working set.
Cylon exhibits a bimodal distribution, sub-µs cache hits (avg. 977ns)
and µs-scale misses, while QEMU collapses all accesses into a
single inflated mode (avg. 14.6µs).

is reserved on NUMA node 1, ensuring that guest accesses to
the Cylon device incur remote-NUMA latency.
Cylon Emulation. The guest VM runs Ubuntu 22.04 with
a vanilla Linux kernel v6.4.6, configured with 8 vCPUs and
96GB of local DRAM. Cylon exposes a 96GB CXL DAX de-
vice to the guest, emulating a CXL-SSD with a 4.8GB DRAM
cache and 96GB NAND flash. NAND timing parameters are
fixed to realistic values (40µs read, 200µs write, and 2,000µs
erase), drawn from vendor data sheets and prior work [14].
This configuration captures the sharp latency asymmetry of
CXL-SSDs: hits complete in hundreds of nanoseconds while
misses stall for tens to thousands of microseconds, enabling
us to evaluate whether Cylon accurately models both fast and
slow paths.
Validation Testbed. For hardware validation, we use a dual-
socket Intel Xeon 6710E server with 512GB DDR5 DRAM
(256GB per socket). A commercial CXL-SSD prototype,
Samsung’s CMM-H, is attached and recognized by the host as
a CPU-less NUMA node with 1TB capacity [1]. The system
runs Ubuntu 24.04 with Linux kernel v6.13.0. CMM-H
provides ground truth for our validation: by comparing Cylon
against this device across micro- and macrobenchmarks, we
demonstrate both the accuracy of our emulator and the ability
to extend beyond opaque, black-box hardware.

5.1.2 Workloads
Because CMM-H provides a much larger DRAM cache and
NAND capacity than Cylon, direct comparison would be mis-
leading. To ensure fairness, we normalize each experiment’s
working-set size (WSS) to the DRAM cache capacity of the
target system. Unless otherwise noted, all results are reported
using this normalized WSS-to-cache-size metric. This method
allows an apples-to-apples comparison between Samsung
CMM-H and Cylon, focusing on cache behavior rather than
absolute capacity differences.
Microbenchmarks. We use Intel MLC [38] and MIO [39].
MLC provides precise measurements of local and remote
NUMA latency and bandwidth, while MIO performs pointer
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Figure 4: CMM-H latency. Latency distribution for sequential
pointer chasing across different buffer sizes on CMM-H.

chasing with configurable access patterns (sequential, random,
stride). By varying WSS, we can stress the cache across both
hit-dominated and miss-dominated regimes. These workloads
are chosen because they expose device-level fidelity: MLC
validates whether Cylon reproduces expected DRAM/NAND
latencies, while MIO shows whether eviction and access-path
mechanisms behave correctly under different locality patterns.
Macrobenchmarks. To capture end-to-end performance, we
use Redis and GAPBS [40, 41]. Redis represents a latency-
sensitive key-value store that stresses cache hit paths, while
GAPBS stresses memory bandwidth and cache misses in
graph analytics. For Redis, we run YCSB [42] workload C
(100% reads) with 1KB records, scaling the record count to
control WSS. For GAPBS, we vary the graph scale factor to
adjust WSS.

5.2 Cylon Performance Optimizations

Latency breakdown of access paths. Figure 2 compares
Cylon against QEMU’s upstream CXL Type-3 emulation
using Intel MLC. To isolate the execution-path costs, we fixed
cache hit rate to either 100% (Cylon-100%) or 0% (Cylon-0%)
and set NAND latency to zero so that all misses reflect only
emulation overheads rather than flash access time.

Finding #1: Cylon’s hybrid access path outperforms
QEMU’s MMIO-based CXL emulation, eliminating VM-exit
overhead on cache hits and faithfully modeling cache misses.

With a 100% cache-hit rate, Cylon matches remote-NUMA
latency (0.16µs), because cached pages are served via direct
load/store instructions with no VM-exit. By contrast, QEMU’s
MMIO-based design inflates access latency to 14.74µs, more
than two orders of magnitude slower than real DRAM. At
0% hit rate, the rightmost bars show the breakdown of miss
costs. Cylon-I represents the initial Dynamic EPT Remapping
(DER) design that uses ioctl-based updates (§4.3.1), while
Cylon-S incorporates Shared EPT Memory to avoid syscalls
and EPT walks (§4.3.2). The difference is striking: Cylon-S
reduces miss-path latency to 16.27µs, compared to 23.04µs
for Cylon-I, by eliminating costly kernel-userspace crossings.
Although Cylon’s miss path includes FEMU’s FTL processing
and EPT updates, this extra cost becomes negligible once
realistic NAND latencies (tens of microseconds) are enabled.
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Figure 5: Cylon vs. CMM-H latency distribution under different
WSS. CDF latency of MIO for Cylon vs. CMM-H using 4 threads.

Overall, the figure shows that Cylon eliminates VM-exit costs
on hits while keeping miss-path overhead low and analyzable.
Preserving realistic cache-hit and cache-miss latencies.
Figure 3 plots the distribution of access latencies for Cylon
and QEMU using the MIO pointer-chasing benchmark with
an 8GB working set, larger than Cylon’s 4.8GB DRAM cache,
so both hits and misses are exercised. The DRAM cache is
managed with FIFO (First-In-First-Out) eviction, and NAND
latency is set to zero to isolate emulation overhead.

The two curves are sharply different. QEMU’s line (green)
shows a single, steep jump concentrated around 10-20µs,
reflecting the fact that every access is forced through a VM-exit
path. The average latency is 14.6µs, and no sub-microsecond
hits appear, because QEMU lacks a fast path. In contrast,
Cylon’s curve (orange) clearly separates into two regions. The
first steep rise occurs at sub-microsecond latencies (hundreds
of nanoseconds), with an average of 977ns, corresponding
to cache hits that bypass VM-exits through Dynamic EPT
Remapping. After the cache is exhausted, the curve extends
into the tens-of-microseconds range, reflecting misses handled
by FEMU and the caching framework. This bimodal shape,
fast nanosecond-scale hits combined with slower microsecond-
scale misses, is exactly what we expect from real CXL-SSD
hardware with a DRAM cache fronting NAND flash.
Takeaway. Figures 2 and 3 demonstrate that Cylon achieves
what prior emulators could not: near-DRAM latency for
cache hits, analyzable miss overheads, and realistic latency
distributions that match CXL-SSD hardware behavior. These
results validate that Dynamic EPT Remapping and Shared EPT
Memory are essential to preserving fidelity while enabling
high-speed, full-system execution.

5.3 CMM-H Latencies

Understanding CMM-H latency characteristics. We first
characterize CMM-H with sequential pointer chasing while
varying the WSS. Figure 4 plots per-access latency over time
for 4GB, 20GB, 40GB, and 60GB buffers.

Sub-cache footprints. When WSS is well below the device’s
48GB internal DRAM cache (4GB, 20GB), latencies remain
tightly clustered near the nanosecond regime with low variance.
Occasional early spikes are warm starts.

Near-cache footprints. At 40GB (close to cache size), the
run begins with elevated latencies that progressively decrease.
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Above-cache footprints. At 60GB, accesses frequently fall
to NAND, producing sustained tens-of-µs latencies.

CMM-H exhibits the expected capacity transition: stable
nanosecond latencies when WSS fits in DRAM, and µs-scale
stalls as WSS approaches or exceeds cache capacity.

Figure 5 shows the comparison of latency distribution
between Cylon and CMM-H by using MIO [39]. Both systems
exhibit tail latency, but their performance characteristics
differ based on DRAM cache behavior. When DRAM cache
misses occur, Cylon experiences higher latency than CMM-H.
However, Cylon achieves superior memory access latency on
DRAM cache hits.
Interpreting the performance gaps. CMM-H is a first-
generation FPGA prototype with evolving firmware and
opaque controller behavior. Internal overheads (e.g., meta-
data management, controller-level prefetching) lead to higher
cache-hit latency (∼800ns) and lower bandwidth even before
cache saturation on our platform, as shown in Figure 6. Cylon
models the intended architectural behavior of CXL-SSDs
rather than reproducing prototype-specific artifacts, providing
an idealized baseline for policy exploration. Despite absolute
performance differences, Cylon matches CMM-H in quali-
tative trends: both show near-DRAM behavior when WSS
fits in cache and a sharp transition to tens-of-µs latency when
WSS exceeds cache capacity (Figures 7, 9). Cylon faithfully
captures fundamental CXL-SSD performance characteristics.

5.4 Cylon vs. CMM-H Bandwidth

Finding #2: Cylon reproduces the performance charac-
teristics of real CXL-SSD devices across a wide range of
working-set sizes.

Figure 6 compares bandwidth scaling for Cylon and CMM-
H as the WSS increases relative to each device’s DRAM
cache. Prefetching is disabled and a FIFO eviction policy is
used for Cylon. Both systems show the expected two-phase
behavior: near-memory bandwidth when the WSS fits in
cache, followed by a sharp drop to NAND-level bandwidth
once the cache is saturated. Cylon sustains remote-NUMA
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Figure 7: Cylon vs. CMM-H latency with Redis. CDF of
request latencies for Cylon vs. CMM-H under different WSS, from
small (0.33×) to larger-than-cache-size WSS (2.10×).

bandwidth (32GB/s) up to its full 4.8GB cache capacity,
closely mirroring the behavior of CMM-H. CMM-H, however,
begins to degrade earlier, with bandwidth falling before its
cache is fully saturated. We attribute this difference to opaque
controller-level effects such as internal prefetching or metadata
overheads that are hidden from the host. This behavior is
also reported in a prior study [8]. Beyond the cache capacity,
both devices converge to the same NAND-bound throughput,
confirming that Cylon reproduces the fundamental transition
while exposing subtleties that CMM-H masks.

For small WSS less than cache size, Cylon consistently
delivers remote-NUMA bandwidth, whereas CMM-H exhibits
lower bandwidth due to device-side controller overhead even
on cache hits. As WSS approaches the cache size (WSS ≈1.0),
CMM-H shows an earlier decline, while Cylon keeps full
bandwidth until its cache saturates. We cannot examine the
reason for the earlier bandwidth drop in CMM-H because it is
a black-box device; we assume there is aggressive prefetching
or extra memory overhead in CMM-H’s controller. This
result confirms that Cylon accurately reproduces the DRAM-
to-NAND performance transition of real hardware, while
exposing opportunities for profiling in-device configurations.

5.5 Real Applications: Redis and Graph

Finding #3: Cylon runs unmodified applications and tracks
real-hardware trends across cache-hit and NAND-bound
regimes.

Figure 7 compares request-latency CDFs for Redis under
three normalized working-set sizes (WSS).

For the small WSS (0.33× cache, Figure 7a), all requests
fit in DRAM. Cylon achieves remote-NUMA hit latencies
on the order of hundreds of nanoseconds, while CMM-H
incurs slightly higher latencies due to additional controller
overhead. The result is a noticeable left-shift of Cylon’s CDF
curve compared to hardware. At medium WSS (1.06× cache,
Figure 7b), the working set just exceeds the cache. Both
systems show a mix of fast hits and slower NAND-bound
cache misses, yielding broader CDF curves. Cylon remains
faster overall, but the gap narrows as misses begin to dominate
request latency. For the large WSS (2.10× cache, Figure 7c),
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CMM-H track closely across scales, with Cylon slightly faster due
to lower DRAM hit latency, and both converging when workloads
exceed cache capacity.
Table 2: Next-𝑁 prefetching and cache hit rate (S3FIFO). 𝑁

determines how many subsequent pages are proactively prefetched.

Pattern 𝑁=0 𝑁=1 𝑁=2 𝑁=4 𝑁=8
Seq 99% 99% 99% 99% 99%
Rand 24% 25% 25% 25% 25%
Stride-512 90% 92% 95% 97% 98%
Stride-1024 80% 84% 89% 94% 96%
Stride-4096 18% 35% 56% 77% 86%

most requests fall to NAND, and both devices converge to
tens to hundreds of µs latency. The overlap of the CDFs
demonstrates that Cylon faithfully captures NAND-bound
behavior under cache pressure. Together, these results confirm
that Cylon not only runs unmodified applications like Redis
but also reproduces the key transition from cache-dominated
to NAND-dominated performance, with close alignment to
CMM-H across the entire regime.

Figure 9 shows execution time for GAPBS Betweenness
Centrality on the kron dataset as we vary the graph scale.
Because graph workloads do not allow precise control of
working-set size (WSS), we match Cylon’s cache size to
CMM-H’s for fairness.

At smaller footprints (10.2GB and 20.4GB), both systems
keep most of the graph in DRAM cache, and execution times
are similar. Cylon is slightly faster because its cache-hit
latency matches remote-NUMA DRAM, whereas CMM-H
adds several hundred nanoseconds of controller overhead per
access. As the footprint grows (40.8GB), pressure on the

cache increases and NAND misses begin to dominate. Both
systems show longer runtimes, but Cylon still maintains an
advantage due to its lower hit-path latency.

Overall, the figure confirms that Cylon tracks CMM-H
closely across different graph sizes, reproducing both cache-
resident speedups and NAND-dominated slowdowns, while
consistently showing modestly better performance due to its
faster DRAM hit path. Similar to previous validations, Cylon
performs better than CMM-H when the WSS fits in cache,
due to its lower DRAM cache-hit latency.

5.6 Buffer Management Policies

Finding #4: Cylon enables flexible exploration of in-device
configurations, providing an effective platform for hard-
ware–software co-design.

Eviction policy. Figure 8 presents latency CDFs for evic-
tion policies: FIFO, LIFO, CLOCK (second-chance), and
S3FIFO [26]. As described in §5.1, the NAND latency is set
to 40 µs read, 200 µs write, and 2,000 µs erase to emulate
realistic SSD behavior. Table 3 summarizes total SSD-cache
misses and the resulting cache-hit rates.

For the Seq and Stride-N patterns, FIFO and CLOCK ex-
hibit identical performance because sequential access provides
no temporal reuse and thus no ’second-chance’ opportuni-
ties for cached pages. In contrast, the LIFO policy fills the
cache with cold-missed pages that are never evicted except
for the most recently inserted entry. Consequently, LIFO’s
performance indicates that at least 4.8GB of pages remain
resident and consistently hit. S3FIFO [26], which combines
recency and frequency awareness, further improves reuse by
retaining frequently accessed pages even when their recency
is low, yielding higher hit rates and shorter access latencies
across most sequential and moderate-stride workloads. Rand
pattern collapses all policies to ∼24.3% hit rate and over 100
M misses. No policy can retain enough of the unpredictable
working set to avoid misses.

Figure 11 evaluates real application performance using
a Redis YCSB-C (read-only) workload under two different
memory-footprint settings. A total of 8 threads issue requests
following a Zipfian distribution, with a record size of 1KB.
We measure the request latency and summarize as a CDF.
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Figure 10: Impact of prefetching degree on Cylon CXL-SSD latency. The figure shows CDF of access latencies for Cylon CXL-SSD
under different prefetching degrees (0–8) with a single thread under sequential, random, and strided access patterns.
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Figure 11: Impact of eviction policies on Cylon latency (Redis).
The figure shows CDF of request latencies for Cylon under different
eviction policies (FIFO, LIFO, CLOCK, S3FIFO) using 8 threads.

Table 3: Various eviction policies and cache hit rates. Eviction
policy efficiency depends on the underlying memory access patterns.

Pattern FIFO LIFO CLOCK S3FIFO
Seq 97% 99% 97% 99%
Rand 24% 21% 24% 24%
Stride-512 88% 95% 88% 90%
Stride-1024 75% 90% 75% 80%
Stride-4096 0% 60% 0% 18%

With a small memory footprint (0.33× Norm. WSS), all
four policies achieve identical latency because the workload
fits entirely in the cache and incurs cold misses only. When the
footprint grows to 12.8GB, however, eviction policy affects
the performance significantly. Interestingly, LIFO yields the
lowest latency among the policies, because LIFO tends to
keep older keys resident. As a result, LIFO maintains a higher
hit rate under the skewed Zipfian access pattern.
Prefetching. Figure 10 evaluates S3FIFO with next-𝑁
prefetching, where 𝑁 determines how many subsequent pages
are proactively fetched. The CDF plots show the distribu-
tion of access latency across different 𝑁 and access patterns.
Table 2 reports total cache misses and resulting hit rates.

Prefetching consistently lowers miss counts for workloads
with spatial locality. For the Seq and Stride-N patterns,
increasing 𝑁 from 0 to 8 reduces cache misses dramatically,
and the CDF curves confirm that larger 𝑁 values compress
latency into the sub-10µs range as most requests are served
directly from the SSD’s DRAM cache. For random accesses,
prefetching provides little benefit: hit rates remain near 25%
and the latency distributions change negligibly as 𝑁 increases.

Our evaluation shows that both eviction and prefetching
strategies strongly influence the effectiveness of CXL-SSD
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Figure 12: Impact of prefetching degree on Cylon latency. The
figure shows CDFs of access latencies for Cylon CXL-SSD under
different prefetching degrees with a single thread with Redis.

performance. Together, these results highlight that cache-
management effectiveness depends primarily on workload
locality and that Cylon’s flexible framework makes it straight-
forward to evaluate and co-design eviction and prefetching
policies for diverse applications.

Figure 12 illustrates the prefetching effect on Redis latency
using a single thread. While prefetching does not affect perfor-
mance when the WSS is smaller than cache size, with larger
WSS, increasing prefetch degree improves overall latency.

6 Conclusion
CXL-SSDs have the potential to converge memory and stor-
age, yet progress has been slowed by the absence of open,
faithful evaluation platforms. This paper presented Cylon, the
first fast, full-system emulator for CXL-SSDs that combines
fidelity, speed, and extensibility. By eliminating VM-exit over-
heads on cache hits while faithfully modeling cache misses,
Cylon reproduces the latency asymmetry of real devices. Its
pluggable caching framework enables systematic exploration
of eviction, prefetching, and cooperative caching strategies,
while its modular backend extends beyond today’s CMM-H
to emerging CXL-enhanced storage designs. We hope Cylon
lays the foundation for a community-driven ecosystem around
hardware-software CXL-SSD research.
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