PACT: A Criticality-First Design for Tiered Memory

Hamid Hadian
Virginia Tech
Blacksburg, USA

Hansen Idden
Virginia Tech
Blacksburg, USA

Abstract

Tiered memory systems typically place pages based on access
frequency (hotness), yet frequency alone fails to capture the
true performance impact. We present PACT, an online, page-
granular tiered memory design that elevates performance crit-
icality to a first-class design principle. At its core is Per-page
Access Criticality (PAC), a fine-grained metric that quantifies
each page’s contribution to application performance rather
than merely counting accesses. PACT profiles PAC online us-
ing a lightweight analytical model that uniquely decomposes
per-tier memory-level parallelism via hardware queue occu-
pancy counters, enabling direct CPU stall attribution to indi-
vidual pages. To handle highly skewed PAC distributions, PACT
employs PAC-centric migration policies: eager demotion and
adaptive promotion, to dynamically place performance-critical
pages in DRAM. Across 13 workloads, PACT achieves up to 61%
performance improvement over the best of 7 state-of-the-art
tiering designs with up to 50X fewer migrations.

CCS Concepts: « Hardware — Emerging technologies;
Computer systems organization — Architectures.

Keywords: Tiered Memory, Compute Express Link (CXL),
Operating Systems

ACM Reference Format:

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, and Huaicheng

Li. 2026. PACT: A Criticality-First Design for Tiered Memory. In Pro-
ceedings of the 31st ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS °26), March 22-26, 2026, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3779212.3790198

1 Introduction

The growing gap between compute performance and mem-
ory capacity has made tiered memory architectures essen-

“Equal contribution.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °26, Pittsburgh, PA, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790198

Jinshu Liu*
Virginia Tech
Blacksburg, USA

Hanchen Xu*
Virginia Tech
Blacksburg, USA

Huaicheng Li
Virginia Tech
Blacksburg, USA

tial for modern datacenters. As DRAM scaling slows and
memory-hungry workloads continue to grow, systems in-
creasingly combine fast-tier memory (DRAM) with slow-tier
alternatives (NUMA, persistent memory, and CXL) [23, 30,
37, 45]. Compute Express Link (CXL) accelerates this trend by
enabling hardware-level memory disaggregation and pool-
ing, but CXL access latencies remain 2-3X higher [3, 19, 21,
32, 47, 48]. This latency gap makes effective tiered memory
management critical for performance-sensitive applications.

Existing tiered memory systems address this challenge
through page sampling, allocation, and migration techniques
that promote “hot” pages to fast-tier memory [17, 24, 25,
27,29, 37, 44, 51-53, 56, 58, 59]. These systems rely on hot-
ness, typically page-level access frequency, to guide place-
ment decisions, assuming frequently accessed pages are
performance-critical.

However, hotness is an unreliable proxy for performance
impact [8, 22, 34]. Memory access criticality, defined as the
performance cost an access imposes on the CPU, depends
on many factors, such as access patterns, memory-level par-
allelism (MLP), and access latency, rather than access fre-
quency alone [20, 22, 34, 51]. For instance, sequential ac-
cesses with high MLP (e.g., array traversals) can tolerate
slow-tier latency with minimal performance impact, while
pointer-chasing operations with low MLP suffer proportional
slowdowns [22, 34]. This fundamental disconnect, that fre-
quency does not equal criticality, motivates our work.

While recent work has moved beyond access frequency
toward criticality, these approaches either rely on offline,
coarse-grained profiling (e.g., object level) or incorporate
criticality only as a reactive hint layered atop fundamentally
hotness-driven policies [22, 34, 52]. Consequently, criticality
is never elevated to a first-class design principle, leaving
these systems without online adaptability or page-level pre-
cision necessary for effective tiered memory management.

Our key insight is that effective page placement demands
a criticality-first redesign in which the runtime performance
impact of each page access is directly quantified, rather than
inferred through indirect proxies. To this end, we introduce
Per-page Access Criticality (PAC), a metric that quantifies
each page’s contribution to CPU stall time online through an
accurate, per-tier MLP decomposition, derived from a study
of 96 workloads. PAC provides fine-grained precision at both

https://doi.org/10.1145/3779212.3790198
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790198

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

4KB pages and hugepages, while adapting online to evolving
memory access patterns. By closing the semantic gap be-
tween measurement and migration granularity, PAC enables
a fundamentally new class of page placement and migra-
tion policies grounded in true performance cost. We present
PACT, the first tiered memory system designed around PAC,
in which online, page-granular performance criticality di-
rectly drives page placement and migration decisions.

Realizing this criticality-first design requires overcoming
two core challenges: (1) Accurate PAC estimation: How can we
quantify the performance impact of each page access online
without direct hardware support? (2) PAC-centric policies:
How can we leverage PAC to design efficient and robust
sampling, promotion, and demotion mechanisms that remain
effective across diverse workloads? While CPUs expose stall-
related performance counters that correlate with application
performance, these counters are coarse-grained, per-core
metrics that aggregate memory access effects across memory
tiers and lack the per-page, per-tier granularity required for
PAC [19, 30, 32-36, 50].

Nevertheless, we demonstrate that accurate PAC estima-
tion is achievable through careful analytical modeling using
only four standard CPU performance counters. Our large-
scale study of 96 real-world workloads across three latency
configurations reveals two key insights (more in §4.2). First,
per-tier CPU stalls can be accurately modeled as a function of
LLC-misses, latency, and MLP, achieving a Pearson correla-
tion coefficient above 0.98. Second, workloads exhibit stable
execution phases, in which MLP remains consistent for tens
of milliseconds, while evolving over time to reflect changes
in memory access patterns. This phase stability enables accu-
rate per-page attribution of per-tier stall time proportional
to access frequency within a small time window, while still
capturing dynamic shifts in performance criticality over time.
Together, these insights enable PACT to estimate and adapt
PAC online, providing a practical foundation for criticality-
driven tiered memory management.

Building on this foundation, PACT is a lightweight tier-
ing design that migrates pages based on their true perfor-
mance impact. Operating transparently without requiring
application changes, PACT periodically samples memory
accesses and accumulates PAC distributions to drive back-
ground migrations. Its runtime engine efficiently performs
sampling, ranking, and PAC maintenance. To address highly
skewed PAC distributions (§3) and balance migration over-
head against performance gains, PACT employs two PAC-
centric strategies: eager demotion and adaptive promotion.
Notably, eager demotion proactively frees space in the fast
tier to ensure timely promotion of high-PAC pages. Adaptive
promotion leverages lightweight statistical sampling with
adaptive binning to efficiently identify high-PAC candidates,
eliminating the need for global sorting or static thresholds,
and thereby substantially reducing manual tuning.

We evaluate PACT on a diverse suite of 13 memory-intensive

2

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

workloads spanning graph analytics, HPC, in-memory caching,

and machine learning, under a wide range of system config-

urations. We compare against 7 prior tiering systems across

7 fast/slow tier ratios: Soar and Alto [34], Memtis [29], Col-

loid [51], Nomad [53], TPP [37], and Linux NUMA Balanc-

ing Tiering (NBT) [2]. Across these settings, PACT achieves
strong performance improvements, by up to 61% over the
second-best system. In cases where PACT is not the top per-
former, it closely tracks the best-performing baseline, with an
average gap of 4.1% and a maximum gap of 11.8%. In addition,

PACT reduces migrations while requiring minimal parameter

tuning. Extensive sensitivity analyses further demonstrate

that PACT remains robust across workload characteristics
and system configurations.
In summary, this paper makes the following contributions:

o We establish page-granular, online performance criticality
as a first-class design principle for tiered memory manage-
ment, moving beyond frequency-based and coarse-grained
cost-aware approaches.

e We introduce PAC, a metric that quantifies each page’s
contribution to CPU stalls via MLP-aware, per-tier perfor-
mance modeling using only 4 CPU performance counters.

o We design PACT, the first online, page-granular, criticality-
first tiered memory system, with novel PAC-centric poli-
cies for eager demotion and adaptive promotion tailored
to highly skewed PAC distributions.

o We evaluate PACT against 7 state-of-the-art tiering de-
signs and demonstrate clear performance advantages and
robustness across workloads and configurations, establish-
ing online performance criticality as a practical foundation
for efficient tiered memory management.

e We open-source PACT at https://github.com/MoatLab/PACT.
The rest of this paper is organized as follows: §2 provides

background and related work. §3 motivates PAC through

empirical analysis. §4 presents PACT design. §5 evaluates

PACT against state-of-the-art, and §6 concludes.

2 Background and Related Work

In this section, we contrast PAC and PACT with prior hotness-
based and cost-aware designs to clarify the unique capabili-
ties of PAC and the new policy design space it enables.

2.1 Hotness vs. Performance Criticality

Hotness-based designs implicitly assume that frequently or
recently accessed pages are performance-critical for fast-tier
placement [28, 29, 37, 44, 46, 51, 53, 56, 58, 59]. However,
not all memory accesses have equal performance impact, as
modern CPUs effectively hide latency via out-of-order exe-
cutions [34]. For example, today’s processors exploit MLP
to issue concurrent memory requests to amortize the mem-
ory latency impact [20]. Consider two pages with identical
access frequency: one accessed during pointer-chasing (seri-
alized) and another during array streaming (concurrent). The
pointer-chasing page exposes the full memory latency per

PACT: A Criticality-First Design for Tiered Memory

access, causing significant CPU stalls, while the streaming
page amortizes latency across overlapping requests, reducing
per-access stall cost. Despite equal frequency, these pages
have vastly different performance criticality.

2.2 PACT vs. State-of-the-Art

Moving beyond hotness, SoarAlto [34] is the most closely re-
lated work in demonstrating that Amortized Offcore Latency
(AOL) predicts performance more accurately than frequency.
However, it operates at coarse object granularity and relies
on offline profiling. In practice, pages within the same ob-
ject can exhibit sharply different and dynamically evolving
criticality profiles (§3). This granularity mismatch between
profiling granularity and migration granularity, together
with the lack of online adaptation, fundamentally limits ex-
isting criticality-aware approaches, motivating the need for
fine-grained, online performance tracking.

In more detail, while both AOL and PAC account for MLP
when estimating memory access cost, they differ fundamen-
tally in mechanism and scope. AOL computes amortized
latency as Liﬁgy using system-wide MLP from offline pro-
filing, yielding per-object or per-period criticality estimates
that cannot distinguish between memory tiers at runtime. In
contrast, PAC decomposes MLP per-tier by leveraging occu-
pancy information from the CPU’s CHA/TOR queues located
between the cores and DRAM/CXL, enabling online estima-
tion of each page access’s contribution to slow-tier stalls
(§4.2). This per-tier decomposition is essential for tiering
memory systems, as it allows PACT to quantify the benefit
of promoting a specific page from the slow tier to the fast
tier, rather than relying on aggregate object-level estimates
that obscure page-level and tier-level variations.

Similarly, while CPU stalls are a natural indicator of perfor-
mance impact and prior works such as TMO have leveraged
stall-related pressure signals [52], these signals are used as
reactive system-level indicators rather than as foundational
design abstractions. In contrast, PACT elevates fine-grained
online performance criticality to the core of its policy engine.
By enabling precise identification of which specific pages
bottleneck performance, PAC allows PACT to make targeted
placement decisions that are not possible with prior stall-,
pressure-, or hotness-based systems [22, 31, 34, 51, 52].

2.3 Tiering Mechanisms and Policies

Hotness tracking. Conventional methods such as page ta-
ble scanning or poisoning provide fine-grained visibility but
incur high overhead from TLB shootdowns and fault han-
dling [23, 37, 41, 53]. Hardware-assisted sampling (e.g., Intel
PEBS) offers low-cost monitoring via LLC miss events [1, 6,
29, 44], but lacks semantic context of accesses. More recently,
both academia and industry have explored controller-side
hotness tracking, though such support is not yet commer-
cially available [3, 43, 46, 59]. While these approaches are
effective for tracking frequency, they do not capture the true

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

. [a] Masim [b] GUPS [c] te-twitter

7 25 125 600

9 gp ——_— 1|P 500

= .
2 15 4 e 400 A4
Z . —— e 5 { | 300 “
o J 200 = .
g s 25 ‘L 100 < jr)
z =z * 1

& o 10 0 3 4 0 ‘.1» 2 3 6

Access Frequency Access Frequency Access Frequency

Figure 1. PAC vs. frequency. Each violin plot shows the distribu-
tion of PAC in cycles across page access frequency quantiles (x-axis).

performance cost of each access. In contrast, PACT pursues
a new direction: tracking per-page performance criticality,
i.e., how much each access stalls the CPU, which demands a
fundamentally different sampling design.

Tiering policies. Existing tiering policies struggle with de-
ciding which pages to migrate, when, and how aggressively.
First, hot pages are promoted regardless of whether those ac-
cesses impact performance. Second, frequency-based heuris-
tics trigger excessive migrations whose costs outweigh the
benefits. Third, most policies lack adaptivity, aggressively
migrating pages even under pressure. These limitations lead
to unnecessary migrations, poor fast-tier utilization, and ex-
cessive overhead, often negating the benefits of tiering (§5).
PACT addresses these challenges with a PAC-centric design
that drives flexible, performance-aware tiering. By coupling
eager demotion with adaptive promotion, PACT adapts to
workload dynamics while minimizing migration overhead.

3 Motivation

To quantitatively demonstrate how criticality diverges from
frequency, we profile three applications on an emulated CXL
device with 190ns latency (§5): Masim [9], GUPS [4], and
te-twitter from GAPBS [13]. These benchmarks span diverse
memory access patterns and computational characteristics.
Our measurements reveal a clear disconnect between fre-
quency and performance impact. Pages with identical access
frequencies can differ in criticality by as much as 65x, demon-
strating that frequency is insufficient to capture true cost
and motivating a shift toward criticality-based placement.

Methodology. We use Linux perf to record CPU stall cycles
and total LLC misses every 20ms. Intel PEBS samples LLC
misses at 1-in-100 rate, providing 1% page access samples.
We attribute each 20ms stall window proportionally to sam-
pled page accesses (see §4.3 for validation), then average
these into per-page stalls (PAC). Figure 1 shows PAC value
distributions for each access frequency group using violin
plots. Orange lines indicate min, median, and max values.

Masim. We extend Masim, the memory access pattern sim-
ulator from Linux’s DAMON subsystem [9, 41], to precisely
control access frequency and patterns. We use two read-only
threads, one for array traversal and the other for pointer-
chasing random accesses. Each executes 1.5 billion loads with
uniform page access probability. Figure 1a shows a clear bi-
furcation: PAC clusters around 13 cycles for sequential and 21

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

cycles for random accesses, despite identical access counts.
The gap arises from reduced prefetching and lower MLP in
random accesses, while the small absolute PAC values reflect
the lack of heavy computation over the data in Masim.
GUPS. We modify GUPS, which performs random updates
across large memory regions, to alternate between sequential
and random access phases with 50% mix under 1:1 read/write
ratio. Figure 1b shows dramatic PAC variation even among
pages with identical access counts. For example, pages ac-
cessed four times experience stall ranges from under 30 to
over 120 cycles, a 4x difference. Higher access frequencies
do not necessarily lead to higher PAC values, and the wide
spread under uniform frequency further underscores the
inadequacy of frequency alone. The higher PAC values com-
pared to Masim stem from GUPS’s greater computational
intensity, which amplifies the stall cost per access.
te-twitter. Finally, we evaluate tc-twitter, a real-world graph
workload that performs triangle counting over a sparse Twit-
ter graph. This workload exhibits highly complex memory
behavior, combining sequential traversals, random accesses,
and dependent pointer walks. As shown in Figure Ic, stall
costs vary substantially both within and across frequency
groups, despite a weak overall correlation between access
frequency and stall cost. Compared to previous workloads,
te-twitter incurs significantly higher stall costs due to its com-
plex access patterns and dependencies, which reduce CPU
efficiency and expose stalls more frequently. It also exhibits
a much wider distribution of PAC values, with single-access
pages incurring stalls ranging from as few as 7 cycles to over
460 cycles (65X). In summary,

Takeaway #1: Access frequency fails to capture perfor-
mance criticality; infrequently accessed pages can incur
high stall costs. Pages with the same access frequency can
differ in stall cost by up to 65X within a single application.
Different access patterns produce distinct stall behaviors,
highlighting the need for adaptive tiering that accounts for
cross-workload dynamics.

4 PACT Design and Implementation

We present PACT design by first outlining its core principles
and challenges (§4.1). We then describe its main components:
per-tier stall modeling (§4.2), lightweight PAC profiling (§4.3),
an eager demotion policy (§4.4), and an adaptive promotion
policy that balances performance and migration overhead
(§4.5). Finally, we detail the implementation of PACT (§4.6).

4.1 Goals, Challenges, and Overview

PACT introduces a new principle for tiered memory man-
agement: online, performance-criticality-driven page tiering.
It prioritizes fast-tier placement based on each page’s actual
impact on application performance, capturing how much
every access contributes to CPU stalls.

Realizing this vision raises three fundamental challenges:

LLC-Stalls (x1012)

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

[a] DRAM (90ns) [b] NUMA (140ns) [c] NUMA (190ns) [d] PAC Models
10 10
44 * 61,
o A 8 8
R 414 61 6
2154 £ 44 4
: 2
LLC-miss LLC-mi 29 LLC- 2
‘ mIss miss
o tomssnie 4| ucmesiie |l LomesmLP 4|
02 46 810 02 46 810 0 2 4 6 810 0 1 2

Metrics: LLC-miss (o) and PAC=LLC-miss/MLP (A) (x10'%) LLC-miss/MLP (x1010)
Figure 2. PAC modeling. PAC can be accurately modeled from

latency, LLC misses, and MLP under 96 workloads across three setups.

(1) How can we quantify PAC to specific tiers at page granu-
larity despite the lack of hardware support? CPU stalls are
reported at the processor level, requiring new techniques
to attribute per-tier stalls to individual pages. (2) How can
we continuously monitor PAC and adapt to dynamic work-
load phases without incurring prohibitive overhead? (3) How
should we design tiering policies for PAC? It requires rethink-
ing when and how to promote, demote, or allocate pages
based on performance impact under highly skewed PAC
distributions.

PACT addresses these challenges through three key in-
novations: (1) Per-tier stall modeling: We develop the first
lightweight mechanism to attribute CPU stalls to individ-
ual memory tiers using readily available hardware counters,
enabling fine-grained performance tracking without hard-
ware modifications. (2) Online PAC profiling: We introduce
real-time PAC estimation that eliminates the semantic gap
between coarse-grained criticality measures and fine-grained
migration decisions. (3) Criticality-centric policies: We design
PAC-centric adaptive promotion and demotion strategies to
balance performance gains with migration overhead.

4.2 From Per-tier Stall to PAC Modeling

Profiling PAC requires two key steps: (a) estimating CPU
stalls induced by each memory tier (i.e., per-tier stalls), and
(b) attributing those stalls to the responsible pages in a light-
weight, online manner. Below we present our in-depth study
which reveals key insights to enable per-tier stall estimation
as a first step for PAC profiling.

Takeaway #2: Despite the lack of direct hardware support,
per-tier CPU stalls can be accurately modeled as a function
of LLC misses and per-tier MLP.
LLC-misses

MLP W
where k is a per-tier coefficient that captures memory la-
tency and architectural factors. The equation’s power lies
in its ability to distinguish between memory tiers while
accounting for parallelism effects.

LLC-stalls = k x

We run 96 widely used memory-intensive workloads, such
as in-memory caching [11], graph processing [13], ML [5],
and HPC [12]. We collect detailed performance counters
for offline analysis. Detailed experimental setup is in §5.

PACT: A Criticality-First Design for Tiered Memory

Table 1. Hardware counters for PAC sampling,.
PEBS MEM_LOAD_L3_MISS_RETIRED Slow-tier LLC-miss events/counter

T TOR_OCCUPANCY TOR queue occupancy
T TOR_OCCUPANCY_COUNTER® #cycles w/ outstanding TOR entries

We use three memory configurations: local DRAM (90ns),
NUMA (140ns), and simulated CXL with CPUless NUMA
(190ns). Figure 2 shows the aggregate stalls across different
workloads, where each data point represents one workload.

4.2.1 Per-tier Stalls. In Figure 2abc, the gray dots repre-
sent the correlation between the number of LLC-misses and
LLC-miss-induced stalls (i.e., LLC-stalls), while the triangu-
lar markers represent predictions from our MLP-based model
(Equation 1). Compared to LLC-misses, the model exhibits
a significantly stronger linear relationship with LLC stalls,
with Pearson correlation coefficients of 0.98 for the three
configurations, respectively, versus 0.82-0.89 for LLC-miss.

The theoretical foundation stems from Little’s Law and
queuing theory applied to memory subsystems. Each LLC
miss incurs a latency cost proportional to the tier’s latency;
however, modern out-of-order processors can issue multiple
concurrent requests, creating overlapping execution win-
dows that amortize latency impact. The MLP factor captures
this effect: higher MLP reduces per-access stall contribution.

The coefficient k incorporates tier-specific factors includ-
ing loaded latency, memory controller queuing delays, and
architectural constants. Critically, our extensive validation
across 96 workloads and three latency configurations demon-
strates that k exhibits strong workload independence while
accurately tracking hardware-specific characteristics. This
stability stems from MLP’s fundamental role in hiding mem-
ory latency, a property that remains consistent across diverse
access patterns within the same hardware configuration.
The formula also generalizes to bandwidth-bound scenar-
ios, where heavy contention inflates effective latency; this
inflation is captured by an increased k (the slope of the lines
in Figure 2c), reflecting the higher stall cost per access.

4.2.2 Per-tier MLP. Per-tier LLC-misses are directly ob-
servable via hardware performance counters. However, there
are no dedicated counters for measuring per-tier MLP. Exist-
ing offcore metrics only capture system-wide parallelism and
cannot distinguish between memory tiers. For example, Intel
provides Info_Memory_Latency_Load_L2_MLP, which quanti-
fies the average number of L2 cache misses, but offers no
tier-specific visibility [7]. What is missing is an equivalent
metric for quantifying MLP on a per-tier basis.

To this end, we develop an approach for estimating per-
tier MLP, grounded in key architectural observations of how
memory requests flow through the memory hierarchy.

Takeaway #3: Per-tier MLP can be measured using CPU
CHA queues’ occupancy, which reflects the number of
concurrent requests serviced by each memory tier.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Modern Intel processors rely on Caching and Home Agent
(CHA) to coordinate memory traffic between CPU cores and
offcore (e.g., DRAM/CXL). When a core experiences an L1/L2
cache miss, the request is forwarded to the CHA for an LLC
lookup. If the request also misses in the LLC, the CHA then
dispatches it to the corresponding memory tier. Sitting be-
tween the CPU cores and offcore, CHA is able to capture all
memory requests going offcore, serving as an ideal vantage
point for observing per-tier core-to-memory traffic patterns.
This architectural structure enables per-tier tracking of out-
standing memory requests by observing CHA queue occu-
pancy, offering a low-overhead method to estimate per-tier
MLP in real time (more later).

4.2.3 Per-page Access Criticality (PAC). Combining these
insights, we can accurately model per-tier stalls, i.e., the per-
formance impact caused by slow-tier page accesses. How-
ever, it does not by itself identify which individual pages are
responsible for the observed stalls.

Takeaway #4: Per-tier MLP exhibits periodic stability, allow-
ing uniform attribution of CPU stalls to individual memory
accesses within each sampling window. Accordingly, PAC
can be computed as the unit stall cost multiplied by a page’s
access frequency.

Modern workloads often exhibit phased MLP behavior,
where MLP remains relatively stable over short intervals
(on the order of tens of milliseconds). Within such stable
windows, proportional stall attribution based on access fre-
quency provides a reasonable first-order approximation.

Rationale. Workload execution proceeds in phases with
quasi-stationary memory access patterns. Within each phase,
out-of-order execution and prefetching maintain a nearly
constant effective MLP, making individual tier misses ap-
proximately exchangeable with a constant per-miss stall
cost. Thus, a page’s PAC is its miss count multiplied by this
unit cost. Streaming phases with high MLP incur low per-
miss cost, while pointer-chasing phases with low MLP incur
higher cost; bandwidth contention is absorbed as increased
effective latency, preserving linear attribution.

Measuring per-tier MLP and LLC-stalls. We use queues
in CHA, namely Table Of Requests (TOR) to track pending
requests. Table 1 shows the counters for PAC estimation. In
particular, the per-tier MLP can be calculated (by definition)
as: MLP = %, where T; (TOR_OCCUPANCY) records the number
of requests in the TOR, and T, (TOR_OCCUPANCY_COUNTER®) counts
the number of cycles during which the TOR was not empty.
Intuitively, it represents the average number of in-flight re-
quests per active cycle. Figure 3a shows that TOR-MLP (blue)
closely matches L2MLP (red), a system-wide metric [7].

MLP periodic stability. Figure 3b presents zoomed-in views
of MLP over a 20-second interval, revealing that MLP is
inherently phase-oriented: it remains stable at fine temporal
granularity and evolves primarily when execution phases

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

[a] Temporal MLP (bc-kron) [b] MLP Stability

L2MLP ==
8 8 TOR-MLP —
BW x Latency [
0 6 06
4 o} L
=41 =4
21 1 2 [
0 T r 0 - - - -
50 100 150 80 85 90 95

Time (s) Time (s)
Figure 3. Per-tier MLP. (a) TOR-MLP accurately tracks temporal
MLP trends; (b) Short sampling windows ensure MLP stability within

each attribution interval. The gray line shows MLP estimated as

Bandwidthx Latency
64B

MLP due to aggregate in-flight bytes beyond demand-data.

, which captures similar trends but overestimates

change over longer timescales (seconds). Critically, phase
shifts occur at larger timescales. This property is key to our
uniform stall attribution: within each 20ms window, MLP
varies minimally, allowing PACT to treat all sampled accesses
as experiencing similar memory-level parallelism. When
phases do shift, PACT adapts in the subsequent window by
recomputing MLP from fresh counter deltas. This temporal
stability reduces noise in PAC estimation and avoids spurious
promotions from transient MLP fluctuations.

Portability across hardware. The per-tier stall and MLP-
based approach is general enough to extend beyond Intel
processors. For instance, AMD’s Zen 4 architecture exposes
equivalent performance-monitoring facilities required by
PACT during its PAC-sampling phase, including LLC misses
via IBS (analogous to Intel PEBS) and LLC stalls via PMU
events [1, 10]. Unlike Intel, AMD platforms do not expose
TOR-like queues for directly measuring per-tier MLP. Instead,
Little’s Law can be applied: MLP ~ Latency X Bandwidth [38].
This allows per-tier MLP to be estimated using hardware
counters that report average memory latency and bandwidth.
The gray line in Figure 3 shows that this MLP approximation
closely tracks the temporal trends of the ground-truth MLP,
although it overestimates MLP due to accounting for non-
demand traffic such as prefetches. Importantly, as shown
later, MLP is used to amortize the latency cost of each slow-
tier page access in computing PAC; therefore, accurately
capturing MLP’s temporal variation is more critical than
matching its absolute value. Thus, PACT requires only a thin
counter-translation layer to operate on AMD platforms.

4.3 PAC Sampling

Algorithm 1 describes how PACT transforms system-level
performance metrics into fine-grained PAC estimates through
a two-stage sampling and attribution pipeline. The process
operates every 20ms using Table 1 counters, making it prac-
tical for deployment without specialized hardware support.

4.3.1 PAC Algorithm. The first stage captures aggregate
slow-tier performance impact using Equation 1, measuring
LLC misses and per-tier MLP. The second stage employs In-
tel PEBS to sample individual page accesses at configurable

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

Algorithm 1: PAC Sampling (every 20ms)

1 Measure slow-tier metrics: LLC-misses, MLP « %

2 Estimate slow-tier stalls: S « %
3 Sample page accesses using PEBS:
4 Record per-page (p) info: vaddr, access count (Ap)
5 Update total accesses: Ay «— Zp Ap
6 foreach sampled page p do
. A,
7 Attribute stalls to page: Sp < S - A—’t’
8

Update PAC: PAC[p] < a - PAC[p] +Sp a € [0,1]

rates, enabling scalable per-page tracking. Temporal aggrega-
tion accumulates PAC values for each page over time. These
accumulated PAC values are later used to guide migration
decisions, ensuring that the most performance-critical pages
are promoted to the fast-tier.

During each 20ms sampling window, PACT performs two
concurrent activities. First, it collects page-granular memory
accesses via PEBS, recording for each sampled page p its vir-
tual address (vaddr) and access count (A,), while accumulat-
ing the total sampled accesses A; across all pages. Second, at
both the start and end of the window, PACT reads the T; (TOR_-
occuPANCY) and T, (TOR_OCCUPANCY_COUNTER®) counters. These are
cumulative counters, so PACT computes per-tier MLP as ﬁ—%
using their deltas. This ensures that the resulting MLP value
is temporally aligned with the PEBS samples collected within
the same window. Using Equation 1, PACT then estimates
total slow-tier stalls S = k - %

In the attribution phase, PACT proportionally distributes
S across all sampled pages according to their relative access
frequency. Specifically, for each page p, the attributed stall
cycles are computed as S, = S X ‘2—’;. Lastly, PACT updates
PAC using an optional cooling mechanism with factor « to
balance long-term criticality with recency. Over time, this
sampling and attribution process enables PACT to maintain
a fine-grained, dynamic estimation of the true performance
criticality of each accessed page.

4.3.2 Validity of Proportional Attribution. Our current
PAC sampling relies on proportional attribution, which as-
sumes that within a short execution window (e.g., 20ms),
memory accesses belong to a stable execution phase. Under
this condition, per-access stall cost becomes a phase-level
property, and proportional attribution by access frequency
accurately captures each page’s relative contribution to CPU
stalls. This design has two key advantages. First, PAC at-
tributes stall cost rather than access frequency, directly tar-
geting performance impact rather than locality. Second, by
periodically re-estimating PAC, the system naturally tracks
long-term shifts in access patterns and MLP behavior, en-
abling online adaptation to changing phases even when ac-
cess frequency alone remains stable.

4.3.3 Sampling Period. The choice of sampling period
length is critical for accurate per-access stall attribution. Ide-

PACT: A Criticality-First Design for Tiered Memory

ally, the sampling window should be long enough to smooth
out short-term MLP fluctuations, while short enough to re-
main responsive to workload phase changes. A sampling
period that is too short risks excessive overhead and tran-
sient noise, while a period that is too long risks averaging
out meaningful variations in page criticality. Given that page
migration decisions typically occur at sub-second timescales,
PACT samples PAC every tens of milliseconds. By default,
PACT uses a 20ms sampling window, as perf cannot pro-
vide precise counter measurements at sub-10ms scales. This
interval offers sufficient resolution to distinguish PAC by
capturing MLP dynamics over time, while still maintaining
the assumption that MLP remains stable within each window.
In practice, we find that 20ms is sufficient to capture PAC
dynamics for guiding migrations effectively. §5 shows PAC
sampling period can be safely increased to hundreds of ms.

4.3.4 Cooling. Optional temporal decay applies a moving
average to PAC values with decay factor a € [0, 1]. This helps
improve responsiveness for workloads with time-varying
access patterns while avoiding excessive cooling that can
induce thrashing. The effectiveness of cooling depends on
several interdependent parameters, such as decay period, fac-
tor (e.g., EWMA-based), and thresholds, where poorly tuned
settings often harm performance more than they help [55].

In PACT, cooling is not a primary design goal. Because
PAC values are highly skewed, newly critical pages natu-
rally rise into higher-priority bins without requiring explicit
decay. Accordingly, the default configuration (¢=1.0) uses
pure accumulation, which our evaluation shows to be robust
and effective across diverse workloads. This contrasts with
conventional hotness-based tiering systems that rely heavily
on cooling for performance. We also conduct sensitivity stud-
ies on two cooling mechanisms and find their performance
impact to be limited (§5). A more systematic exploration of
robust cooling mechanisms is left to future work.

4.3.5 Page Access Sampling. We sample only load op-
erations, since CXL/NUMA links are full-duplex and write
performance impact is minimal. PEBS sampling runs at a
default interval of 400 (one sample from every 400 events)
and event logs are processed by a dedicated thread. This en-
sures that PAC is updated promptly after each sampled page
access without introducing excessive sampling overhead.

By design, PACT can sample both fast- and slow-tier ac-
cesses to guide promotions and demotions. To balance PEBS
overhead and accuracy, however, we sample only slow-tier
accesses and rely on Linux’s (MG)LRU policy for demotion.
Coupled with PAC-guided promotions, this proves sufficient
for effective tiering (see §4.5). PACT is not bound to PEBS
for access sampling; it can readily integrate with other low-
overhead access tracking mechanisms. For instance, the re-
cently introduced CXL Hotness Monitoring Unit (CHMU) in
CXL 3.2 [3, 46, 59] provides a promising path toward more
efficient and accurate memory access sampling.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

4.3.6 PAC Tracking. For each accessed page, PACT main-
tains a compact data structure that records its accumulated
PAC value along with a small set of metadata. To ensure
that updates are promptly visible to the migration policy, all
sampled PAC data is stored in an in-memory hash table, en-
abling constant-time insertion, lookup, and deletion, critical
for managing large volumes of tracked pages.

While hash table supports efficient PAC updates, it does
not maintain pages in sorted order, making it difficult to iden-
tify highest-impact pages for promotion. Threshold-based
classification schemes (e.g., hot/warm/cold) used in prior
work [29, 44] are unsuitable here: they rely on heuristic cut-
offs that are hard to tune or generalize across workloads, and
cannot adapt to the dynamic nature of PAC (§3). Moreover,
the wide spread of PAC values introduces heavy skew, fur-
ther complicating the use of static bins for priority ordering.

To address these challenges, PACT augments its hash table
with lightweight priority queues and a dynamic binning
mechanism that continuously repositions pages according
to their PAC values (§4.5). This design enables efficient, on-
demand selection of high-PAC pages for migration.

4.3.7 PAC Limitations and Future Work. The limita-
tions of proportional attribution arise when multiple, het-
erogeneous memory access patterns are colocated within
the same memory tier, such as multi-tenant CXL memory
deployments. In such scenarios, latency-bound accesses (e.g.,
pointer chasing) and latency-tolerant accesses (e.g., stream-
ing) may share a tier but contribute unevenly to observed
stalls. Without fine-grained visibility into stall attribution
across tenants or access streams, frequency-based propor-
tionality in PAC can dilute the measured criticality of truly
latency-sensitive pages. However, we argue that this limita-
tion reflects an observability gap rather than a flaw in the
criticality-first principle itself. Indeed, even under colocation,
the periodic nature of PAC estimation continues to capture
phase-level shifts, and our experiments show that PACT
still outperforms existing tiering policies under controlled
colocation microbenchmarks (Figure 12).

We view our current approach as an initial instantiation
of online criticality sampling, analogous to early access-
frequency sampling techniques that were later refined through
decades of work [18, 29, 39-42, 44, 54, 57, 59]. More accurate
PAC estimation under colocation will require finer-grained
stall observability, which is out-of-scope for this paper and
we leave it as future work.

Encouragingly, recent hardware trends suggest that such
observability is becoming increasingly practical. Modern
Intel processors (since Sapphire Rapids) extend PEBS with
per-load and per-store exposed latency reporting, providing
instruction-level visibility into memory access cost [14, 16,
26]. These features align closely with the PAC abstraction
and could be directly leveraged to refine stall attribution be-
yond proportionality. For example, proportional attribution

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Algorithm 2: PAC-based Page Promotions and Demotions

Input: Memory pages with accumulated PAC values

Output: Promotion and demotion decisions
1 Initialize m > Set demotion aggressiveness
2 while Bypriority # 0 do
3 p <= getPage(Bpriority)
Npromoted < getPromoted()
if Nyemoted < Npramoted +m then

Demote() > Make space for promotion

Promote(p)

> Pick a candidate page
> Number of promotions

N N g

can be extended to incorporate sampled per-page latency:
Sp=5x %, where A, is the number of accesses to page
p and I, is its sampled latency. Such latency-weighted attri-
bution would better separate latency-sensitive and latency-
tolerant accesses under colocation while preserving the on-
line, page-granular nature of PAC. We leave the integration
of these emerging hardware mechanisms to future work.

4.4 Migration Policies

PACT’s tiering policy centers on PAC to guide page migra-
tions, deciding when to migrate, which pages to move, and
how often, to balance performance gains against migration
overhead. PAC opens up a broad design space for tiering
policies, but in PACT it is used primarily to drive page promo-
tions. An abstract view of the policy is shown in Algorithm 2.
At a high level, PACT’s tiering policy consists of two key
components: eager demotion and adaptive promotion.

4.4.1 Eager Demotion. PACT’s migration policy balances
the need to free fast-tier space for high-PAC pages against
the risk of unnecessary churn. Instead of waiting for memory
pressure, PACT proactively reclaims space from the kernel’s
LRU list to make room for performance-critical promotions.

At runtime, PACT tracks the cumulative number of pro-
motions and demotions and enforces a balancing rule to
preserve adequate fast-tier capacity. Promotions are gated
by available space, which is maintained through selective
demotion of the least recently used pages. This ensures that
fast-tier space is reserved for truly critical pages while avoid-
ing promotion stalls. Early in execution, when fast-tier uti-
lization is low, PACT aggressively demotes inactive pages to
build headroom. As utilization grows, it gradually reduces
demotion frequency and converges toward traditional on-
demand behavior. During each decision window, PACT se-
lects a batch of high-PAC promotion candidates and ensures
that at least an equal number of cold pages are demoted,
maintaining a balanced promotion—-demotion cycle.

PACT also supports a configurable proactive mode (larger
m) in which it intentionally demotes more pages than strictly
required to create a larger reserve of free fast-tier space. This
strategy is particularly effective for workloads with bursty
allocation or access patterns, where timely promotion of
critical pages might otherwise be blocked.

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

4.4.2 Migration Algorithm. The overall policy is shown
in Algorithm 2, where PACT dynamically adjusts the aggres-
siveness of demotion. The parameter m specifies how many
pages may be proactively demoted (Line 1), with the goal of
reserving sufficient fast-tier space for upcoming promotions.
To this end, PACT seeks to maintain the number of demoted
pages higher than the number of promoted pages. By default,
PACT uses m = 0 to remain conservative and balance pro-
motion with demotion. However, when the promotion rate
is high, increasing m allows additional pages to be demoted
in advance, ensuring that fast-tier space is always available.
This mechanism provides fine-grained control over the de-
motion rate. Once a page enters the priority bin Bpriority it
is promoted immediately. Specifically, PACT continuously
monitors the bin (Line 2); when a page becomes available, the
getPage() function retrieves it (Line 3), pushes it to the pro-
motion queue, and invokes Promote(p) (Line 7) to migrate
the page using the move_pages() syscall. Based on m, if PACT
detects that the total number of demoted pages Ngemoted 1S
less than the total number of promoted pages Npromoteds it
proactively triggers additional demotions (Line 5-6).

4.5 Adaptive Promotion

While PACT naturally prioritizes pages with highest PAC, de-
termining optimal promotion timing and intensity presents
a fundamental challenge: PAC value distributions exhibit
extreme workload-dependent skewness and can shift dra-
matically over time (§3). Unlike prior tiering systems that
use fixed thresholds with static binning, PACT must adapt
promotion pressure dynamically to vastly different critical-
ity profiles across workloads. Clustering most pages into
few bins can cause erratic promotion behavior ranging from
fast-tier under-utilization to excessive migration storms.
PACT employs a histogram-based binning approach to
capture relative criticality while enabling efficient modula-
tion of promotion intensity. The key innovation lies in its
dynamic bin boundary adaptation, which preserves stable
promotion behavior despite varying PAC distributions, from
uniform spreads in synthetic workloads to extreme power-
law distributions in caching and graph analytics applications.
Static binning. To control promotion intensity, PACT ini-
tially groups pages into a fixed number of bins (e.g., 20)
based on their PAC values. Bin #20 holds the highest-priority
pages, with lower bins representing decreasing criticality.
At each migration point, PACT promotes pages from the
highest non-empty bin. This approach works well under uni-
form PAC distributions. However, since PAC distribution is
skewed, static binning becomes unstable. A narrow cluster-
ing of PAC values can result in either too many or too few
pages falling into the top bins, leading to erratic promotions.
Adaptive binning. PACT’s adaptive binning leverages prin-
cipled statistical techniques to maintain stable promotion
rates while adapting to diverse workload characteristics. The
approach combines two lightweight statistical techniques

PACT: A Criticality-First Design for Tiered Memory

Algorithm 3: Adaptive Binning for Page Promotions

Input: Memory pages with accumulated PAC values, Npage
Output: Near-optimal distribution of pages across bins
1 Initialize Rsampling] > Fill Reservoir array
2 foreach sampled page p do
3 Npage < Npage +1

4 rnd « rand() % Npage
5 if rnd < 100 then
6 Reampling[1nd] < PAC[p] > Update Reservoir
7 Sort(Rsampling [D
8 Update(Qs, Q1) > Update percentiles
9 W=2x 2= > Freedman-Diaconis
Npage

N,
10 if R > Tocate > Nc: # of promotion candidates
11 then
12 We—Wx2 > Scale up
13 else
14 W« W/2 > Scale down

that enable robust online adaptation without requiring ex-
pensive full-distribution tracking:

e Freedman-Diaconis binning: PACT determines the opti-
mal bin width W using the Freedman-Diaconis rule: W =
2x(Q3—01)/n, where Q; and Qs are the first and third quar-
tiles of the current PAC distribution, and n is the number of
tracked pages. This method provides theoretical guarantees
on binning quality by minimizing integrated mean squared
error while maintaining robustness to outliers through in-
terquartile range normalization. It adaptively balances gran-
ularity and robustness to outliers, ensuring meaningful sep-
aration of page criticality levels.

® Reservoir sampling for online adaptation: The Freedman-
Diaconis rule assumes access to the full data distribution,
but in practice, PACT must adapt dynamically as workloads
evolve. To this end, PACT uses Reservoir sampling to main-
tain a small, representative set of PAC values at runtime.
This approach avoids the overhead of tracking and sort-
ing all page-level PAC values. PACT maintains a fixed-size
Reservoir of k samples. The first k page accesses populate
the buffer. Each subsequent page has a k/n probability of
replacing an existing sample, where n is the total number
of observed accesses so far. This ensures uniform sampling
without knowing n in advance. The sampled Reservoir en-
ables efficient and low-overhead approximation of the PAC
distribution, allowing quartile estimation and adaptive bin-
ning in real time.

At runtime, PACT continuously observes PAC values and
builds a histogram distribution using the adaptive binning
policy. Pages are dynamically assigned to priority bins based
on their current PAC values. Using the sample buffer, PACT
recomputes bin width dynamically. When the PAC distri-
bution shifts, the Freedman-Diaconis formula yields a new
bin size that smooths page promotion pressure. Pages are
assigned to bins based on current PAC values, and those in
the highest-priority bin become promotion candidates.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

In Algorithm 3, adaptive promotion begins by initializ-
ing a fixed-size Reservoir array of 100 entries. The first 100
sampled pages are stored directly. For each subsequent page,
PACT generates a random number rnd in [0, Npage),Where
Npage is the number of tracked pages, and replaces a Reser-
voir entry if rnd < 100, ensuring uniform sampling via Reser-
voir sampling. The Reservoir is then sorted to compute the
first and third quartiles (Q;, Q3), which determine the bin
width W via the Freedman-Diaconis rule. This allows PACT
to adapt bin boundaries dynamically, yielding stable promo-
tion decisions under diverse workloads.

Scaling optimization. While Reservoir sampling tracks dis-
tribution trends, skewed or bursty workloads can still lead to
bin collapse, where too many pages crowd into high-priority
bins. To mitigate this, PACT includes a scaling optimization.
PACT dynamically adjusts the bin width based on the cur-

rent distribution of PAC values. When the ratio Nl‘izge, where
N, is the number of promotion candidates, exceeds a prede-
fined threshold Tca1e, PACT doubles the bin width to spread
pages more evenly across bins. When the ratio falls below
the threshold, the bin width is halved to restore sensitivity.
This symmetric scaling allows PACT to quickly adapt to both
increases and decreases in PAC variance. Using the sampled
PAC values, PACT maintains a dynamic bin partitioning
scheme aimed at producing a smooth, approximately normal
distribution of pages across bins. The highest-priority bin is
kept small, typically holding only the top 1-5% of pages, en-
suring a stable and bounded supply of promotion candidates
without causing sudden migration bursts or starvation.
Adaptive binning enables PACT to respond to workload
shifts: when PAC variance increases, bins adjust to preserve
prioritization sharpness; when pages cluster, bin widths
shrink to maintain selection pressure. By dynamically regu-
lating promotion based on workload criticality, PACT maxi-
mizes performance gains while avoiding migration overhead.

4.6 Implementation

We implement PACT on Linux 5.15 and incorporate several
modules from TPP [37], including fixes to improve the reli-
ability of LRU-based page demotion. To avoid interference
from existing OS tiering mechanisms, we disable NUMA
hint fault scanning. To enable efficient PAC profiling, we
apply two key optimizations. First, we reduce overhead in
the PEBS kernel interface by stripping unused fields from
PEBS records, which allows us to use a compact 5MB buffer
and sample LLC miss events aggressively with minimal run-
time cost. Second, we extend the Linux perf subsystem to
support direct computation of PAC from PMU counters. We
further implement a shared-memory buffer to facilitate low-
overhead communication between PACT and perf, enabling
high-frequency sampling and timely PAC updates. PACT
incurs minimal overhead, requiring 25 bytes per tracked
4KB page (0.6% memory overhead). The prototype uses two

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

dedicated threads: one for PEBS processing and one for mi-
grations. Further reductions in CPU overhead are possible
with other implementations (e.g., coroutine-based designs).

5 Evaluation

We evaluate PACT against 7 state-of-the-art tiering systems:

Soar and Alto [34], Memtis [29], Colloid [51], Nomad [53],

TPP [37], and Linux NUMA Balancing Tiering (NBT) [2].

First-touch (NoTier) results are also included to show the

relative effectiveness of tiering. We also perform in-depth

analysis to understand the design trade-offs and runtime

behavior of PACT. In detail, we seek to answer the following

questions:

e How does PACT perform compared to state-of-the-art?

e How effective is PACT in sampling PAC?

e What are the runtime costs and migration characteristics
of PACT, and how do they differ from hotness approaches?

e How sensitive is PACT to different design parameters?

5.1 Experimental Platform

Testbed. We evaluate PACT on a dual-socket Intel Skylake
server on CloudLab [15]. Each socket contains a 10-core
Xeon CPU (2.2GHz) with 96GB DDR4, providing 52GB/s
bandwidth and 90ns access latency for local memory access.
Cross-socket NUMA accesses exhibit 32GB/s bandwidth and
140ns latency. To emulate CXL memory, we reduce remote
NUMA node uncore frequency, increasing access latency to
190ns (2.1x DRAM latency), consistent with measured CXL
device characteristics and prior work [30, 32, 37, 51, 53].
Workloads and configurations. We evaluate PACT us-
ing a diverse set of memory-intensive applications, includ-
ing graph analytics [13], GPT-2 inference [5], in-memory
databases [11, 49], and HPC workloads from SPEC CPU
2017 [12]. Unless otherwise noted, we run each workload
with 8 threads. The memory footprint (RSS) is between 6.6—
40GB, with a bandwidth demand of 6-45GB/s. To compre-
hensively evaluate PACT, we vary tier ratios, page sizes (4KB
vs. THP), and memory pressure, and conduct detailed sensi-
tivity analyses. We evaluate multiple fast/slow-tier memory
ratios relative to RSS, ranging from 8:1 to 1:1 to 1:8. We focus
our in-depth analysis on a few representative workloads (e.g.,
bc-kron) and report results from more workloads later.
Metrics. Performance is primarily measured in terms of run-
time. We report normalized slowdown relative to an ideal
DRAM-only baseline. Since no tiering policy outperforms
DRAM, this offers a fair and consistent point of comparison
across workloads and policies. Smaller slowdowns indicate
better performance. We also report internal metrics such as
the number of page migrations to analyze policy efficiency.
Additionally, the gray line in the graphs, labeled CXL rep-
resents the slowdown observed when the workload runs
entirely on the slow memory tier.

10

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

NoTier == PACT mmm
Soar mm Colloid ===

Alto == Nomad == Memtis ==
NBT == TPP mm

[os]
o

[o2}
o

Slowdown to DRAM (%)
N N
o S

o

8:1

4:1 2:1 1:2

11
Fast:Slow Tier Ratio
Figure 4. PACT vs. others for be-kron (4KB page). PACT is
consistently better than Colloid, NBT, Nomad, TPP, and Memtis.

1:4 1:8

Table 2. Number of Promotions (bc-kron).

8:1 4:1 2:1 1:1 1:2 1:4 1:8
PACT 550K 691K 731K 743K 878K 907K 858K
Colloid | 1.2M 2M 26M 47M 49M 8M M
NBT 1.2M 1.7M 2.6M 39M 54M 74M 8.3M
Alto 812K 956K 15M 22M 37M 55M 7.2M
Nomad 32K 19K 17K 19K 9K 13K 5K
TPP 116M 124M 197M 260M 285M 280M 238M
Memtis | 4.5K 24K 15K 13K 15K 5K 1.6K

5.2 Graph Workload: be-kron

We first evaluate PACT using bc-kron, a betweenness cen-
trality approximation workload from GAPBS [13], which
captures the challenging characteristics of modern graph an-
alytics. Operating on a synthetic Kronecker graph (134.2M
vertices, 2111.6M edges, 20GB footprint), bc-kron exhibits
highly irregular, pointer-chasing memory access patterns
with minimal spatial locality.

Takeaway #5: Across all fast/slow-tier setups, PACT demon-
strates stable and consistent performance, outperform-
ing hotness-based baselines (Colloid, Nomad, NBT, TPP,
Memtis) and NoTier in most evaluated ratios, while pro-
moting up to 10.4X fewer pages than the 2nd best for both
4KB page and THP configurations.

4KB pages. Figure 4 compares PACT with state-of-the-art
baselines across seven fast/slow tier ratios under 4KB pages.
PACT consistently outperforms all baselines while requir-
ing substantially fewer page migrations, confirming our hy-
pothesis that when access frequency is a weak predictor of
performance, criticality-driven placement delivers higher
performance with lower overhead.

As slow-tier pressure rises, PACT maintains stable per-
formance while competing systems degrade sharply. The
NoTier baseline shows only a modest slowdown increase
(56% to 62%), whereas hotness-based systems suffer steep
declines. For instance, Colloid, the second-best in most cases,
sees slowdown grow from 26% to 59% because its aggressive
promotion policy triggers frequent NUMA hint faults and
migrates large volumes into a constrained fast tier. Under
high pressure, its behavior converges toward NoTier, offer-
ing little benefit but incurring heavy migration overhead.
In contrast, PACT consistently outperforms all baselines,

PACT: A Criticality-First Design for Tiered Memory

NoTier == PACT mmm Alto == Nomad = Memtis ==
Soar mm Colloid m=m NBT == TPP mm

ASG CXL: 96% 157%]

&

=60

<<

o

a

240

c

g

820

=

o

? 0

8:1 4:1 2:1 1:1 1:2

Fast:Slow Tier Ratio
Figure 5. PACT vs. others for be-kron (THP). PACT achieves
significant performance gains under higher slow-tier ratios.

14 1:8

including NoTier. Nomad performs the worst overall, with
slowdowns consistently exceeding 100% due to its reliance
on replication across tiers, which increases pressure under
heavy migration. TPP fares even worse, with slowdown ap-
proaching 800%. At higher slow-tier ratios, PACT continues
to scale gracefully, showing modest additional slowdown.
Overall, PACT outperforms all baselines by 2—-22% while per-
forming up to 2.1-10.4x fewer promotions than Colloid and
1.2-9.6x fewer than NBT.

Understanding PACT benefits. The second-best system,
Colloid (and NBT), seeks to balance latency across tiers by
exploiting the observation that a heavily loaded fast-tier can
sometimes exceed slow-tier latency. Colloid sustains moder-
ate performance through aggressive promotion, but at the
cost of massive migration: 11M promotions at 1:1, rising to
30M at 1:8. In contrast, PACT identifies performance-critical
pages adaptively via dynamic PAC tracking, sustaining per-
formance with 800K promotions (7x and 20x fewer than
Colloid at 1:1 and 1:8, respectively).

Why PACT benefits graph workloads. Despite their “ran-
dom” appearance, graph workloads exhibit exploitable struc-
ture. High-degree vertices (e.g., hub nodes) are accessed fre-
quently and with serialized pointer-chasing, creating low-
MLP, high-stall accesses. Frontier-based traversals repeat-
edly touch the same working set within each BFS/SSSP iter-
ation. PAC naturally identifies these latency-critical pages:
even if overall access patterns seem random, PAC captures
that some pages consistently cause high stalls due to low
MLP. Hotness-based systems treat all frequently accessed
pages equally and miss this distinction.

THP. Figure 5 shows that with THP, PACT consistently
achieves the lowest slowdowns across nearly all fast/slow-
tier ratios. Among baselines, Memtis performs better than
Colloid, NBT, and Nomad due to its THP-awareness, yet
still lags PACT by 1-19%. Others that fare well with 4KB
pages (e.g., Colloid) show higher variance and degraded per-
formance under THP, reflecting their inability to adapt to
hugepages. These results confirm that PACT’s criticality-
driven design generalizes robustly across page sizes, out-
performing even THP-aware baselines. For the THP experi-
ments, we enable opportunistic transparent huge pages using
madvise (MADV_HUGEPAGE). PACT is inherently robust to mixed

11

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

NoTier == PACT mmm
Soar mm Colloid ===

Alto == Nomad mmm
NBT == TPP mm

@
o

(9]
o

Slowdown to DRAM (%)
NN
o o

0 =
S 7 el 0 oG el 0 o0 el 42
603b"é%\l\%eeps%g&"““\%Vw&‘“(a&“‘”‘;\s‘e%v\“o‘0"“30,w\\xe ot

&\0

Figure 6. PACT vs. others across 12 workloads. PACT outper-
forms Colloid by up to 33% and Nomad by over 500%.

page sizes: while PEBS-based sampling reports memory ac-
cesses at 4KB granularity and PACT tracks page criticality at
this fine granularity, migration decisions are optimized for
efficiency. Specifically, when a selected 4KB page belongs
to a 2MB huge page, PACT migrates the entire huge page
using move_pages(), thereby amortizing migration overhead.
This design combines fine-grained criticality detection with
coarse-grained, cost-efficient memory migration.

5.3 All Workloads

Takeaway #6: Across 12 workloads, PACT maintains robust
performance advantage and migrates up to 50.1x and 40.6X
fewer pages than Colloid and NBT, respectively.

Figure 6 reports results of 12 workloads under 1:1. PACT
consistently outperforms (almost) all hotness-based tiering
systems with only marginal losses in the remaining cases.
In memory-intensive graph workloads like bc-urand, PACT
reduces slowdown by 20% over Colloid and 80% over Nomad.
For gpt-2, where all hotness-based systems perform worse
than NoTier due to aggressive yet ineffective migrations,
PACT is the only system to outperform it, achieving just
27% slowdown versus 51% and 49% for Colloid and Nomad,
respectively. We also evaluate PACT by varying the fast-tier
ratio across all workloads. To provide a broader and more
comprehensive evaluation, we focus on the representative
1:2 and 2:1 ratios, which capture contrasting memory pres-
sure scenarios and allow us to study the overall behavior of
PACT at scale. Figure 7 shows the CDF of PACT performance
improvement.

When aggregating results across the three strongest com-
peting systems Colloid, NBT, and Memtis, PACT delivers
consistent and robust performance gains. Specifically, PACT
achieves an average improvement of 9.95% under 1:2 and
10.66% under 2:1, with peak improvements of 57% and 61%,
respectively. Figure 7a shows the distribution of performance
improvements over all competing systems under both ratios.
The similar distributions indicate that PACT behaves con-
sistently across different tier size asymmetries and scales
effectively across a diverse set of workloads. Figure 7b and
Figure 7c break down improvements over each individual
tiering solution. Under 1:2, PACT achieves average improve-

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

[a] Overall Improvement [b] DRAM/CXL Ratio (1:2) [c] DRAM/CXL Ratio (2:1)

s Colloid
NBT
= Memtis

s Colloid
NBT
m— Memtis

CDF
[T N -
[T NS WY
L

— 0

vvvvvvv

0 0
LOXEPERRER OO P PSSO O
Speedup (%) Speedup (%)

vvvvvvv

CXP®OP SO
Speedup (%)

Figure 7. PACT improvement. Each figure presents the CDF of

PACT performance improvement relative to other tiering solutions.

ments of 9.69% over Colloid, 4.99% over NBT, and 16.6%
over Memtis, with maximum gains of 57%, 20%, and 48%,
respectively. This trend largely persists under 2:1, further
demonstrating the robustness of PACT.

For a small number of workloads, such as 657.xz, Col-
loid and NBT outperform PACT by 7% and 9%. Similarly,
for tc-twitter, Colloid and NBT again achieve lower slow-
downs by 11% and 7%. These cases stem from the aggres-
sive promotion policies of Colloid and NBT, which trigger
frequent NUMA hint faults and migrate large volumes of
pages into a constrained fast tier. Under such conditions,
aggressive migration can effectively exploit short-term ac-
cess recency and better satisfy the working set. Only in one
case, 631.deepsjeng, Memtis outperforms PACT by 4% while
performing nearly three times more page promotions.

5.4 Comparison with Soar and Alto

PACT vs. Alto [34]. Alto is a tiering policy that regulates
promotion rates based on MLP, whereas PACT adapts con-
tinuously by directly measuring PAC. Alto relies on system-
wide MLP, while PAC uses per-tier, TOR-based MLP to di-
rectly quantify slow-tier stall contributions. As a result, PACT
is better suited for workloads with dynamic phases and fine-
grained criticality variation. We use Alto on top of Colloid.
Across varying fast-tier capacity ratios for bc-kron (Figure 4
and Figure 5), PACT outperforms Alto consistently, high-
lighting the effectiveness of PAC-driven tiering. Figure 6
shows that PACT outperforms Alto on 8 of the 12 evaluated
workloads, with an average performance improvement of
7.6%. On the remaining four workloads, where tiering per-
formance is already close to that of DRAM, PACT performs
slightly worse, with only marginal differences potentially
due to PACT’s more aggressive PEBS sampling overhead.

PACT vs. Soar [34]. Soar is a profiling-driven memory al-
location policy that prioritizes performance-critical objects
in the fast tier. Prior work demonstrates that Soar delivers
state-of-the-art performance among memory tiering systems,
making it a strong reference point for comparison. Although
Soar is not directly comparable due to its reliance on of-
fline profiling, we evaluate both systems on the 10 out of 12
workloads for which Soar profiling and execution are feasi-
ble, under identical conditions, as shown in Figure 6. Across
six workloads, including 657.xz, bc-twitter, and tc-twitter,

12

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

[a] Page Promotions over Time (PACT vs. Colloid)

f 80 PACT — Colloid —
c
i<l
E 40
o
o 0

0 50 100 150 200 250

[b] Bin Width and Page Promotions over Time
< Promotions (PACT) — Bin Width <
215 1672
kel £
S 10 ‘:‘ 13
5 05 ¢

£ o ~—A_ NN o @

0 50 100 150 200

Time (s)

Figure 8. Adaptive page selection. The figure shows adaptive
control of page migration flows in PACT.

PACT incurs only modest additional slowdown relative to
Soar (from 2% to 3.7%, 7% to 10%, and 7% to 9%, respectively),
averaging 3.3%. These results indicate that PACT achieves
competitive performance despite operating fully online. For
bc-kron, PACT outperforms Soar by 2% under Soar’s static
policy. Further analysis shows that bc-kron contains a very
large object (~16GB) with a high criticality score that cannot
be fully placed in DRAM. As a result, the workload benefits
less from Soar’s object-level placement and does not exploit
runtime page promotion to migrate critical pages to DRAM.
In contrast, for 603.bwaves, bc-urand, and sssp-kron, PACT
exhibits higher slowdowns (ranging from 4% to 28%, 16%
to 48%, and 14% to 21%, respectively). These cases highlight
scenarios where Soar’s offline profiling can more effectively
capture workload-specific access patterns, illustrating the
tradeoff between offline insight and fully online adaptability.

5.5 PACT Adaptivity

Figure 8 illustrates how PACT’s adaptive page selection
mechanism dynamically regulates promotion activity based
on workload behavior in sssp-kron. While Colloid triggers
over 8M migrations for this workload, PACT performs only
180K, an order of magnitude fewer, yet achieves lower slow-
down (18% vs. 25%). Figure 8a shows the resulting effect
on the number of promotions over time. PACT’s promotion
activity initially spikes when PAC variance is high, then
quickly stabilizes, with only intermittent promotion bursts
thereafter. This behavior demonstrates that PACT can re-
act quickly to changing memory pressure or phase shifts in
the workload while avoiding unnecessary migrations. Fig-
ure 8b shows how PACT adjusts the bin width used in its
dynamic priority binning scheme (§4.5). As the workload
progresses, PACT detects shifts in the distribution of PAC
values and correspondingly adjusts the bin width to adapt
to larger spread in criticality. This adaptivity ensures that
the most critical pages are still prioritized, even as the work-
load evolves. Together, these results highlight how PACT
leverages lightweight, runtime-aware profiling to adapt pro-
motion pressure based on PAC, enabling fewer yet more
effective migrations that track actual performance impact.

PACT: A Criticality-First Design for Tiered Memory
[a] Promotion (PACT)

%

< 41

£ 20/

§ 10/ I 2]
s

0 ,
50 100 150 200 250 0 50 100 150 200 250 300
Time (s) Time (s)

[b] Promotion (Frequency)

Figure 9. Page promotion (PACT vs. frequency). The figure
contrasts different migration behaviors based on PAC and frequency.

5.6 PAC vs. Frequency

To further underscore the distinction between PACT’s PAC-
driven design and hotness-based heuristics, we implemented
a frequency-only policy within the PACT framework. This
alternative policy promotes pages solely based on access
frequency (part of PAC metadata), mirroring conventional
hotness-based tiering strategies. For fair comparison, we
configured both policies to perform a comparable number of
page promotions. These experiments evaluate whether PAC
offers a more accurate reflection of a page’s true dynamic
performance impact than access frequency alone.

Figure 9 contrasts the promotion behavior under PACT
and frequency-based policies. While both systems perform
a similar number of promotions overall, their behavior dif-
fers markedly. PACT responds promptly to workload de-
mands, front-loading the majority of its promotions in the
early phase of execution and then tapering off as fewer high-
impact pages remain. In contrast, the frequency-based policy
exhibits a periodic, oscillatory pattern, repeatedly ramping
up promotions in bursts, suggesting a delayed and less in-
formed response to dynamic workload needs.

This difference stems from the fundamental nature of PAC:
it captures per-page performance impact in real time, allow-
ing PACT to quickly surface and promote latency-critical
pages. Frequency-based policies, by contrast, react only to
accumulated access counts, often missing low-frequency but
high-impact pages. This leads to higher LLC stall cycles and
degraded performance under hotness-based tiering, despite
similar migration counts. Overall, PACT achieves an 18%
performance improvement over the frequency-based policy
under the same total number of page migrations.

We verified this result generalizes across workloads: un-
der controlled migration counts, PAC-based selection outper-
forms frequency-based selection by 12-22% across bc-urand,
sssp-kron, and silo. The improvement is largest for work-
loads with high MLP variance, where frequency fails to dis-
tinguish between streaming and pointer-chasing accesses.

5.7 Sensitivity Analysis

PACT’s performance depends on several key parameters,
including the PAC sampling period, PEBS sampling rate, and
cooling factors. We conduct an in-depth sensitivity analysis
across these parameters to demonstrate PACT’s robustness.

13

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

[a] Slowdown Variation [b] Slowdown Variation [c] Cooling Sensitivity

§/ 30 30
c
2 20 20
o
E
3 10 10
)

0 800 1000 2000 4000
PEBS Sampling Rate

10 20 50 100 500 1000
Perf Sampling Interval (ms)

0
bc-kron pr-twitter 603

Figure 10. PACT sensitivity analysis. Slowdown variation under
varied PEBS sampling rate and perf sampling interval for bc-kron
and Cooling sensitivity comparison.

PEBS sampling rate. Figure 10a shows the impact of vary-
ing the PEBS sampling rate on PACT’s performance, mea-
sured by slowdown. As the PEBS rate increases from 800 to
4000 (fewer samples collected), we observe a steady increase
in slowdown, from approximately 23% to 30%. This trend
confirms that denser sampling (lower rate values) leads to
more accurate PAC estimation, enabling better page selec-
tion and migration decisions. Conversely, sparser sampling
limits visibility into per-page access behavior, resulting in
degraded performance. This sensitivity study underscores
the importance of maintaining a sufficiently fine-grained
PEBS sampling rate for effective PAC profiling.

PAC sampling period. Figure 10b shows the impact of
varying sampling period from 10ms to 1000ms. At 10ms, we
observed a similar number of promotions compared to the
default setting, but with a modest 1% increase in slowdown
due to the higher overhead from frequent sampling. As the
interval increased to 1000ms, we observed a steady increase
in both the number of promotions and slowdown. Specifi-
cally, promotions rose from 800K (at 20ms) to 1.7M, while
slowdown increased from 20% to 27%. This highlights that
shorter intervals allow PACT to better track fine-grained
fluctuations in memory access criticality, leading to more
informed migration decisions. In contrast, longer intervals
obscure temporal locality and dilute the distinction between
performance-critical and benign pages.

Cooling factor. Figure 10c examines temporal decay factors
a. Our default choice of @ = 1.0 (no cooling) provides robust
performance across the evaluation suite, though workload-
specific tuning could yield marginal improvements. We im-
plement a lightweight in-place cooling policy. Unlike global
methods that rescan all sampled pages to update PAC, our
approach tracks, for each page, the number of samples since
its last capture. A default threshold of 200K samples (empir-
ically chosen) triggers cooling: when the global sampling
counter minus the page’s last counter exceeds this distance,
its PAC value is cooled. Cooling is applied either by halving
the value (decay by 2, i.e., «# = 0.5) or resetting it to zero
(a = 0), with the latter emphasizing recency. Figure 10c
shows results across three workloads. In most cases, cooling
either degraded performance or yielded no benefit, indicat-
ing that PACT’s online, adaptive policy already responds
effectively to workload dynamics without relying on histori-
cal PAC values.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

[a] PACT vs. Colloid (4K)

80[b] PACT vs. Memtis (THP)

3 NoTier mmm PACT (THP) mmm
40 PACLiK == | 60
XS] 40
g 20 20
I 0

1 2 4 8

1 2 4 8
Figure 11. PACT vs. Colloid and Memtis under BW con-
tention. Constant reduction of page promotion under PACT and
PACT with THP compared to Colloid and Memtis for bc-kron.

Cross-workload robustness. While Figure 10 shows de-
tailed sensitivity for bc-kron, we verified that the same trends
hold across diverse workloads including gpt-2, 603.bwaves,
and silo. Across all workloads, default parameters (400 PEBS
rate, 20ms period, « = 1.0) provide robust performance
within 5% of the workload-specific optimum. This consis-
tency stems from PACT’s adaptive binning mechanism, which
automatically adjusts to workload characteristics without
manual tuning. We selected bc-kron for detailed presentation
because it exhibits the most challenging access patterns (ir-
regular, pointer-chasing) where parameter sensitivity is most
pronounced; other workloads show even lower sensitivity.

Takeaway #7: PACT delivers near-optimal performance
with default settings and remains robust across a wide
range of parameters, eliminating the need for hand-tuning.

5.8 Bandwidth Contention

We next evaluate PACT under bandwidth contention, where
workloads compete for memory bandwidth.

Setup. We run be-kron while co-locating Intel’s Memory
Latency Checker (MLC) on the local memory node to sim-
ulate background bandwidth-intensive activity. Each MLC
thread generates ~8GB/s of traffic, and eight threads fully
saturate the DRAM bandwidth. This setup tests whether
PACT’s PAC-based approach remains effective under band-
width pressure. For each MLC thread count, slowdowns are
normalized to the corresponding DRAM-only baseline under
identical contention.

Results. Figure 11 shows performance for PACT, Colloid,
and Memtis (for THP) across contention levels (1-8 MLC
threads). We choose Colloid and Memtis as they are the
second-best performing baselines under 4KB and THP setups,
respectively. Across all cases, PACT sustains performance
comparable to or better than Colloid and Memtis, while
consistently issuing substantially fewer page promotions—
3.5-4.7x fewer than Colloid and 2.2x fewer than Memtis.
These results demonstrate that PACT maintains high per-
formance with significantly lower migration overhead even
under saturated bandwidth conditions.

Takeaway #8: Criticality remains the right signal even un-
der bandwidth saturation: by leveraging per-tier MLP and
adaptive binning, PACT continues to guide effective migra-
tion decisions despite contention.

14

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

5.9 PACT Under Colocated Access Patterns

To validate that uniform stall attribution remains effective
when applications with fundamentally different memory be-
haviors run concurrently, we colocate two Masim processes:
one with sequential (high-MLP, streaming) access and one
with random (low-MLP, pointer-chasing) access. Each pro-
cess uses a 6GB working set, and we constrain the fast tier
to hold only half the total footprint, forcing competition for
fast-tier residency.

As shown in Figure 12, PACT re-
duces slowdown compared to Col-
loid for both workloads: 112% im-
provement for the sequential work-
load, 28% for the random workload,
and 61% for aggregate system slow-
down. Despite the contrasting ac-
cess patterns, PACT identifies the
dominant source of criticality (the random-access and low-
MLP pages) and prioritizes them correctly. PACT achieves
this with only 300K promotions versus 12M for Colloid,
demonstrating that uniform attribution remains robust even
under mixed access patterns. The random workload exhibits

PACT

Colloid

Figure 12. Colocation.

higher absolute slowdown as expected (due to inherently
serialized accesses), but PACT correctly allocates fast-tier
capacity to minimize overall stall time.

5.10 PACT Breakdown Analysis

We run Redis with YCSB-C to evalu-
ate the contribution of individual PACT
techniques. The workload has a 19GB
RSS under 1:1. “+Static” uses a fixed bin
width for PAC-based page placement,

Latency CDF

o v B o ®

Colloid mm=

“+Adaptive” dynamically tunes the bin A d;g?\}g —
width based on runtime PAC distribu- +Static

tions, and “+Both” further applies our 100 200 300
Latency (us)

scaling optimization to stabilize promo-
tion under skewed or low-variance PAC
patterns. Figure 13 shows PACT with “+Both” outperforms
Colloid, achieving up to 40% improvements in both latency
and throughput while significantly reducing tail latency.

Figure 13. Redis.

6 Conclusion

As hardware-based memory disaggregation and pooling be-
come realities, efficient tiered memory management is more
critical than ever. In this work, we establish fine-grained, on-
line performance criticality as a first-class principle for page-
level tiering and demonstrate its feasibility through PACT.
We believe performance criticality provides a powerful new
foundation for rethinking tiered memory management. By
introducing PAC and realizing it in PACT, we take an initial
step toward criticality-aware memory systems, and hope this
work sparks future efforts in building memory hierarchies
that are truly performance-centric.

PACT: A Criticality-First Design for Tiered Memory

Acknowledgments

We thank Chenxi Wang (our shepherd) and the anonymous
reviewers for their constructive feedback. We also thank
CloudLab for providing the infrastructure used in our exper-
imental evaluation. This research was partially supported
by the NSF CAREER Award CNS-2339901, NSF Grant CNS-
2312785, and Google. Jinshu Liu is supported by a Google
PhD Fellowship.

References

(1]

[20]

AMD64 Architecture Programmer’s Manual. https://www.amd.com/
content/dam/amd/en/documents/processor-tech-docs/programmer-
references/24593.pdf.

Better Support for Locally-attached-memory Tiering. https://lwn.net/
Articles/974126/.

Compute Express Link. https://www.computeexpresslink.org.

Giga-updates per second (GUPS). https://en.wikipedia.org/wiki/Giga-
updates_per_second.

GPT-2. https://en.wikipedia.org/wiki/GPT-2.

Intel 64 and IA-32 Architectures Software Developer Manuals. https:
//www.intel.com/content/www/us/en/developer/articles/technical/i
ntel-sdm.html.

Intel PerfMon: Info_Memory_Latency_Load_L2_MLP. https://github
.com/intel/perfmon/blob/2336912dd4f4f8f5313914dc30e4f1e87429ab
5b/SKX/metrics/skylakex_metrics.json#L12208.

Managing Multiple Sources of Page-Hotness Data. https://lwn.net/Ar
ticles/1016722/.

Memory Access Workload Simulator. https://github.com/sjp38/mas
im.

Performance Monitor Counters for AMD Family 1Ah Model 00h-0Fh
Processors. https://www.amd.com/content/dam/amd/en/documents
/epyc-technical-docs/programmer-references/58550-0.01.pdf.

Redis. https://redis.io.
SPEC CPU 2017. https://www.spec.org/cpu2017.
GAP Benchmark Suite. https://github.com/sbeamer/gapbs.git, 2021.

Perf Core PMU Support for Sapphire Rapids (Kernel). https:/lore.ker
nel.org/lkml/1611761925-159055-2-git-send-email-kan.liang@linux.
intel.com/T/, 2021.

The CloudLab Manual - Hardware. https://docs.cloudlab.us/hardware.
html, 2021.

Timed Process Event Based Sampling (TPEBS). https://www.intel.co
m/content/www/us/en/developer/articles/technical/timed-process-
event-based-sampling-tpebs.html, 2025.

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. Can Far Memory Improve Job Throughput? In Proceed-
ings of the 15th European Conference on Computer Systems (EuroSys),
2020.

Nadav Amit. Optimizing the TLB Shootdown Algorithm with Page
Access Tracking. In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), 2017.

Daniel S. Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish
Shah, Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D.
Hill, and Ricardo Bianchini. Design Tradeoffs in CXL-Based Memory
Pools for Cloud Platforms. IEEE Micro Special Issue on Emerging System
Interconnects, 43(2), 2023.

Yuan Chou, Brian Fahs, and Santosh Abraham. Microarchitecture
Optimizations for Exploiting Memory-Level Parallelism. In Proceedings

15

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

of the 31st Annual International Symposium on Computer Architecture
(ISCA), 2004.

Debendra Das Sharma, Robert Blankenship, and Daniel Berger. An
Introduction to the Compute Express Link (CXL) Interconnect. ACM
Comput. Surv., 56(11), July 2024.

Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. Data Tiering in Heterogeneous Memory Systems. In Proceed-
ings of the 11th European Conference on Computer Systems (EuroSys),
2016.

Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela
Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg
Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ranganathan,
and Amin Vahdat. Towards an Adaptable Systems Architecture for
Memory Tiering at Warehouse-Scale. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2023.

Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan.
HeteroOS: OS Design for Heterogeneous Memory Management in
Datacenters. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA), 2017.

Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. Exploring the
Design Space of Page Management for Multi-Tiered Memory Systems.
In Proceedings of the 2021 USENIX Annual Technical Conference (ATC),
2021.

Roland Kiihn, Jan Miihlig, and Jens Teubner. Breaking the Cycle - A
Short Overview of Memory-Access Sampling Differences on Modern
x86 CPUs. In 21st International Workshop on Data Management on New
Hardware (DaMoN), 2025.

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao,
and Parthasarathy Ranganathan. Software-Defined Far Memory in
Warehouse-Scale Computers. In Proceedings of the 24th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

Hwanjun Lee, Minho Kim, Yeji Jung, Seonmu Oh, Ki-Dong Kang, Se-
unghak Lee, and Daehoon Kim. Beyond Page Migration: Enhancing
Tiered Memory Performance via Integrated Last-Level Cache Man-
agement and Page Migration. In 58th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-58), 2025.

Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. Memtis: Efficient Memory Tiering with Dynamic Page Classifi-
cation and Page Size Determination. In Proceedings of the 29th ACM
Symposium on Operating Systems Principles (SOSP), 2023.

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2023.

Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, and Onur
Mutlu. Utility-Based Hybrid Memory Management. In International
Conference on Cluster Computing (Cluster), 2017.

[32] Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S. Berger, Marie

Nguyen, Xun Jian, Sam H. Noh, and Huaicheng Li. Systematic CXL
Memory Characterization and Performance Analysis at Scale. In Pro-
ceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2025.

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://lwn.net/Articles/974126/
https://lwn.net/Articles/974126/
https://www.computeexpresslink.org
https://en.wikipedia.org/wiki/Giga-updates_per_second
https://en.wikipedia.org/wiki/Giga-updates_per_second
https://en.wikipedia.org/wiki/GPT-2
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/intel/perfmon/blob/2336912dd4f4f8f5313914dc30e4f1e87429ab5b/SKX/metrics/skylakex_metrics.json#L12208
https://github.com/intel/perfmon/blob/2336912dd4f4f8f5313914dc30e4f1e87429ab5b/SKX/metrics/skylakex_metrics.json#L12208
https://github.com/intel/perfmon/blob/2336912dd4f4f8f5313914dc30e4f1e87429ab5b/SKX/metrics/skylakex_metrics.json#L12208
https://lwn.net/Articles/1016722/
https://lwn.net/Articles/1016722/
https://github.com/sjp38/masim
https://github.com/sjp38/masim
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/58550-0.01.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/58550-0.01.pdf
https://redis.io
https://www.spec.org/cpu2017
https://github.com/sbeamer/gapbs.git
https://lore.kernel.org/lkml/1611761925-159055-2-git-send-email-kan.liang@linux.intel.com/T/
https://lore.kernel.org/lkml/1611761925-159055-2-git-send-email-kan.liang@linux.intel.com/T/
https://lore.kernel.org/lkml/1611761925-159055-2-git-send-email-kan.liang@linux.intel.com/T/
https://docs.cloudlab.us/hardware.html
https://docs.cloudlab.us/hardware.html
https://www.intel.com/content/www/us/en/developer/articles/technical/timed-process-event-based-sampling-tpebs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/timed-process-event-based-sampling-tpebs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/timed-process-event-based-sampling-tpebs.html

[

—

—

—

[t

—

—

=

—

—

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

[33] Jinshu Liu, Hamid Hadian, Hanchen Xu, Daniel S. Berger, and

Huaicheng Li. Dissecting CXL Memory Performance at Scale: Anal-
ysis, Modeling, and Optimization. https://arxiv.org/abs/2409.14317,
2024.

Jinshu Liu, Hamid Hadian, Hanchen Xu, and Huaicheng Li. Tiered
Memory Management Beyond Hotness. In Proceedings of the 19th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2025.

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, and
Huaicheng Li. Performance Predictability in Heterogeneous Memory.
In Proceedings of the 31st ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2026.

Yirong Lv, Bin Sun, Qinyi Luo, Jing Wang, Zhibin Yu, and Xuehai
Qian. CounterMiner: Mining Big Performance Data from Hardware
Counters. In 51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-51), 2018.

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. TPP: Transparent
Page Placement for CXL-Enabled Tiered Memory. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2023.

John McCalpin. Single-core Memory Bandwidth: Latency, Bandwidth,
and Concurrency. https://sites.utexas.edu/jdm4372/2025/02/17/single-
core-memory-bandwidth-latency-bandwidth-and-concurrency/.

Alan Nair, Sandeep Kumar, Aravinda Prasad, Ying Huang, Andy Rudoff,
and Sreenivas Subramoney. Telescope: Telemetry for Gargantuan
Memory Footprint Applications. In Proceedings of the 2024 USENLX
Annual Technical Conference (ATC), 2024.

SeongJae Park, Madhuparna Bhowmik, and Alexandru Uta. DAOS:
Data Access-aware Operating System. In Proceedings of the 31st IEEE
International Symposium on High Performance Distributed Computing
(HPDC), 2022.

SeongJae Park, Yunjae Lee, and Heon Y. Yeom. Profiling Dynamic Data
Access Patterns with Controlled Overhead and Quality. In Proceedings
of the 20th International Middleware Conference (Middleware), 2019.

Zhenlin Qi, Shengan Zheng, Ying Huang, Yifeng Hui, Bowen Zhang,
Linpeng Huang, and Hong Mei. Chrono: Meticulous Hotness Measure-
ment and Flexible Page Migration for Memory Tiering. In Proceedings
of the 20th European Conference on Computer Systems (EuroSys), 2025.

Samir Rajadnya and Durgesh Srivastava. CMS: Hotness Tracking
Requirements. https://www.opencompute.org/documents/ocp-cms-
hotness-tracking-requirements-white-paper-pdf-1.

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. HeMem: Scalable Tiered Memory Management for Big Data
Applications and Real NVM. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP), 2021.

Shigeru Shiratake. Scaling and Performance Challenges of Future
DRAM. In IEEE International Memory Workshop (IMW), 2020.

Yan Sun, Jongyul Kim, Zeduo Yu, Jiyuan Zhang, Siyuan Chai,
Michael Jaemin Kim, Hwayong Nam, Jaehyun Park, Eojin Na, Yifan
Yuan, Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. M5:
Mastering Page Migration and Memory Management for CXL-based
Tiered Memory Systems. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2025.

Yan Sun, Yifan Yuan, Zeduo Yu, Zeduo Yu, Reese Kuper, Chihun Song,
Jinghan Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom
Jeong, Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim.
Demystifying CXL Memory with Genuine CXL-Ready Systems and

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, & Huaicheng Li

Devices. In 56th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-56), 2023.

Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao
Xiang, Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, Cheng
Chen, Hui Zhang, Fei Liu, Shuai Zhang, Xiaoning Ding, and Jianjun
Chen. Exploring Performance and Cost Optimization with ASIC-
Based CXL Memory. In Proceedings of the 19th European Conference
on Computer Systems (EuroSys), 2024.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy Transactions in Multicore In-Memory Databases. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles
(SOSP), 2013.

Haris Volos, Guilherme Magalhaes, Ludmila Cherkasova, and Jun Li.
Quartz: A Lightweight Performance Emulator for Persistent Memory
Software. In Proceedings of the 16th International Middleware Confer-
ence (Middleware), 2015.

Midhul Vuppalapati and Rachit Agarwal. Tiered Memory Management:
Access Latency is the Key! In Proceedings of the 30th ACM Symposium
on Operating Systems Principles (SOSP), 2024.

Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chungiang Tang, and Dimitrios Skarlatos. TMO: Transparent Memory
Offloading in Datacenters. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2022.

Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan,
and Ren Wang. NOMAD: Non-Exclusive Memory Tiering via Transac-
tional Page Migration. In Proceedings of the 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2024.

Dong Xu, Junhee Ryu, Jinho Baek, Kwangsik Shin, Pengfei Su, and
Dong Li. FlexMem: Adaptive Page Profiling and Migration for Tiered
Memory. In Proceedings of the 2024 USENIX Annual Technical Confer-
ence (ATC), 2024.

Sujay Yadalam, Konstantinos Kanellis, Michael Swift, and Shivaram
Venkataraman. ARMS: Adaptive and Robust Memory Tiering System.
https://arxiv.org/abs/2508.04417.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble Page Management for Tiered Memory Systems. In Proceedings
of the 24th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

Anil Yelam, Kan Wu, Zhiyuan Guo, Suli Yang, Rajath Shashidhara,
Wei Xu, Stanko Novakovic, Alex C. Snoeren, and Kimberly Keeton.
PageFlex: Flexible and Efficient User-space Delegation of Linux Paging
Policies with eBPF. In Proceedings of the 2025 USENIX Annual Technical
Conference (ATC), 2025.

Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar
Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill,
Mosharaf Chowdhury, and Asaf Cidon. Managing Memory Tiers with
CXL in Virtualized Environments. In Proceedings of the 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2024.

Zhe Zhou, Yiqi Chen, Tao Zhang, Yang Wang, Ran Shu, Shuotao Xu,
Peng Cheng, Lei Qu, Jie Zhang, Yonggiang Xiong, and Guangyu Sun.
NeoMem: Hardware/Software Co-Design for CXL-Native Memory
Tiering. In 57th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-57), 2024.

https://arxiv.org/abs/2409.14317
https://sites.utexas.edu/jdm4372/2025/02/17/single-core-memory-bandwidth-latency-bandwidth-and-concurrency/
https://sites.utexas.edu/jdm4372/2025/02/17/single-core-memory-bandwidth-latency-bandwidth-and-concurrency/
https://www.opencompute.org/documents/ocp-cms-hotness-tracking-requirements-white-paper-pdf-1
https://www.opencompute.org/documents/ocp-cms-hotness-tracking-requirements-white-paper-pdf-1
https://arxiv.org/abs/2508.04417

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Hotness vs. Performance Criticality
	2.2 PACT vs. State-of-the-Art
	2.3 Tiering Mechanisms and Policies

	3 Motivation
	4 PACT Design and Implementation
	4.1 Goals, Challenges, and Overview
	4.2 From Per-tier Stall to PAC Modeling
	4.3 PAC Sampling
	4.4 Migration Policies
	4.5 Adaptive Promotion
	4.6 Implementation

	5 Evaluation
	5.1 Experimental Platform
	5.2 Graph Workload: bc-kron
	5.3 All Workloads
	5.4 Comparison with Soar and Alto
	5.5 PACT Adaptivity
	5.6 PAC vs. Frequency
	5.7 Sensitivity Analysis
	5.8 Bandwidth Contention
	5.9 PACT Under Colocated Access Patterns
	5.10 PACT Breakdown Analysis

	6 Conclusion
	References

