Performance Predictability in Heterogeneous Memory

Jinshu Liu Hanchen Xu Daniel S. Berger
Virginia Tech Virginia Tech Microsoft and University of Washington
Blacksburg, USA Blacksburg, USA Redmond, USA
Marcos K. Aguilera Huaicheng Li
NVIDIA Virginia Tech

Santa Clara, USA

Abstract

Heterogeneous memory combining DRAM and CXL exhibits
variable performance, yet existing metrics correlate weakly
with actual slowdown. We present CAMP, a principled frame-
work for predicting CXL-induced slowdown. Our key insight is
that a DRAM run (plus a CXL run for bandwidth-bound work-
loads) exposes the causal microarchitectural pressure points
where CXL latency translates into additional processor stall
cycles. CAMP captures these signals using 12 performance coun-
ters to analytically decompose slowdown into three orthogo-
nal components: demand reads, cache/prefetching, and stores.
CaMmP also introduces a closed-form model for software-based
weighted interleaving that predicts performance across DRAM—
CXL ratios. Across 265 workloads on NUMA and three CXL
devices, CAMP achieves 91-97% prediction accuracy within 10%
absolute error. We demonstrate that these models enable prac-
tical system policies, including “Best-shot” interleaving and
colocated workload placement, improving performance by up
to 21% and 23% over existing tiering and colocation approaches.

CCS Concepts: - Hardware — Emerging technologies; -
Computer systems organization — Architectures.

Keywords: CXL Memory, Modeling, Prediction, Interleaving

ACM Reference Format:

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera,
and Huaicheng Li. 2026. Performance Predictability in Hetero-
geneous Memory. In Proceedings of the 31st ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS °26), March 22-26, 2026,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3779212.3790201

1 Introduction

Modern servers increasingly adopt heterogeneous memory
architectures, combining fast local DRAM with larger, slower
tiers such as NUMA and Compute Express Link (CXL) at-

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS °26, Pittsburgh, PA, USA

© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790201

Blacksburg, USA

tached memory. While this disaggregation expands capac-
ity cost-effectively, it introduces significant sensitivity in
application performance. Misplacing latency-sensitive data
onto slower tiers can trigger severe pipeline stalls, waste
scarce DRAM bandwidth, and violate Service Level Objec-
tives (SLOs) [18, 34, 36, 37, 46].

Effective management of these systems therefore requires
predictive visibility: the ability to quantify exactly how a
placement decision will impact application slowdown before
that decision is enacted. Without accurate predictors, cloud
operators are forced to overprovision DRAM to minimize
risk, while runtimes and operating systems rely on reactive
migration loops that waste resources correcting placement
errors after performance has already degraded.

Despite extensive prior work, a gap remains between iden-
tifying performance signals and predicting slowdown. Pro-
filing tools identify architectural events correlated with per-
formance [26, 30, 36, 40, 56], but stop short of quantitative
slowdown forecasts. Runtime systems employ heuristics,
such as access frequency, LLC misses, latency, or stall cycles
to guide tiered placement [24, 27, 38, 45, 51, 59]. However,
these approaches are inherently reactive (detecting degrada-
tion post facto) or descriptive (attributing observed degrada-
tion to causes). For example, Melody [36] provides a robust
framework for decomposing slowdown into components,
but it is an attribution tool: it requires execution on both
DRAM and CXL to explain the past. Similarly, SoarAlto [38]
uses Memory-Level Parallelism (MLP) as a reactive metric to
model demand-read-induced slowdown for tiering decisions,
but does not offer a forward-looking model to predict overall
slowdown or synthesize optimal interleaving ratios a priori.

This work introduces Camp', a framework that bridges
this gap by transforming offline attribution into prediction.
We address a fundamental question: Can we predict how a
workload will perform on CXL or under weighted interleaving
across DRAM/CXL [16] using intrinsic workload signatures?
To answer this, we conduct a comprehensive analysis across
265 diverse workloads and four memory backends (NUMA
and three CXL).

Our central insight is that slowdown on slower memory
tiers (e.g., CXL) is not an opaque property of the memory
device, but a predictable consequence of microarchitectural

1Camp stands for “Causal Analytical Memory Prediction”

https://doi.org/10.1145/3779212.3790201
https://doi.org/10.1145/3779212.3790201
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790201

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

pressure points inside the CPU. We find that the structural
bottlenecks driving CXL stalls, such as delayed data accesses
in Line Fill Buffers (LFB), backpressure in Store Buffers (SB),
and MLP-limited retirement, leave distinct “fingerprints” that
are visible even during DRAM execution. These pressure
points correspond directly to the three dominant sources
of heterogeneous memory slowdown: demand reads, cache
fills, and store-induced backpressure [36]. By isolating these
signals, we construct analytical models that transfer DRAM-
only measurements into accurate CXL slowdown forecasts.
Because these models capture fundamental pipeline behav-
ior, they generalize seamlessly across both pure CXL and
interleaved DRAM-CXL configurations, enabling “what-if”
analyses impossible with reactive metrics.

Building on these insights, Camp provides a lightweight,
principled prediction framework using at most 12 Perfor-
mance Monitoring Unit (PMU) counters. To predict CXL

slowdown Camp models demand-read, cache, and store-induced

slowdown components for non-bandwidth-bound workloads
using a single, DRAM-only execution. CAMP achieves 97% ac-
curacy under NUMA and 91%-96% under CXL, with most
predictions falling within a 10% error margin. For interleav-
ing scenarios, CAMP derives an analytical model that synthe-
sizes performance curves for any DRAM-CXL ratio from at
most two profiling runs.

We demonstrate the practical power of Camp through
“Best-shot,” a predictive interleaving policy and colocated
workload placement. Unlike prior approaches that require
iterative search or reactive migration, Best-shot analytically
determines the optimal DRAM-CXL ratio. Best-shot im-
proves performance by up to 21% over state-of-the-art tier-
ing systems. Additionally, Camp-guided colocation schedul-
ing improves performance by up to 23% over hotness-based
placement by accurately modeling interference tolerance. In
summary, this paper makes the following contributions:

e We introduce Camp, the first framework to predict all three
sources of heterogeneous memory slowdown (demand-
read, cache, store) from a single DRAM execution, enabling
proactive “what-if” analysis prior to deployment.

e We derive explainable prediction models based on microar-
chitectural causes: prefetching inefficiency for cache slow-
down, store-buffer backpressure for store slowdown, and
latency/MLP dynamics for demand-read slowdown. The
framework requires at most 12 standard PMU counters.

e We evaluate Camp on 265 workloads across three Intel mi-
croarchitectures and three CXL expanders. CAMP achieves
0.97 Pearson correlation with actual slowdown, signifi-
cantly outperforming prior metrics (0.37-0.88).

We develop a predictive interleaving model that derives
performance curves for any DRAM-CXL ratio using at
most two profiling runs, obviating iterative search.

e We demonstrate CAMP’s versatility across two use cases.
“Best-shot” analytically predicts the optimal interleaving

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

MPKI BW Lat. IPC Stall MLP LFB/SB Pearson

Memstrata [59] v 0.40
X-Mem [23] v 0.84
Colloid [51] v 0.37
BATMAN [20] N 0.66
Caption [46] VAV, 0.60
SoarAlto [38] v v v 0.88
Camp (Ours) v v v v 0.97

Table 1. Performance metric comparison. Pearson correlation
with actual slowdown across 265 workloads on NUMA. CAmP achieves
0.97 correlation by predicting all sources of slowdown using latency,
MLP, hardware buffer pressure, and stall metrics. Prior approaches
using subsets of these metrics achieve lower correlations (0.37-0.88).

ratio, outperforming existing tiering and interleaving
policies. Camp-guided colocation scheduling improves
performance by up to 23% over conventional placement.
e We open-source CAamp artifacts, including benchmarks,
datasets, and policies, at https://github.com/MoatLab/CAMP.
The rest of the paper is organized as follows. §2 reviews
background and related work. §3 provides an overview of
the Camp framework. §4 derives the core slowdown models.
§5 develops the analytical interleaving model. §6 evaluates
Cawmrp in tiering and colocation use cases. §7 concludes.

2 Background and Related Work

Heterogeneous memory introduces a fundamental tension
in modern system design [36, 37, 46, 47]. The resulting
performance impact is highly workload-dependent: some
applications tolerate this latency with minimal slowdown,
while others experience severe pipeline stalls.

The central software challenge is therefore predicting which
workloads can tolerate CXL and what fraction of their foot-
print can be placed there without incurring unacceptable
slowdown. This section explains why existing metrics fail to
provide such predictive capability, reviews the microarchi-
tectural mechanisms that govern slowdown, and positions
Cawmp relative to prior work. We use slow memory/tier and
CXL interchangeably to refer to memory tiers with substan-
tially higher access latency than local DRAM.

2.1 The Predictability Gap: Why Metrics Fail

Existing systems often rely on simple, metric-driven policies
to guide tiering and interleaving decisions, aiming to identify
latency-sensitive workloads or pages and to balance latency
against aggregate bandwidth [33, 38, 42, 44, 45, 55]. In
practice, however, commonly used metrics correlate poorly
with actual CXL slowdown. Our analysis of 265 workloads
confirms that these proxies can lead to incorrect placement
and interleaving decisions (Figure 1, Table 1).

Access frequency (MPKI). Systems such as Memstrata [59]
use misses per kilo-instructions (MPKI) to identify “hot”
pages. While MPKI captures access intensity, it ignores
latency tolerance. Workloads with high access frequency

https://github.com/MoatLab/CAMP

Performance Predictability in Heterogeneous Memory

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

[a] MPKI vs. Slowdown[b] Bandwidth vs. Slowdown [c] Latency vs. Slowdown [d] Stalls vs. Slowdown [e] Stalls+AOL vs. Slowdown [fl CAMP
S 40fe e, - T e’ 40 K) oo 60 -’
X $ o8 o
g ¢ 40 $
S20% 20
g) 20
7}

0 ok : 0 0 — o =545 &
0 25 50 0 10 20 0 100 200 00 03 06 09 0 20 40 60

MPKI Bandwidth (GB/s) Latency (Cycles)

0.0 0.3
Normalized Stalls Stalls with AOL Predicted Slowdown (%)

Figure 1. Correlation of common metrics and performance slowdown. Figures (a)-(e) show that commonly used metrics, including

Latency

MPKI, memory bandwidth, access latency, stall cycles, and AOL (defined as =35~) [38] exhibit weak correlation with CXL-induced slowdown
across 265 workloads. In contrast, CAMP’s predictor (f) shows a near-linear relationship with the observed performance slowdowns (more in §4).

=

S

I

2

3
DRAM / CXL

___________________ — L _—"—/- -2
Figure 2. Slowdown breakdown. Workload slowdown under

CXL/NUMA decomposes into three orthogonal components: cache
slowdown from late prefetch arrivals (Scqche). DRAM slowdown
from demand read stalls (Spgy), and store slowdown from buffer
backpressure (Ssiore). Overall slowdown S = Scache+Sprd+Sstore [36].

but abundant memory-level parallelism (MLP) can hide
slow-memory latency and suffer less slowdown, whereas
pointer-chasing workloads with moderate access frequency
suffer disproportionately due to serialized memory accesses.
Moreover, memory access frequency fails to account for store
buffer backpressure and prefetch inefficiency.

Average latency and bandwidth. Approaches such as Col-
loid [51] and TierTune [32] monitor memory access latency.
However, latency is a poor proxy for performance impact on
modern out-of-order cores. Two workloads experiencing the
same observed latency can incur vastly different stall cycles
depending on instruction dependencies, reorder buffer oc-
cupancy (which limits the number of in-flight instructions),
and overlap among outstanding misses, etc. Similarly, band-
width provides imprecise signals. Moreover, neither latency
nor bandwidth captures impacts on CPU data buffers.

Stall cycles. Approaches such as Intel Top-Down Analy-
sis [56], PathFinder [35], X-Mem [23], and MSH [39] mea-
sure stall cycles directly. While stall cycles quantify current
performance loss, they are insufficient for prediction. First,
stall cycles measured on DRAM do not scale linearly with
increased latency or reduced bandwidth on CXL; the scaling
factor depends on impacts from multiple sources, such as
overlap among outstanding requests, dependency structure,
and offcore latency. Second, executing on a slower tier of-
ten changes workload behavior, altering prefetch timeliness,
store buffer draining, and overlap patterns. Finally, aggre-
gate stall metrics conflate demand reads, cache and prefetch
effects, and store-induced stalls, even though these compo-

nents respond differently to CXL. As a result, relying solely
on stall cycles remains reactive and usually mispredicts slow-
down. SoarAlto [38] partially addresses this limitation by
amortizing latency with MLP in AOL= L?\;T;y as a derived
metric (Figure 1e), but it still fails to capture cache- and

store-induced amplification effects.

Several systems augment these metrics using learning or
control techniques [22, 34, 57, 58]. While effective in specific
settings, these approaches still rely on empirical signals
without a decomposed, causal model of slowdown, limiting
their ability to generalize across memory configurations.

2.2 The Limits of Reactive Management

Without accurate predictors, heterogeneous memory relies
on reactive management or expensive offline profiling.

Reactive tiering. Systems such as Nomad [55], Memtis [33],
and TPP [42] migrate pages only after detecting hotness or
performance degradation. This trial-and-error process incurs
migration overhead and exposes workloads to performance
loss before corrective action can be taken. ML-based systems
such as Pond [34], Kleio [22], and ArtMem [58] improve
robustness but still lack an explicit model that predicts the
impact of placement decisions a priori.

Interleaving challenges. Weighted interleaving across
DRAM and CXL can improve aggregate bandwidth [9, 29, 31,
37,46, 53, 54], but determining the optimal ratio is non-trivial.
Bandwidth-bound workloads can benefit from aggressive
interleaving, while latency-bound workloads suffer severe
slowdown. Without a predictive model, operators must
rely on exhaustive search, leaving substantial performance
potential unrealized.

2.3 Microarchitectural Pressure Points

Accurate prediction of CXL slowdown requires microarchi-
tectural bottleneck reasoning as latency increases [21, 25].
Figure 2 illustrates the critical data paths in the CPU.

Fill buffers (LFB/SQ). Modern processors track outstanding
cache misses using small hardware buffers rather than
issuing requests directly to memory. These buffers hold
outstanding misses from an upper-level cache until the
corresponding cacheline arrives from the lower level [1, 5, 50,

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

52]. When multiple accesses miss on the same cacheline, they
coalesce into a single entry, conserving space and avoiding
redundant tracking. The Line Fill Buffer (LFB) tracks L1
misses, while the SuperQueue (SQ) tracks L2 misses to
the uncore. These structures typically contain only tens
of entries. As memory latency increases, it takes longer
for prefetch requests to fill these buffer entries, causing
additional stall cycles for cache-level data accesses. Moreover,
requests from L1 and L2 prefetchers share LFB and SQ
resources with demand accesses, and contention in these
buffers can further incur cache-level stalls.

Store buffer (SB) backpressure. Stores are buffered asyn-
chronously to allow execution to proceed, but Read-for-
Ownership (RFO) requests to CXL significantly delay buffer
draining. RFOs are mandatory read requests issued before
each write to obtain exclusive cache-line ownership, causing
stores to inherit CXL read latency. When the Store Buffer
(SB) fills, subsequent stores block and stall the pipeline. This
store-induced slowdown is largely invisible to read-centric
metrics but becomes pronounced under CXL latency.

2.4 Cawmp vs. Melody and SoarAlto

Melody [36] showed that CXL slowdown can be decomposed
into three additive components (Figure 2):

Slowdown (S) ~ Sprd + Scache + Sstore (1)

where Sprq captures demand-read stalls, Scache captures
cache/prefetch effects, and Sstore captures store backpressure.

While Melody establishes a powerful decomposition, as
shown in Table 2, it is fundamentally an attribution tech-
nique: it requires executing workloads on DRAM and CXL
to measure these components. Camp builds on this insight
but pivots from attribution to prediction. The key observation
is that DRAM-only execution already exposes sufficient mi-
croarchitectural signals such as buffer occupancy, prefetch-
ing inefficiency and latency—MLP relationships, to infer how
each component will amplify under CXL.

By grounding prediction in these microarchitectural points,
Camp enables “what-if” analysis without executing on CXL.
Table 2 contrasts CaAMp with prior approaches. Unlike scalar
metrics such as AOL in SoarAlto [38] or MPKI, CamP achieves
substantially higher accuracy by modeling the causal mech-
anisms that govern slowdown, achieving 0.97 Pearson corre-
lation versus 0.88 for AOL.

3 Camp Overview

This paper introduces CAMP, a framework that fundamen-
tally shifts heterogeneous memory management from reac-
tive observation to proactive prediction. CAMP relies on a sin-
gle organizing principle: performance degradation on slow
memory is not an opaque device property, but a predictable
consequence of microarchitectural pressure points, i.e., hard-
ware bottlenecks where increased latency directly translates

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

Camp (Ours) Melody [36] SoarAlto [38]

Goal Prediction Attribution Tiering
Model Analytical Post-hoc Reactive
Input DRAM (+CXL) DRAM + CXL Live system
Coverage SDRd> SCaches Sstore All 3 (post-hoc) Sprd-only
Pearson 0.97 N/A 0.88
Interleaving v X X

Table 2. Camp vs. related work. Camp is a prediction framework
that estimates all three slowdown components (Spra, Scaches Sstore)
using 1-2 profiling runs, enabling proactive placement decisions.
Melody is an attribution tool requiring both DRAM and CXL runs.
SoarAlto uses a reactive metric to capture Sprq-only effects.

Profiling Models (§4-§5) Use Cases (§6)
J-ﬁ Latency, MLP H SDRA
DRAM-only Slowdown| -
Feofelhis _—ﬁ LFB/SQ, prefetchH SCache Sl —
{ SB backpressure H SStore
+CXL Run MLP Inter]eaving L Best-shot
(BW-bound) Invariance Model Interleaving]

Figure 3. Camp framework overview. DRAM-only profiling
exposes PMU signals that predict per-component slowdowns (§4).
For bandwidth-bound workloads, a additional CXL run enables
interleaving prediction (§5). Both models feed practical use cases:
colocation scheduling and Best-shot interleaving (§6).

into pipeline stalls. By modeling latency’s impact at the spe-
cific “pressure points” where it translates into additional
execution cycles, CAmP predicts workload performance on
CXL using only DRAM execution signals.

At a high level, Camp observes how a workload stresses
the CPU pipeline on DRAM, predicts how those stresses am-
plify on slower memory, and composes the results to guide
placement decisions. Figure 3 illustrates the Camp workflow.
Unlike prior approaches that require iterative migration or
exhaustive profiling, CAmP operates as a feed-forward pre-
dictor. It extracts microarchitectural signatures from a stan-
dard DRAM-only run, transforms them into per-component
slowdown forecasts, and synthesizes performance curves
for arbitrary DRAM-CXL interleaving ratios. This enables
operators to identify the optimal placement strategy before a
workload is deployed. On 265 workloads across NUMA and
three CXL devices, CaAMP achieves up to 0.97 Pearson cor-
relation with actual slowdown, significantly outperforming
metrics used by existing systems (Table 1). For cloud opera-
tors, this means CXL placement decisions can be made at job
submission time, eliminating the runtime monitoring and
migration overheads that burden reactive tiering systems.

3.1 Core Insight: From Attribution to Prediction

The state-of-the-art approach, Melody [36], is an attribution
tool: it explains why slowdown occurred by comparing
post-hoc measurements from both DRAM and CXL runs.
While valuable for profiling, attribution cannot directly guide

Performance Predictability in Heterogeneous Memory

placement decisions for new workloads.

Camp converts this decomposition into prediction. Our
key insight is that the microarchitectural root causes of
CXL slowdown, i.e., pipeline stalls due to latency and buffer
exhaustion, leave distinct fingerprints even when running
on fast memory. We identify the following DRAM-visible
pressure points that serve as precursors to CXL slowdown:

(a) Latency—MLP dynamics — Spgrq (§4-1). The interac-
tion between MLP and access latency on DRAM predicts
how demand-read stalls will amplify under higher CXL la-
tency. Workloads with low latency-to-MLP ratios experience
disproportionate slowdown because out-of-order execution
cannot hide the extended memory access time.

(b) Fill buffer pressure — Scache (§4-2). High reliance
on LFB (the buffer between L1 and L2 cache) and SQ (the
buffer between L2 and LLC) during DRAM execution signals
vulnerability to prefetch inefficiency on slower tiers. Late
prefetches also cause demand reads to be delayed, when
demand accesses are served from these transient buffers.

(c) Store buffer occupancy — Ssiore (§4.3). Frequent
cycles with a full Store Buffer indicate that RFO latency,
the time to fetch a cacheline before writing, will become a
serialization bottleneck on CXL. Higher RFO latency on CXL
delays store buffer drain, blocking subsequent writes and
eventually stalling instruction retirement.

(d) MLP invariance — interleaving performance curves.

A critical enabler for interleaving prediction is our experi-
mental observation that MLP remains approximately con-
stant across interleaving ratios (§5.2.1). This stability occurs
because MLP reflects the CPU core’s ability to issue par-
allel loads, which depends on instruction-level parallelism
rather than memory contention. With MLP approximately
fixed, predicting performance across arbitrary DRAM-CXL
ratios reduces to modeling how latency evolves as data is
distributed between tiers (§5).

Because these pressure points reflect fundamental pipeline
mechanics rather than device-specific latencies, predictors
derived from a DRAM baseline through (a)-(c) can gener-
alize to forecast behavior on CXL, NUMA, or interleaved
configurations (d).

3.2 The Camp Framework

Camp implements the insights through a three-stage pipeline
for CXL and interleaving slowdown prediction in Figure 3:

3.2.1 Profiling. Camp collects a compact signature using
only 12 PMU counters (in Table 5) during a single DRAM-
only execution. These counters capture the intensity of
the pressure points defined above. For bandwidth-bound
workloads, a CXL profiling run captures the bandwidth
saturation point needed to model interleaving contention.

e Latency-bound workloads require only a single DRAM-
only run. Because these workloads do not saturate memory

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

bandwidth, their behavior on CXL and interleaved DRAM-
CXL setup can be fully inferred from DRAM measurements
using the models in §4-§5.

o Bandwidth-bound workloads require two profiling runs for
interleaving prediction (§5): one on DRAM and one on CXL.
The CXL run is necessary because bandwidth saturation cre-
ates non-linear latency inflation, i.e., contention interactions
that cannot be inferred from DRAM alone.

3.2.2 Modeling. These signals feed two analytical engines.
e The CXL slowdown model (§4) maps each pressure point
to its corresponding slowdown component. It predicts the
absolute magnitude of Sprd, Scache, and Ssiore by modeling
how stall cycles change under CXL latency.

o The interleaving model (§5) extends these predictions across
arbitrary DRAM-CXL ratios under weighted interleaving
policy. It synthesizes a continuous performance curve by
modeling how latency evolves as data is distributed between
tiers, exploiting MLP stability to reduce the problem to la-
tency estimation (the non-linear interaction between band-
width offloading and latency penalties).

3.2.3 Decision. The resulting predictions enable analyti-
cal optimization. Instead of searching for a good configura-
tion, CAMP calculates the “Best-shot” interleaving ratio and
guides colocations that minimize system-wide stalls (§6).

3.2.4 Design challenges. Developing this framework
requires overcoming three hurdles:

o Inference without observation. Unlike Melody, which mea-
sures CXL stalls directly, Camp infers future stalls without
ever observing slow-memory execution. We achieve this by
deriving transfer functions that model how increased latency
affects specific microarchitectural structures.

e Non-linear scaling. Slowdown is not a linear function of
latency. CAMP captures component-specific non-linearities,
such as the MLP and latency impacts on memory stalls,
prefetcher inefficiency, and store buffer backpressure, by
modeling the underlying microarchitectural causes.

e Microarchitectural grounding. To ensure interpretability,
Camp avoids black-box ML as used in prior works [34].
All models are derived from microarchitectural reasoning
grounded in established architectural principles, ensuring
that every prediction can be traced back to specific hardware
events (e.g., LFB reliance).

3.3 Camp Use Cases

By decoupling prediction from execution, CAMP enables
capabilities previously unavailable to reactive systems:
Proactive interleaving (“Best-shot”, §6.1). Existing tier-
ing systems like Colloid [51] reactively migrate pages based
on heuristics (e.g., latency). CAMP enables Best-shot, a policy
that analytically calculates the optimal DRAM-CXL ratio.
This allows systems to configure the optimal interleaving

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

[a] CDF of Diff (VS. SDRd) [b] CDF of SLLC/C [C] CDF of R [d] LDRAM VS. RLat [e] MLPDHAM VS. RMLF’ [f] L/MLP vs. RLat/RMLP
1 - 1 1 0 40 = 80 -

> _ - S s
oy 8r 8 [2 60 g — 60 gy,
8 6 B = - : ¥ SN

‘ . 40¢ © 20 ¢ S40f 7? ..
o Ar A . 5] €| B
— t = = L ¢

61} | tl\ﬁ 2r 2 j Rycp — | T 20 o« 5 200 %= Others
5 R/ P 0 [I 0 | Rlat | 0 . 0 . o 0 Llama
“0 2 4 6 8 10 0 20 40 60 80100 80 120 160 200 0 50 100 150 200 0 5 10 0 100
Abs. Slowdown Diff (%)) SLLC/C (%)) Scaling Ratio (o/o) LDRAM (Cycles) MLPDRAM LDRAM/MLPDRAM

Figure 4. Inferring demand-read slowdown (Sprq) from memory-centric proxies. (a) reports the estimation error of different proxy

metrics across workloads. Proxies based on memory-active cycles (C), combined with the latency and MLP scaling factors Ry q; and Ryrp, most

closely track the observed demand-read slowdown. (b) shows the fraction of memory-active cycles stalled by last-level cache misses (SL%). (c)

summarizes scaling ratios from DRAM to CXL. The number of concurrent requests Ry remains relatively stable, while latency and MLP scale
more substantially. (d) and (e) show how baseline DRAM access latency and DRAM MLP relate to their respective scaling factors, Ry q; and Ry p.
(f) shows the relationship between baseline DRAM latency tolerance, measured as L/ MLP, and the relative growth of latency over MLP on CXL.

ratio immediately, avoiding the warm-up period and migra-
tion overheads of reactive tiering. Best-shot outperforms
Colloid [51] by up to 21%, Soar [38] and Linux NUMA Bal-
ancing Tiering (NBT) [7, 8] by 17%, and Caption [46] by 5%
on bandwidth-bound workloads (§6.2).

Interference-tolerant colocation (§6.3). Traditional
hotness metrics (e.g., MPKI) fail to predict CXL performance
across workloads, while Camp provides reliable prediction
even when interference exists. A workload with high MPKI
may tolerate CXL well, while a low-MPKI workload may
suffer disproportionately. Camp identifies latency-tolerant
workloads that can be safely placed on CXL, freeing fast
memory for latency-sensitive applications, enabling up to
12% better performance than MPKI-guided placement.

4 CXL Slowdown Prediction

In this section, we focus on modeling workload performance
when running entirely on CXL, relative to DRAM. Camp
translates the microarchitectural insights established in
§3.1 into a quantitative prediction framework. Motivated
by Melody [36], we adopt a divide-and-conquer strategy,
modeling the three orthogonal sources of slowdown: demand
reads (Sprd), prefetching inefficiency (Scache), and store
backpressure (Sstore), individually. The key innovation of
Cawmp is deriving these models solely from DRAM-visible
signals. By identifying PMU counters causally linked to stall
behavior, we construct transfer functions that project DRAM
measurements into CXL slowdown predictions.

Below, we detail the modeling methodology for each
component (§4.1-§4.3) and then evaluate the framework’s
accuracy across diverse hardware platforms (§4.4).

4.1 Slowdown from Demand Reads (Sprq)

Demand-read slowdown (Spgrq) arises when demand read
LLC misses cause additional pipeline stalls. Modeling this
effect is non-trivial: not all cycles with outstanding requests
appear as exposed stalls, and different microarchitectural
factors interplay. Our goal is to (1) identify which factors
drive stall growth, (2) quantify their impact, and (3) derive

metrics that predict slowdown reliably.

4.1.1 Deriving the Predictor. Sprq originates from in-
creased L3 miss stalls. We extend this term by focusing on
memory-active cycles (C), which counts cycles with at
least one outstanding request, including both exposed stalls
and cycles hidden by instruction retirement. Since instruc-
tion retirement cycles remain constant under increased la-
tency, growth in C can reflect slowdown. Figure 4a (blue
line) shows that AC-based slowdown closely matches mea-
sured Sprg. Thus, Sprq can be estimated as the increase in
memory-active time normalized to total execution cycles (c):

AC Cexy — G
Sord ~ = - CXL - DRAM @)
where Ccxr, and Cpram represent C under CXL and DRAM.
Based on Little’s Law [43], C can be expressed as the function
of the number of data requests (N), latency (L), and MLP:
NxL
C= ®3)
MLP

Substituting this into Eq. 2, the behavior on CXL is governed
by how these three factors scale. We define the scaling ratios

. _ Lext — _MLPcxt
for latencyI:]MLP, and N as: Ryt = Tooas” Ruip = MPoras”
andRy = ND‘;’;{ . We then analyze their sensitivity and impact

on slowdown, as illustrated by the purple, red, orange, and
green curves in Figure 4a.

~
=~

Step 1: Request stability (Ry 1). First, we verify
whether CXL latency alters the workload’s request counts.
Figure 4c plots the ratio of memory requests on CXL wvs.
DRAM (Ry). The distribution is tightly clustered around
1.0, confirming that for over 95% of workloads, N remains
stable across DRAM and CXL executions. This indicates that
N is primarily determined by program behavior and cache
capacity, rather than memory latency. Thus, Next. = Npram-
Step 2: Transfer function. With N constant, we substitute
the scaling ratios into Eq. 2 to derive the transfer function:

3 1) o CorAM

c

R
SDRd ~ (R Lat

©

-MLP

Performance Predictability in Heterogeneous Memory

This equation exposes the physical mechanism: slowdown is
driven purely by the unhidden portion of latency growth. If a
workload scales its concurrency (Ryrp) to match the latency
increase (Rryt), the term becomes (1 — 1) = 0, resulting in
no demand-read slowdown. Figure 4a (red line) shows that
Eq. 4 accurately estimates measured Sprq, while ignoring
Rpat or Rypp results in large deviations (green and orange
lines). Eq. 4 shows that latency increase alone is insufficient
to predict slowdown; only the portion of latency that remains
unhidden after MLP scaling contributes to performance loss.

4.1.2 Modeling. Applying Eq. 4 is challenging because
Riat and Rypp cannot be directly inferred from a single
DRAM execution. Predicting how a workload’s (offcore) MLP
and latency expand on CXL requires modeling the CPU’s
ability to tolerate additional memory latency. To address
this challenge, we choose to explicitly model Ry ot and Lpram.
Figure 4d shows workloads exhibit diverse baseline DRAM
latencies because uncore or memory-controller buffers can
better absorb requests, mitigating observed latency when
hits occur. 78% of workloads have Ry ; between 140% and
180%, while the unloaded latency ratio for CXL versus
DRAM is 156%. The 22% of workloads with lower baseline
DRAM latency tend to exhibit smaller relative increases
on CXL, indicating that greater buffering makes latency
increases less pronounced. Figure 4d confirms this positive
correlation between latency on DRAM and its increase
ratio. Additionally, Figure 4c&e show the distribution of
MLP increases on CXL, with 12% of workloads exhibiting
increases exceeding 10%. The reason is that when concurrent
requests are in flight, higher latency extends all pending
requests, increasing the fraction of time spent at high
concurrency. However, this scaling is bounded by static
hardware resources such as miss-tracking queues (LFB/SQ).
The scaling factor vs. latency and MLP. In Figure 4f,

we plot the observed scaling factor (1513;; — 1) against the

workload’s baseline latency tolerance (%). The data
reveals a distinct pattern:

e High L/MLP region: High }g\ =4 results from high L and
low MLP. When MLP is low, workloads are serialized on
DRAM. Thus, the scaling factor is dominated by the raw
latency ratio (Rpyt).

e Low L/MLP region: Workloads with low L/MLP mostly
tend to have high baseline concurrency. Therefore, the
scaling factor is dominated by Ryyrp, showing greater

tolerance to latency increases.

The hyperbolic model. We model the latency tolerance

factor }%‘Z‘P as a function of baseline DRAM latency toler-
Lpram ; ; i
ance yp . This asymptotic behavior is captured by a

hyperbolic function of the form f(x) = which reflects

1
. . . . p+q/x ’

diminishing returns as concurrency approaches hardware

limits. The primary outliers are Llama workloads [6]. We

fit this to the empirical data in Figure 4f to obtain platform-

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

specific constants p and g, then substitute into Eq. 4 to derive
the final predictor:

SDRdzkme&% (5)
ptq Lpram
where s ¢ (L3 miss stalls) serves as a proxy for Cpranm- Here,
sprc reflects baseline demand-read stall exposure. Figure 4b
shows that the ratio of sy to C ranges from 50-70% for 70%
of workloads. Parameters p and g capture microarchitectural
characteristics. k is a platform-specific scaling constant that
converts the stall proxy spjc into memory-active cycles and
is calibrated once per platform.
Outlier analysis. While the hyperbolic model fits the vast
majority of workloads, Figure 4f highlights outliers, notably
Llama. These workloads exhibit lower-than-predicted slow-
down. This deviation likely stems from burstiness: our model
uses average MLP, but Al workloads often alternate between
computation and intense memory bursts. During bursts, in-
stantaneous MLP may exceed the average, hiding more la-
tency than the mean metric suggests.

4.1.3 Theoretical Alignment with Prior Art. It is note-
worthy that the functional form of Eq. 5 resembles the AOL-
based predictor used in SoarAlto [38]. However, a critical
distinction exists in their derivation. SoarAlto identified the
ratio L/MLP (AOL) as a predictive signal purely through
empirical correlation analysis.

In contrast, CAMP derives this relationship causally from
Little’s Law and the mechanics of memory-active cycle
expansion. Our derivation explains the underlying reason
AOL correlates with demand-read slowdown: it is not merely
an empirical feature that correlates with performance, but
the key factor for inferring how latency and MLP scale under
CXL. By grounding the predictor in microarchitectural first
principles, Camp provides an analytical explanation of the
mechanism behind the metric.

Takeaway #1: CamP establishes that demand-read slow-
down is predictable via a hyperbolic function of base-
line DRAM latency tolerance (L/MLP), which generalizes
across workloads and memory configurations. This for-
mulation provides the theoretical ground truth for prior
empirical metrics like AOL [38].

4.2 Slowdown from Prefetching (Scache)

Sprd captures stalls directly from demand reads. As mem-
ory latency increases, hardware prefetching mechanisms
that supply caches and transient buffers are negatively im-
pacted, causing additional cache stalls, termed Scache. Specif-
ically, longer access latency reduces prefetcher timeliness.
Extended pending time prevents prefetched data from filling
into L1/L2 promptly, causing data that should be in L1/L2 to
either be pending or, in the worst case, be dropped. Moreover,
other types of data requests can be blocked when filling into
transient buffers if contention exists. Melody [36] observed

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

[a] L1PF-L3-miss 1 [b] LFB-hit 1 [c] Scache VS.
vs. LFB-hit T vs. L1-hit | ; LFB Hit Ratio
10[Y 10[D S o
10 N L o g | R rewithdic os g
o 108 % * . | T 1081 S doaT
5 1078 =107k, 5 021
106 | | | | 106 | | | | € 0 n I
108107 108 1091010 108107 108 1091010 SRIES S
L1PF-L3-miss T LFB-hit 1 Workloads

Figure 5. LFB pressure explains cache-induced slowdown.

(a) Increased L1 prefetches that miss L3 correlate with higher LFB hit
counts; (b) Higher LFB occupancy is associated with reduced L1 hit
rates, indicating backpressure on the cache hierarchy; (c) Workloads
with larger cache slowdown tend to exhibit higher LFB hit ratios.

that CXL latency degrades L2 prefetcher timeliness, causing
up to 15% of workloads to suffer significant Sc,che. Recent
studies further confirm that prefetching effectiveness and
fill buffer behavior change substantially under high-latency
memory [41, 49]. However, this observation leaves a causal
gap: it does not explain how prefetch inefficiency translates
into pipeline stalls. To predict slowdown, we must answer:
(1) which specific structure becomes the bottleneck when
prefetching falters, and (2) how do we quantify this pressure?

4.2.1 Reasoning. We identify LFB as a critical pressure
point. On CXL, the prefetching pipeline undergoes a distinct
regime shift driven by the interaction between cache levels.

First, the L2 prefetcher fails to look far enough ahead to
cover CXL latency, causing data to arrive too late for the L2.
Consequently, the L1 prefetcher compensates by bypassing
the L2 and issuing requests directly to memory via the uncore.
CXL execution increases LFB hits, strongly correlated with
increase of L1 prefetch L3 misses (Figure 5a), indicating
more LFB-based data delivery. Correspondingly, L1D hits
decrease with LFB hit increases (Figure 5b). Together, these
observations suggest that data normally accessed from L1D
is now accessed from the LFB due to delayed cacheline
fills, caused by longer fetch time from lower memory levels
under higher CXL latency. Since the L2 is inclusive of the
L1, demand reads serviced by the L2 remain unaffected by
CXL latency. Therefore, the delayed accesses observed in the
LFB are driven primarily by these L1 prefetch loads fetching
from memory. Longer memory latency extends pending time
for in-flight L1 prefetch L3 misses. Additionally, increased
L1 prefetch L3 misses (while L3 hits remain constant)
indicate that expected L2 data now resides in memory. These
combined effects cause L1 prefetcher-allocated LFB entries to
experience longer fill time under increased memory latency.

Moreover, the extended occupancy on LFB can prevent
other data accesses, including demand reads and writes, from
allocating entries. This resource contention can also translate
prefetch inefficiency into pipeline stalls.

4.2.2 Deriving the Predictor. To model Scache based on
causal factors, we quantify two aspects: the workload’s

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

SKX2S8 SPR2S EMR2S
CPU Xeon 4110 Xeon 6430 Xeon 6530
Cores 10 @22GHz 32@21GHz 32 @ 2.1GHz
LLC 14MB 60MB 160MB
DRAM DDR4 2666MHz DDR5 4800MHz DDRS5 4800MHz
DRAM Bandwidth 52/32GB/s 191/97GB/s 246/120GB/s
DRAM Latency 90/140ns 114/191ns 111/192ns

Table 3. Testbed. We used three two-socket (“2S”) servers with
different CPU and memory configurations.

reliance on the LFB for data delivery, and the fraction of
that delivery sourced from prefetch requests to DRAM.

Signal #1: LFB hit ratio (Rypp-nit)- The LFB-hit ratio
captures workload dependence on the LFB for data access:
LFB-hits
LFB-hits + L1D-misses

Rypp it =

This ratio reflects two aspects: (1) the proportion of
accesses that retrieve data from the same cacheline (e.g.,
streaming patterns), and (2) the extent to which these
accesses are served by the LFB rather than L1D. High LFB-hit
ratios indicate strong LFB reliance, making such workloads
more vulnerable to prefetch delays.

Figure 5c¢ shows that high cache slowdown correlates with
high LFB-hit ratios, but a high ratio alone does not guarantee
severe slowdown, as LFB hits can result from prefetching,
demand loads, and writes.

Signal #2: Prefetch-from-memory reliance (Ryiem)- There-
fore, a second metric quantifies the fraction of LFB alloca-
tions attributable to memory prefetches:

R _ L1PF-from-Memory
Mem = Total LFB Allocations

A high Ryenm indicates that LFB allocations are primarily
driven by prefetches from memory, making the workload
sensitive to memory latency.

The predictor. We model Sc,che as the product of normalized
cache stall cycles (scache), the workload’s reliance on LFB hits
(RLFB-hit), and its reliance on memory prefetches (Rytem)-

SCache
Scache ® k X RiFR-hit X RMem X Y (6)

where k is a platform-specific calibration constant.

Takeaway #2: Camp predicts Scache by modeling the
impact of prefetching on cache stalls. The LFB-hit ratio
(Rrpp-hit) and memory prefetch reliance (Ryem) are the key
factors to model increased cache stalls under CXL.

Having modeled the CXL impact on read paths (demand
and prefetch), we next address the impact on the write path.

4.3 Slowdown from Stores (Sstore)

Finally, we address the impact of CXL on the write path.
Unlike loads, stores are typically asynchronous and removed
from the critical path by the Store Buffer (SB). However, this
buffering capacity is finite. We identify SB Backpressure

Performance Predictability in Heterogeneous Memory

CXL-A CXL-B CXL-C
DRAM DDR4 2666MHz DDRS5 4800MHz DDR5 4800MHz
Bandwidth 24GB/s 22GB/s 52GB/s
Latency 214ns 271ns 239ns
PCle 5 Lanes x8 X8 x16

Table 4. Three ASIC CXL 2.0 memory expanders. Our CXL
devices deliver 22-52 GB/s of bandwidth and exhibit latencies between
214ns and 271ns. CXL-C’s nearly double bandwidth arises from its
use of multiple memory channels.

as the mechanism that converts hidden write latency into
exposed pipeline stalls.

4.3.1 The Mechanism: RFO Serialization. Every store
operation requires the core to obtain exclusive coherence
permissions for the target cacheline via a RFO request. While
the core can issue the store instruction to the SB immediately,
the SB entry cannot be freed until the RFO completes.

On CXL, RFO latency increases by around 2-3X. This cre-
ates a flow-control mismatch: the core issues store requests
into the buffer (i.e., SB) faster than the buffer can retire these
requests. Once the SB fills, it asserts backpressure on the
pipeline, potentially blocking the retirement of all subse-
quent instructions, even independent reads. Thus, under
high write intensity, the “asynchronous” store mechanism
degrades into a synchronous stall governed by RFO latency
on CXL due to limited SB capacity.

4.3.2 Deriving the Predictor. When the Store Buffer is
full, the CPU pipeline stalls. This effect is amplified under
CXL as increased memory latency exposes RFO delays to
the CPU, creating pipeline backpressure.

To predict this, we measure the Store Buffer Fullness Stalls
(ss) on DRAM. This counter captures the number of stall
cycles during which the pipeline is back-pressured by a
full SB. Since CXL extends the duration of each RFO, it
proportionally extends the time the SB remains full. We
therefore model store slowdown (Sstore) as a linear function
of these stalls:

SSB
Sstore k X T (7)

where ssp is the standard PMU counter for SB-full stall
cycles and k is a platform-specific constant derived from
microbenchmarks. This model captures the intuition that
write-heavy workloads (e.g., database logging or large mem-
sets) are bottlenecked mostly by the rate at which the mem-
ory subsystem grants RFOs. By detecting SB saturation on
DRAM, Cawmp identifies these workloads before migration.

4.4 Implementation and Evaluation

Cawmp translates the theoretical transfer functions derived
above into a practical runtime predictor. This section details
the deployment workflow, the mapping of abstract model
terms to physical PMU counters, and a comprehensive
evaluation across diverse hardware and workloads.

4.4.1 Workflow. Camp operates in two phases:

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Name
P" | STALLS_L1D_MISS
p,* STALLS_L2_MISS
P3| STALLS_L3_MISS
p,t* L1_MISS

Brief Description
#s on L1 miss demand load

#s on L2 miss demand load
#s on L3 miss demand load
Load instructions missing L1
Ps'* LFB_HIT Load instructions missing L1, hitting LFB
YA BOUND_ON_STORES | #s where the Store Buffer was full
P; |PF_L1D. ANY_RESPONSE | All L1 prefetch requests to offcore
Pt PF_L1D.L3_HIT L1 prefetch to offcore that miss L3
Py | PF_L2.ANY_RESPONSE |L2 prefetch data reads, any response type

Pyo PF_L2.L3_HIT L2 prefetch reads that hit in the L3
Py ORO.DEMAND_RD Outstanding demand data read per cycle
Pt OR.DEMAND_RD Demand data read requests sent to offcore

P13 | ORO. CYC_W_DEMAND_RD | #¢ when demand read request is pending
P14 | LLC_LOOKUP.PF_RD |Cache & snoop filter lookups; prefetches
Pyst LLC_LOOKUP.ALL |Cache & snoop filter lookups; any request
Pt TOR_INS.IA_PREF |Prefetch that misses in the snoop filter
Pi7% | TOR_INS. IA_HIT_PREF |Prefetch that hits in the snoop filter

Table 5. Intel PMU counters for Camp. #: number of
cycles; #s is number of stall cycles; 0RO (P11 and P13) refers to
OFFCORE_REQUESTS_OUTSTANDING; OR (P;2) refers to OF FCORE_REQUESTS;
LLC_LOOKUP (P14 and Pys) refers to UNC_CHA_LLC_LOOKUP; TOR_INS (P14
and Py7) refers to UNC_CHA_TOR_INSERTS; Counters marked with T are
used by SKX; ¥ by SPREMR in the models in § 4.4.3. Counters without
symbols (Py—P11) are used during model derivation but cancel out and
therefore do not appear in the final model. Including the cycle-count
counter (omitted from the table), the SKX and SPR/EMR models use
11 and 12 counters, respectively.

(1) One-time calibration. We run a lightweight suite of
microbenchmarks to characterize the target hardware’s
behavior. This yields the platform-specific constants: the
parameters (p, q) that define the CPU’s MLP and latency
impacts (Eq. 5), and the scaling coefficients (k) for each
component model.

(2) Runtime prediction. During DRAM execution, CAMP
samples standard PMU counters (11 on SKX, 12 on
SPR/EMR). These raw counts are fed into the calibrated
models to forecast CXL-induced slowdown a priori.

Microbenchmarks. The calibration suite isolates specific
pressure points: (1) Pointer Chasing: Isolates pure latency
sensitivity (Sprg with MLP=~1). (2) Sequential Reads: Drives
high bandwidth to characterize MLP behavior. (3) Strided
Access: Triggers prefetchers to calibrate Scache constants. (4)
Memset: Generates back-to-back stores to characterize SB
backpressure (Sstore)-

4.4.2 Experimental Setup. We validate Camp on three
Intel microarchitectures: Skylake (SKX), Sapphire Rapids (SPR),
and Emerald Rapids (EMR). To test generalizability, we use
three distinct ASIC CXL 2.0 expanders (Table 3), denoted as
CXL-A, CXL-B, and CXL-C. These devices span a range
of latencies (214-271ns) and bandwidths (22-52GB/s). We
also emulate a NUMA tier on SKX to validate the model’s
stability on standard multi-socket systems.

Workloads. We evaluate CaAMP on 265 workloads including
SPEC CPU 2017 [13], PARSEC [19], GAPBS [17], PBBS [14],

https://perfmon-events.intel.com/platforms/skylakex/core-events/core/#event-CYCLE_ACTIVITY.STALLS_L1D_MISS
https://perfmon-events.intel.com/platforms/skylakex/core-events/core/#event-CYCLE_ACTIVITY.STALLS_L2_MISS
https://perfmon-events.intel.com/platforms/skylakex/core-events/core/#event-CYCLE_ACTIVITY.STALLS_L3_MISS
https://perfmon-events.intel.com/platforms/skylakex/core-events/core/#event-MEM_LOAD_RETIRED.L1_MISS
https://perfmon-events.intel.com/platforms/skylakex/core-events/core/#event-MEM_LOAD_RETIRED.FB_HIT
https://perfmon-events.intel.com/platforms/skylakex/core-events/core/#event-EXE_ACTIVITY.BOUND_ON_STORES
https://perfmon-events.intel.com/platforms/skylakex/offcore-events/offcore/#event-OFFCORE_RESPONSE%3Arequest%3DPF_L1D_AND_SW%3A%20response%3DANY_RESPONSE
https://perfmon-events.intel.com/platforms/skylakex/offcore-events/offcore/#event-OFFCORE_RESPONSE%3Arequest%3DPF_L1D_AND_SW%3A%20response%3DL3_HIT.ANY_SNOOP
https://perfmon-events.intel.com/platforms/skylakex/offcore-events/offcore/#event-OFFCORE_RESPONSE%3Arequest%3DPF_L2_DATA_RD%3A%20response%3DANY_RESPONSE
https://perfmon-events.intel.com/platforms/skylakex/offcore-events/offcore/#event-OFFCORE_RESPONSE%3Arequest%3DPF_L2_DATA_RD%3A%20response%3DL3_HIT.ANY_SNOOP
https://github.com/intel/perfmon/blob/9828091ffe353e5ac5a27ab2cbb9fc3e662c5429/SKX/events/skylakex_core.json#L2221
https://github.com/intel/perfmon/blob/9828091ffe353e5ac5a27ab2cbb9fc3e662c5429/SKX/events/skylakex_core.json#L4189
https://github.com/intel/perfmon/blob/9828091ffe353e5ac5a27ab2cbb9fc3e662c5429/SKX/events/skylakex_core.json#L2245
https://www.spinics.net/lists/linux-perf-users/msg36982.html
https://www.spinics.net/lists/linux-perf-users/msg36982.html
https://perfmon-events.intel.com/platforms/emeraldrapids/uncore-events/uncore/#event-UNC_CHA_TOR_INSERTS.IA_DRD_PREF
https://perfmon-events.intel.com/platforms/emeraldrapids/uncore-events/uncore/#event-UNC_CHA_TOR_INSERTS.IA_HIT_DRD_PREF

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

CDFs of Slowdown Difference (Prediction vs. Actual)

, [ANUMA_—b]OXLA []OXLB [l CXLC
9] 9 9] 9]
8 8 8] 8
711 bRy =| 7 71 71
61| Cache = g 61 61
Store
S0 5 10° 5 10°0 s 1d0°0 5 10

Absolute Slowdown Difference (%)

Figure 6. Prediction accuracy of individual slowdown compo-
nents. CDFs of absolute prediction error demonstrate that demand-
read, cache, and store slowdown components are predicted accurately
and consistently across SKX NUMA and three CXL devices.

XSBench [48], Phoronix [10], and modern cloud applications
(Redis [11], Spark [28], VoltDB [15], MLPerf [12], Llama [6],
GPT-2 [3], DLRM [2]). This set covers a wide spectrum of
memory behaviors, from pointer-heavy data structures to
streaming analytics and AL

4.4.3 Counter Mapping. To deploy the models, we map
the abstract terms (Rpat, Rvrp, etc.) to specific Intel PMU
counters (Table 5).

For Spry, we measure L and MLP using standard offcore
request and cycle counters. For Sgiore, We directly measure
Store Buffer full cycles (Ps). For Scache, measuring Ryem (the
fraction of LFB fills from memory prefetches) is challenging
because current PMUs lack precise data-source tracking for
LFB allocations. We therefore approximate Ry, using the
ratio of offcore prefetch misses to total prefetch requests:
P7P s on SKX and P“ X 52 on SPR/EMR. The overhead

Pys+Py7
of readmg these counters via Linux perf is negligible.

Final slowdown prediction model. S = Sprq + Scache +
Sstore,» With PMU counters P;, cycles ¢, and platform-specific
constants k, p, ¢ which are derived via microbenchmarks:

1

P
SPRd = kdrd * 2

P p2+g
13
GSPREMR _ 1. PP _Ps PP
Cache cache c Py+Ps P15 Pig+Pyy
GSKX _ p PP Ps P—Pg
Cache cache @ P4+Ps P;

P
Sstore = Kstore * 76

4.4.4 Validation Results. We evaluate CAMP by compar-
ing its predictions against the measured CXL slowdown.

Accuracy by component. Figure 6 breaks down accuracy
for each sub-model, showing the CDFs of prediction errors.
Cawmp achieves high precision across all components:

® Sprd predicts within 5% error for 92-94% of workloads
on NUMA, CXL-A, and CXL-C. On CXL-B, accuracy is
slightly lower (78.7% within 5% error) due to higher tail
latency variance of the device, as reported by Melody [36].
® ScCache predicts within 5% error for 93-97% of workloads
across all devices, confirming that our model (Rppp-hit X

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

10

SPEC ® GAPBS v PBBS ¢ Others e
[a] NUMA [b] CXL-A [c] CXL-B [d] CXL-C
60 ° e | 60
4 n
o # " a0 ;‘, 60 27 "L:
T 40 e Yaivy | 40
3 "y 4 . m Y
8 20 Y e,
Q *
< 20 20 v 20 4
0 corr=0.965 0 c‘grr:O.‘91 9 _corr=0.963 0 corrz0.940
20 40 60 20 40 20 40 60 80 20 40 60

Predicted (%) Predicted (%) Predicted (%) Predicted (%)

Figure 7. Overall slowdown prediction. Predicted vs. actual
slowdown for NUMA, CXL-A, CXL-B, and CXL-C across all workloads
in (a)-(d), respectively.

[a] SDRd [b] SCache [C] SStore [d] SOverall
< 501 ctual o 501 50+ 50
9; 40 Predicted =| 401 401 40
g 301 301 304 30
-c;) 204 20+ 20+ 20
2 104 101 101 10
0 =L 0 0 At 0 !
78 7975 78 1975 78 7975 7S 7975

Instructions (x10'2)
Figure 8. Time series prediction accuracy (tc-kron). Actual vs.
predicted slowdown overlap over time across slowdown all components.

‘NUMA CXL-A CXL-B CXL-C

Pearson Coefficient 0.965 0.919 0.963 0.940
Absolute Error < 5% 88.4% 88.7% 77.8% 92.4%
Absolute Error < 10% | 97.3% 943% 90.7% 96.2%

Table 6. Overall prediction accuracy. Camp predicted slowdowns
closely match measured performance, with Pearson correlation coeffi-
cients between 0.919 and 0.965. Across configurations, 77.8%-92.4% of
workloads have absolute error within 5%, and 90.7%-97.3% fall within
10%, indicating robust accuracy across diverse CXL devices.

Rumem) accurately captures prefetch inefficiency.

® Sstore predicts within 5% error for 93-97% of workloads,
validating the linear relationship between store buffer
saturation and slowdown.

Overall accuracy. Figure 7 shows the correlation between
predicted and actual total slowdown. Camp achieves a
Pearson correlation of 0.97 on NUMA and 0.91-0.96 on
CXL. Notably, the model generalizes across devices: CXL-
C provides 2x the bandwidth of CXL-A, and CXL-B has
27% higher latency than CXL-A, yet Camp correctly predicts
slowdown without requiring manual recalibration.

Misprediction analysis. While Camp is highly accurate,
~10% of workloads exhibit errors >5%. Analyzing these
outliers reveals the boundaries of the model:

1. Tail latency noise (underestimation). Workloads with
irregular access patterns (e.g., graph analytics pr-twitter)
often trigger worst-case tail latencies on CXL devices [36].
Since Camp relies on average latency signals from DRAM,
it underestimates the penalty when the CXL device’s tail
latency diverges significantly from its mean. This effect is

Performance Predictability in Heterogeneous Memory

[a] 649.fotonik3d

mm Store
DRd
Cache

[b] 654.roms
mm Store
201 = DRd
Cache

[c] wmt20
mm Store
407 = DRd
Cache

[d] rangeQuery2d

ay
o

10

N
o
!

20
0 |

o

Slowdown (%)

|
N
o

-10

. . 0+ .

O a0 0 . ¥ P PN o0 P

G O 60-6 "\ 50'6 o\ c_-,()-c"’
Interleaving Ratios

0 % &
Figure 9. Weighted interleaving performance vs. ratios. Per-
component slowdown (Spra, Scaches and Sstore) under interleaving for
649.fotonik3d, 654.roms, wmt20, and rangeQuery2d.

most pronounced on CXL-A and CXL-B.

2. Hyper-parallelism (overestimation). For workloads
with extreme MLP (e.g., pr-kron in GAPBS), the model
tends to overestimate slowdown. This suggests that at
very high concurrency levels, the CPU’s ability to overlap
latency scales non-linearly in ways that simple average
MLP metrics do not fully capture.

3. Instrumentation blindspots. On SPR/EMR, the lack of
precise counters for “L1 prefetch that hits in L2” forces us
to use offcore proxies for Ryem. This approximation can
degrade accuracy for workloads with complex mid-level
cache behavior (Scache errors).

4.4.5 Dynamic Prediction. Real-world workloads exhibit
phase behavior. Figure 8 demonstrates CAmP’s ability to track
these dynamics. The predicted time series closely matches
the measured slowdown per second, confirming that the
causal modeling holds instantaneously, not just in aggregate.

Takeaway #3: Camp achieves >90% prediction accuracy
across NUMA and CXL, validating that CXL slowdown
is driven by fundamental microarchitectural bottlenecks
(LFB/SQ/prefetch/SB) rather than opaque device properties.

4.4.6 Limitations and Future Work. Camp’s CXL slow-
down model currently applies to regimes where device band-
width is not saturated. Once bandwidth saturates, access
latency can increase non-linearly, cascading into amplified
demand-read (Sprq), cache-induced (Scache), and store-induced
(Sstore) slowdowns. Modeling these bandwidth-saturation ef-
fects from non-bandwidth-bound DRAM measurements is
an interesting direction for future work.

Platform extensibility. Since Camp relies on counters that
capture memory hierarchy efficiency relative to latency and
bandwidth profiles, and does not depend on Intel-specific
hardware features, we believe the approach can be extended
to AMD and ARM platforms with equivalent PMU counters.

5 Synthesizing Interleaving Performance

§4 established a method to predict performance at the end-
points: 100% local DRAM and 100% CXL. However, modern
systems increasingly employ weighted interleaving [9, 16],

11

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

[a] DRd Slowdown Z[1b] MLP vs. Interleaving Ratios

= * Actual (2-threads) * 2-threads
& 44" Predicted (2-threads) /] * 8-threads
s aithely . -
?;2 redicted (8-threa %,
° : =
go0- ——
[92]
-2 \ 0 \
100:0 50:50 0:100 100:0 50:50 0:100

Interleaving Ratios Interleaving Ratios
Figure 10. MLP and DRd slowdown (Sprq) under interleaving
(603.bwaves). MLP remains mostly unchanged across different
interleaving ratios. In addition to stall cycles, Sprq can also be
estimated using memory-active cycle count (P13 in Table 5).

distributing pages across tiers to maximize aggregate band-
width. This creates a continuous spectrum of performance
possibilities between the two extremes. In this section, we
extend our previous model to interleaved memory config-
urations and predict workload performance under a given
interleaving ratio.

Challenges. Predicting performance at an arbitrary inter-
leaving ratio (x) is non-trivial because shifting data creates
a feedback loop: changing the ratio alters the traffic load
on each tier, which non-linearly impacts contention and la-
tency. Prior work [46] explores a limited set of ratios through
multiple trial runs, often converging to suboptimal results.

Our approach. We propose a physics-based synthesis model.
Our key insight is that while memory latency varies under
interleaving, regardless of contention, the workload’s MLP is
structurally bounded and varies weakly with interleaving. By
treating MLP as approximately constant, we derive a closed-
form equation that predicts performance (i.e., stall cycles) at
any interleaving ratio as a function of how latency varies
across interleaving ratios for both tiers, using only endpoint
stall and latency measurements. This allows us to predict
the full performance spectrum and the optimal interleaving
ratio using at most two profiling runs.

5.1 Characterization: The Shape of Slowdown

We profiled 100+ workloads across 101 different interleaving
ratios (100:0 to 0:100) to characterize the solution space
and motivate our model. As shown in Figure 9, slowdown
behavior falls into two distinct physical regimes:

o Latency-bound (linear response): Workloads not bounded
by bandwidth (e.g., rangeQuery2d) see no benefit from in-
terleaving. Their slowdown increases linearly as more data
is moved to the slow tier, since each remote access incurs
an approximately fixed latency penalty.
Bandwidth-bound (convex response): Bandwidth-intensive
workloads (e.g., 649. fotonik3d, 654. roms) exhibit a convex
“bathtub” curve. There exists a specific optimal ratio where
the gain from aggregate bandwidth (DRAM+CXL) out-
weighs the CXL latency penalty, often outperforming a
pure DRAM-only configuration.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

[a] 2-thread [b] 8-thread [c] Slowdown

3507¢ DRAM * DRAM | — 29T+ 2-thread
@‘ * CXL ’uc? CXL & 207° 8-thread
=250 v250,_ Predictel c 151
> > 2
e Q o 10

{ e}

21501 52150*\ = 5
© © o
| — & 0

50 50 T -5 \

T
100:0 50:50 0:100
Interleaving Ratios

100:0 50:50 0:100 100:0 50:50 0:100
Interleaving Ratios Interleaving Ratios

Figure 11. Latency and slowdown curves under DRAM-
CXL interleaving (603 .bwaves). With 8 threads, 603 .bwaves is
bandwidth-bound on DRAM, and interleaving improves performance,
yielding negative slowdown near a 37:63 ratio in (c). Both local
and CXL latencies follow parabolic trends. In contrast, the 2-thread
configuration is not bandwidth-bound and exhibits nearly constant
latency across interleaving ratios.

These two regimes explain why interleaving is either
harmful, neutral, or beneficial. Moreover, slowdown under
interleaving can be attributed to sub-components (demand
reads, cache, and stores), which makes it feasible to develop
sub-models for each source. These observations motivate a
general model that explicitly captures stall cycles variation
across interleaving ratios, regardless of memory contention.

5.2 The Synthesis Model

Figure 10a shows that Sprq closely matches AC-based slow-
down. Therefore, our goal is to predict memory-active cycles
C(x) when a fraction x of the memory footprint is mapped
to DRAM and (1—x) to CXL under the weighted interleaving
policy. We define the notation in Table 7. We use x as the
interleaving policy knob (footprint fraction) and treat it as
a monotonic proxy for the steady-state request fraction to
the DRAM tier. Our experiments confirm that the fraction of
data requests to the DRAM tier (N (x)) across interleaving
ratios aligns well with the memory footprint fraction (x). For
instance, 99% of data points show less than 2% absolute differ-
ence between tier request share (N (x)/N) and x for 8-thread
603.bwaves. Thus, tier request share can be approximated by
footprint share under weighted interleaving.

5.2.1 The Invariant: MLP Consistency. Eq. 3 gives the
relationship among N, L, and MLP. As N and L change
with interleaving ratios, how does MLP behave? Our key
observation is that MLP is structurally bounded and varies
minimally across interleaving ratios.

e Observation: As shown in Figure 10b, whether a work-
load is bandwidth-bound (8 threads) or not (2 threads),
the measured MLP per core fluctuates negligibly (< 5%)
as we sweep the interleaving ratio x (X-axis). Figure 4c
shows the distribution of MLP increases on CXL: 88% of
workloads exhibit increases below 10%, and 76% below 5%.

e Reasoning: MLP is primarily determined by the core’s
structural limits (e.g., LFB/SQ size) and the program’s data
dependency, not by memory contention.

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

12

Symbol Meaning

x Fraction of memory footprint on DRAM (0 < x < 1)

x’ Fraction of memory footprint on a tier (0 < x” < 1)

Lidle (Constant) Unloaded/idle latency for DRAM and CXL,
LB&AM and Li%)lg‘ are measured via Intel MLC [4]

Laan Latency under full load, measured for each workload
under DRAM (LEI%AM, x = 1) and CXL (Lfcu)l(lL’ x=0)

M(x’) Load scaling factor: Relative cycle contribution

of a tier handling load fraction x’

Table 7. Notation for CamP’s interleaving synthesis model.

o Implication: While MLP may fluctuate slightly, it does
not scale proportionally with interleaving-induced latency
changes. Consequently, changes in memory-active cycles
are determined by the accumulation of memory latency
rather than by changes in concurrency.

5.2.2 Modeling Latency Curve. With MLP fixed, the
problem reduces to modeling how latency changes with
load. Accordingly, in Eq. 8 we interpret x’ as the tier’s
effective load share induced by the interleaving ratio. As
shown in Figure 11b, when memory contention occurs on
each tier, latency is not static. As a tier’s effective load
increases (growing with its footprint fraction under weighted
interleaving), latency rises slowly at first, then sharply as
queues in the memory controller and interconnect approach
saturation. We model this contention using a quadratic
transfer function, capturing the empirically observed
super-linear latency growth with load. This form reflects
the rapid queue buildup that occurs once service capacity
is approached. In contrast, without bandwidth contention
(Lfan & Lidie), per-tier latency remains near unloaded values
and constant across interleaving ratios (Figure 11a).
L(x") = Ligte + (Lfun = Lidte) - x'* ®)
Here, Ligc is the idle latency (measured at x” ~ 0) and Lgy is
the full-load latency (measured at x” = 1). When Lgj; and Ligje
differ per tier (i.e., memory contention exists), this quadratic
fit closely matches empirical measurements (Figure 11b).
We do not claim that latency is universally quadratic in
load. Rather, the quadratic form provides a compact and
sufficiently accurate approximation over the operating range
relevant to interleaving, as validated by our measurements.

5.2.3 Deriving the Load Scaling Factor. We now define
the Load Scaling Factor, M(x’), which represents how
many memory-active cycles a tier contributes when handling
a fraction x’ of the load, relative to that tier’s endpoint
baseline (i.e., when the tier serves the entire memory
footprint). Using the relation Cycles o< Load X Latency:

Load X Latency x” - L(x")
1+ L
Substituting our quadratic latency model (Eq. 8) yields:
- [Lidie + (Lutl — Lidie) - ']

Ltan

M(x") =

Baseline

My =~ ©)

Performance Predictability in Heterogeneous Memory

Profiling : 2 runs: All-Local and All-CXL 1 run (All-Local) :
’ I (stalls, latency) (stalls, latency, MLP, LFB/PF) |!
I ¢* —
‘ Predict CXL stalls (§4 models)
Prediction {

’ Predict slowdown at any interleaving ratio ‘

Figure 12. Workflow for performance modeling. Bandwidth-
bound workloads (L > L;gj,) require two profiling runs; latency-bound
workloads need only one, with CXL stalls predicted analytically.

We compute M(x”) separately for DRAM and CXL using
each tier’s measured (Ligle, L), so the scaling factor is
anchored to the corresponding endpoint run.

This function captures the dominant effects of contention:

e No contention (Lfyn ~ Lige): The quadratic term
vanishes, and M(x") ~ x’. Performance scales linearly.

e High contention (L¢yy > Ligie): The cubic term (x")
dominates. Shifting traffic away from this tier yields super-
linear performance gains, mathematically explaining the
“bathtub” curve observed in bandwidth-bound workloads.

5.2.4 The Unified Predictor. Finally, we predict slow-
down at ratio x by scaling the endpoint memory-related stall
cycles from each tier using the tier-specific load factors, then
normalizing by the DRAM-baseline CPU execution cycles.

_ M(x) - spram + M(1 — x) - scxL — SDRAM
S(x) .

(10)

where spram and scxp denote the stall cycles for each
slowdown component (Sprc, Scaches and ssp as defined in
§4) measured when the workload runs on DRAM and
CXL, respectively. We use ¢ from the DRAM run as the
normalization baseline throughout. The overall slowdown is
the sum of SDrd(x)» SCache (x)= and SStore (x)

5.3 Profiling Workflow

Figure 12 illustrates CamP’s interleaving profiling strategy.

1. Latency-bound (1 Run): If a workload’s measured
memory latency in the DRAM run is close to or less than
the unloaded latency (LiDdfeAM), it is not bandwidth-bound.
We classify a workload as latency-bound if its measured
DRAM latency is within 7 of LSﬁAM, where 7 is a small
platform-specific tolerance (e.g., 5%). The model simplifies
to linear interpolation (L(x’) is constant). Because we can
predict CXL stalls from DRAM (§4), we need only one
DRAM run.

2. Bandwidth-bound (2 Runs): If latency is elevated,
contention exists. We use a 2nd run on CXL to measure
the endpoint scx, and then rely on Eq. 10 to synthesize
the full interleaving performance curve.

13

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

40 [a] Sprd 40 [b] Scache 40 [c] Sstore 40 [d] Soverall

2305 i a 30 30, 30,
g 20] 20] 20 20 |
5 10| 10 10 | 10 |
5 0 <J 04 0 0 E
?.10 ‘ -10 ‘ -10 ‘ -10 ‘

00,5 %0:5 %705"00:9 *0:5 %1057%:5 05 705702 *0:5 %700

Interleaving Ratios

Figure 13. Prediction accuracy. The actual vs. predicted

slowdown for 10-thread 603 .bwaves under interleaving ratios from
100:0 to 0:100. (a)—(c) show results for per-component slowdown (Spgy,
ScCaches and Ssore). (d) shows the sum of all sub-slowdowns.

[a] CDF of Slowdown Diff.
Prediction vs. Actual o 50

[b] Optimal Ratio [c] Best Performance
5P(;edic'(ion vs. Actual 3|3rediction vs. Actual

1]
4 m —_
2 ‘_é’ ‘g‘ﬂ% 2_°,20* r,"f/‘
: £ 75:25] s ® .
4 o o o° 2104 @
21 T < rd
0 2 100:0 : 0
100:0 75225 50:50 O 10 20 30

0 5 10
Abs. Slowdown Diff. (%) Predicted Optimal Ratio ~ Prediction (%)
Figure 14. Accuracy of interleaving prediction. (a) CDF of
mispredictions; (b) Predicted versus actual optimal interleaving ratio;
(c) Best interleaving performance under Best-shot vs. oracle.

5.4 Interleaving Model Evaluation
Accuracy. Figure 13 visualizes the prediction for 603.bwaves.

The model reconstructs the convex performance curve,
closely matching the actual measured slowdowns across
all 99 ratios (from 99:1 to 1:99). Across 20 bandwidth-
bound workloads from SPEC CPU 2017 and Llama, 90% of
predictions fall within 5% absolute slowdown error
(Figure 14a).

Finding the optimum. Figure 14b compares the predicted
vs. actual optimal interleaving ratios. While the model is
slightly conservative, Figure 14c confirms that the perfor-
mance achieved by the predicted ratios is practically identi-
cal to the oracle optimum. This confirms that CAmMP can effec-
tively guide “Best-Shot” interleaving policies (§6.1), jumping
directly to the optimal configuration without iterative search.

5.5 Limitations and Future Work

CamP’s interleaving model currently applies to weighted
interleaving policies. An important future direction is to
extend this framework to first-touch-based allocation and
migration-driven tiered memory management, enabling per-
formance synthesis under dynamic page placement policies.
Additionally, extending the model to capture cross-tier in-
terference effects and non-uniform workload phases could
further improve accuracy.

6 Camp Use Cases

This section demonstrates how Camp’s predictive models
translate into practical system-level benefits. We focus on

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

two representative use cases: (1) Best-shot, which selects a
near-optimal interleaving ratio without online search, and
(2) colocated workload placement across memory tiers. In
both cases, Camp outperforms state-of-the-art policies by
reasoning directly about performance slowdown, rather than
relying on indirect proxies such as latency or miss counts.

6.1 Best-shot Interleaving Policy

Best-shot is an interleaving policy derived from CamP’s
synthesized interleaving performance model. For a given
workload, Best-shot leverages the predicted performance
curve to provide three key capabilities. First, it determines
whether a workload can benefit from aggregate DRAM
and CXL bandwidth, regardless of whether the workload
is latency-sensitive or bandwidth-bound. Second, it predicts
the interleaving ratio that minimizes execution time. Third,
it accurately forecasts performance at arbitrary interleaving
ratios. Importantly, Best-shot also handles workloads that do
not benefit from CXL bandwidth. In such cases, it predicts the
interleaving configuration that minimizes slowdown relative
to DRAM-only execution, allowing users to proactively avoid
harmful configurations.

6.2

6.2.1 Experimental setup. We evaluate Best-shot on
eight bandwidth-bound workloads from SPEC CPU 2017 and
Llama. Across the evaluated workloads, Best-shot uses only
62-74% of the fast-tier capacity. To avoid disadvantaging
the baseline systems, we provision them with a fixed 4:1
fast-to-slow tier ratio (i.e., 80% fast memory).

We compare Best-shot against seven baselines: (1) “Inter-

“Best-shot” vs. Existing Tiering Policies

leave 1-17, Linux default 1:1 interleaving policy (MPOL_INTERLEAVED),

(2) Caption [46], which searches over a coarse set of inter-
leaving ratios using latency-based heuristics, (3) First-touch
placement without proactive migrations, (4) NUMA Balanc-
ing Tiering (NBT) [7, 8], memory tiering support in recent
Linux, (5) Colloid [51], a tiering system that aims to equalize
access latency across tiers, (6) Alto [38], a tiering policy (on
top of Colloid) that limits page migration during high-MLP
time intervals, and (7) Soar [38], a profile-guided allocation
policy that places performance-critical objects on DRAM.

6.2.2 Overall results. Figure 15 shows that Best-shot con-
sistently outperforms all baseline approaches across the eval-
uated workloads, achieving up to 21% performance improve-
ment over First-touch and substantial gains over Caption,
NBT, Colloid, Alto, and Soar. While Caption improves upon
static policies, its effectiveness is limited by a coarse-grained
search space. Migration-based tiering policies (NBT, Col-
loid, and Alto) are effective in latency-constrained scenarios.
However, under high bandwidth pressure, they fail to fully
exploit the aggregate DRAM and CXL bandwidth, often un-
derperforming the DRAM-only configuration and incurring
nontrivial migration overheads. Similarly, Soar’s strategy of

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

14

Best-shot == Caption m=m NBT Alto m=m
I?tgrleave 1-1 === First-touch === Colloid == Soar
s
<
& 1.1
<]
+ 1.0
[0
o
€ 0.9
S
0.8 A (2 o as 0N
N S et 0 of -©
5ot O o a“aq‘a‘“‘ o oo 0 reed 2

Figure 15. Best-shot vs. others. Best-shot exploits aggregate
DRAM and CXL bandwidth and consistently outperforms 7 baseline
policies across 8 bandwidth-bound workloads. Performance is normal-
ized to DRAM-only execution. Y-axis starts at 0.8. Higher is better.

placing most performance-critical objects in the fast-tier un-
derutilizes CXL bandwidth and consequently underperforms
interleaving-based approaches.

6.2.3 Understanding Best-shot performance gains. We
now analyze why Best-shot outperforms existing approaches
and identify the sources of its performance advantages.
Best-shot vs. Colloid and NBT. Colloid is designed around
the principle of latency equivalence, migrating pages to
equalize access latency across tiers. However, equalizing la-
tency does not imply optimal performance. Consider 654. roms:
under Colloid, the average DRAM and CXL latencies are ap-
proximately 168ns (1.9 of idle DRAM latency) and 189ns
(2.1x), respectively. To reduce the gap, Colloid aggressively
migrates pages into DRAM, increasing contention on DRAM.
In contrast, Best-shot predicts an interleaving ratio that
reduces DRAM contention, lowering DRAM latency to 139ns
while CXL latency is 191ns. The reduced contention on
local memory yields 13% higher performance than Colloid.
Figure 11 confirms this behavior: at the optimal point, DRAM
latency can be lower than CXL latency, and attempts to
equalize them degrade performance. This directly contradicts
the core assumption underlying latency-equalization policies.
While latency is an important indicator, stall cycles are a
more direct performance proxy. Accordingly, CAmMp models
how latency translates into stall cycles and overall execution
time. NBT relies on recency-based hotness rather than
explicit latency equalization, making it less aggressive in
migration under contention. Consequently, it outperforms
Colloid on several workloads but remains consistently
inferior to Best-shot.
Best-shot vs. Caption. Caption determines the interleaving
ratio by probing a small set of coarse-grained configurations.
In contrast, Best-shot analytically synthesizes the entire
performance curve and predicts the optimal ratio with
fine granularity. As shown in Figure 14b, many optimal
interleaving ratios are below 80% fast-tier memory usage.
First-touch cannot exploit this property, while search-based
methods incur substantial profiling overhead.

Performance Predictability in Heterogeneous Memory

[a] Predicted Slowdown/MPKI/Actual Slowdown per GB
Prediction 11% 7%

MPKI 1.15 1.61 3.44 3.14
Actual IS 17% 31% 10% 6% |
557.xz pr-road tc-road gpt-2 xsbench

[b] Workload Colocation [c] 654.roms + 557.xz

:\5 irstgégMcE = 531.1 Firstgém:ﬁ = Co’HcE);i-cli— -
o
E a.08
® o Pr-r apt-, 9pt- §0.8 2:1 1:1 1:2
xSt 57z " T0RG" Fast/slow Tier Ratio

Figure 16. Camp-guided workload colocation. (a) shows
CAMP accurately predicts slowdown under colocation; (b) shows that
colocation guided by MPKI worsens the performance; (c) shows CAMP

provides better placement than other policies for colocated workloads.

Best-shot vs. Alto and Soar. Alto reduces page migration
during high-MLP intervals but fails to leverage aggregate
memory bandwidth effectively, so Alto is slightly better than
Colloid. Soar places performance-critical objects on DRAM,
causing high memory contention, e.g., 654. roms experiences
13% worse performance than Best-shot.

Takeaway #4: Best-shot demonstrates that analytically
predicting interleaving performance enables simple yet ef-
fective tiering decisions, delivering superior performance
compared to state-of-the-art tiering and interleaving strate-
gies in bandwidth-bound scenarios.

6.3 Colocated Workload Scheduling

Motivation and setup. We next evaluate CAMP as a pre-
dictor for colocated workload scheduling. When multiple
workloads share heterogeneous memory, inaccurate perfor-
mance proxies can lead to poor placement decisions. We
select three pairs of latency-bound workloads where Camp
and MPKI, a commonly used cache-miss metric, predict con-
flicting slowdown rankings. Each workload pair is colocated
under a 1:1 fast-to-slow tier configuration.

Prediction accuracy vs. MPKI. Figure 16a compares
Camp-predicted slowdown, MPKI-based heuristics, and the
actual measured slowdown during colocation. Across all
cases, CaMp predictions closely track observed slowdown,
while MPKI provides misleading signals. For example, gpt-2
exhibits low MPKI but high slowdown under CXL, whereas
tc-road shows high MPKI but relatively low slowdown.
MPXKT fails to capture tolerance to latency and interference.
Impact on placement decisions. Figure 16b shows that
MPKI-guided placement leads to 10%, 11.6%, and 12.2%
worse performance than Camp-guided placement across
the evaluated workload pairs. This is because MPKI does
not reflect how memory latency translates into stall cycles,
whereas Camp explicitly models this effect, even under
contention.

15

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Mixed bandwidth-bound and latency-bound coloca-
tion. Figure 16¢ considers colocating a bandwidth-bound
workload, 654. roms, with a latency-bound workload, 557.xz,
under different fast-to-slow tier ratios. Best-shot assigns
654 . roms its predicted optimal interleaving ratio and places
557.xz in the remaining fast memory. This configuration
outperforms First-touch, NBT, and Colloid across all ratios
by simultaneously exploiting aggregate bandwidth and pro-
tecting latency-sensitive execution.

Takeaway #5: Colocation results highlight that accurate
slowdown prediction is critical for multi-workload memory
management. By reasoning about performance impact
instead of cache misses or raw latency, CaAmP enables
placement decisions that improve both individual and
system-level performance.

6.4 Discussion

While this study focuses on CXL, the high prediction
accuracy on NUMA indicates a pathway to performance
observability for general memory systems using lightweight
performance counters. Our models are validated across three
CXL devices and NUMA, demonstrating broad applicability.
The simplicity of Camp models facilitates both offline
capacity planning and resource management. We envision
more use cases of CAMP in guiding hybrid memory policies
that integrate interleaving and tiering, as well as improved
profiling for tiered memory systems [27].

7 Conclusion

Camp demonstrates that CXL slowdown can be accurately
predicted without running on CXL, by grounding models in
causal microarchitectural mechanisms rather than correlation-
based heuristics. This principle extends beyond the specific
predictors we present: as memory hierarchies grow more
heterogeneous, understanding why performance degrades,
not just that it does, becomes essential for principled system
design. Our evaluation shows that these models enable prac-
tical policies, Best-shot interleaving and interference-aware
colocation, that outperform existing approaches by up to 21%
and 23%, respectively. We hope Camp inspires further work
on interpretable, hardware-grounded models that enable
proactive management of emerging memory technologies.

Acknowledgments

We thank Boris Grot (our shepherd) and the anonymous
reviewers for their constructive feedback. We also thank
CloudLab for providing the infrastructure used in our exper-
imental evaluation. This research was partially supported
by the NSF CAREER Award CNS-2339901, NSF Grant CNS-
2312785, Google, and Microsoft. Jinshu Liu is supported by a
Google PhD Fellowship.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

References

(1]

(13]
(14]

(15]
[16]

[19

—

[20

=

[21]

(23]

ARM11 MPCore Processor Technical Reference Manual r2p0.
https://developer.arm.com/documentation/ddi0360/f/level-
1-memory-system/about-the-level-1-data-side-memory-
system/linefill-buffers.

Deep Learning Recommendation Model (DLRM). https://github.com/
facebookresearch/dlrm.

GPT-2. https://github.com/openai/gpt-2.

Intel Memory Latency Checker (Intel MLC). https://www.intel.
com/content/www/us/en/download/736633/intel-memory-latency-
checker-intel-mlc.html.

Intel® 64 and IA-32 Architectures Optimization Reference Manual:
Volume 1. https://cdrdv2-public.intel.com/671488/248966-Software-
Optimization-Manual-V1-048.pdf.

LLM Inference in C/C++. https://github.com/ggerganov/llama.cpp.
Memory Tiering: Hot Page Selection. https://lwn.net/Articles/898615/.
mm/demotion: Memory Tiers and Demotion. https://lwn.net/Articles/
897026/.

NUMA Memory Policy. https://docs.kernel.org/admin-guide/mm/
numa_memory_policy.html.

Phoronix. https://github.com/phoronix-test-suite/phoronix-test-
suite.
Redis. https://redis.io.

Reference Implementations of MLPerf Inference Benchmarks. https:
//github.com/mlperf.

SPEC CPU 2017. https://www.spec.org/cpu2017.

The PBBS Benchmark Suite (V2).
pbbsbench/.

VolItDB. https://www.voltdb.com.

Weighted Interleaving for Memory Tiering. https://Ilwn.net/Articles/
948037/.

GAP Benchmark Suite. https://github.com/sbeamer/gapbs.git, 2021.

Daniel S. Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish
Shah, Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D.
Hill, and Ricardo Bianchini. Design Tradeoffs in CXL-Based Memory
Pools for Cloud Platforms. IEEE Micro Special Issue on Emerging System
Interconnects, 43(2), 2023.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2008.

Chiachen Chou, Aamer Jaleel, , and Moinuddin Qureshi. BATMAN:
Techniques for Maximizing System Bandwidth of Memory Systems
with Stacked-DRAM. In The International Symposium on Memory
Systems (MEMSYS), 2017.

Yuan Chou, Brian Fahs, and Santosh Abraham. Microarchitecture
Optimizations for Exploiting Memory-Level Parallelism. In Proceedings
of the 31st Annual International Symposium on Computer Architecture
(ISCA), 2004.

Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sud-
hanva Gurumurthi, and Ada Gavrilovska. Kleio: A Hybrid Memory
Page Scheduler with Machine Intelligence. In Proceedings of the 28th
IEEE International Symposium on High Performance Distributed Com-
puting (HPDC), 2019.

Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. Data Tiering in Heterogeneous Memory Systems.
Proceedings of the 11th European Conference on Computer Systems
(EuroSys), 2016.

https://cmuparlay.github.io/

In

Jinshu Liu, Hanchen Xu, Daniel S. Berger, Marcos K. Aguilera, & Huaicheng Li

16

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela
Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg
Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ranganathan,
and Amin Vahdat. Towards an Adaptable Systems Architecture for
Memory Tiering at Warehouse-Scale. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2023.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith.
A Mechanistic Performance Model for Superscalar Out-of-Order
Processors. ACM Transactions on Computer Systems, 27(2), 2009.

Bjorn Gottschall, Lieven Eeckhout, and Magnus Jahre. TEA: Time-
Proportional Event Analysis. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (ISCA), 2023.

Hamid Hadian, Jinshu Liu, Hanchen Xu, Hansen Idden, and Huaicheng
Li. PACT: A Criticality-First Design for Tiered Memory. In Proceedings
of the 31st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2026.

Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
The HiBench Benchmark Suite: Characterization of the MapReduce-
Based Data Analysis. In Proceedings of the 26th International Conference
on Data Engineering (ICDE), 2010.

Wentao Huang, Mian Lu, and Kian-Lee Tan. Hash Joins Meet CXL: A
Fresh Look. In Proceedings of the 18th Conference on Innovative Data
Systems Research (CIDR), 2026.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling
a Warehouse-scale Computer. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture (ISCA), 2015.

Georgiy Lebedev, Hamish Nicholson, Musa Unal, Sanidhya Kashyap,
and Anastasia Ailamaki. Demystifying CXL Memory Bandwidth
Expansion for Analytical Workloads. In International Workshop on
Accelerating Analytics and Data Management Systems (ADMS), 2025.
Hwanjun Lee, Minho Kim, Yeji Jung, Seonmu Oh, Ki-Dong Kang, Se-
unghak Lee, and Daehoon Kim. Beyond Page Migration: Enhancing
Tiered Memory Performance via Integrated Last-Level Cache Man-
agement and Page Migration. In 58th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-58), 2025.

Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. Memtis: Efficient Memory Tiering with Dynamic Page Classifi-
cation and Page Size Determination. In Proceedings of the 29th ACM
Symposium on Operating Systems Principles (SOSP), 2023.

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea
Zardoshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2023.

Xiao Li, Zerui Guo, Yuebin Bai, Mahesh Ketkar, Hugh Willkinson, and
Ming Liu. Understanding and Profiling CXL.mem Using PathFinder. In
Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM)), 2025.

[36] Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S. Berger, Marie

Nguyen, Xun Jian, Sam H. Noh, and Huaicheng Li. Systematic CXL
Memory Characterization and Performance Analysis at Scale. In
Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2025.

[37] Jinshu Liu, Hamid Hadian, Hanchen Xu, Daniel S. Berger, and

Huaicheng Li. Dissecting CXL Memory Performance at Scale: Analysis,
Modeling, and Optimization. https://arxiv.org/abs/2409.14317, 2024.

https://developer.arm.com/documentation/ddi0360/f/level-1-memory-system/about-the-level-1-data-side-memory-system/linefill-buffers
https://developer.arm.com/documentation/ddi0360/f/level-1-memory-system/about-the-level-1-data-side-memory-system/linefill-buffers
https://developer.arm.com/documentation/ddi0360/f/level-1-memory-system/about-the-level-1-data-side-memory-system/linefill-buffers
https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/dlrm
https://github.com/openai/gpt-2
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://www.intel.com/content/www/us/en/download/736633/intel-memory-latency-checker-intel-mlc.html
https://cdrdv2-public.intel.com/671488/248966-Software-Optimization-Manual-V1-048.pdf
https://cdrdv2-public.intel.com/671488/248966-Software-Optimization-Manual-V1-048.pdf
https://github.com/ggerganov/llama.cpp
https://lwn.net/Articles/898615/
https://lwn.net/Articles/897026/
https://lwn.net/Articles/897026/
https://docs.kernel.org/admin-guide/mm/numa_memory_policy.html
https://docs.kernel.org/admin-guide/mm/numa_memory_policy.html
https://github.com/phoronix-test-suite/phoronix-test-suite
https://github.com/phoronix-test-suite/phoronix-test-suite
https://redis.io
https://github.com/mlperf
https://github.com/mlperf
https://www.spec.org/cpu2017
https://cmuparlay.github.io/pbbsbench/
https://cmuparlay.github.io/pbbsbench/
https://www.voltdb.com
https://lwn.net/Articles/948037/
https://lwn.net/Articles/948037/
https://github.com/sbeamer/gapbs.git
https://arxiv.org/abs/2409.14317

Performance Predictability in Heterogeneous Memory

(38]

(39]

(40]

(41

—

[42]

(43]

[44]

[45]

[46]

(47]

(48]

Jinshu Liu, Hamid Hadian, Hanchen Xu, and Huaicheng Li. Tiered
Memory Management Beyond Hotness. In Proceedings of the 19th
USENIX Symposium on Operating Systems Design and Implementation
(0SDI), 2025.

Zhihong Luo, Sam Son, Sylvia Ratnasamy, and Scott Shenker. Har-
vesting Memory-bound CPU Stall Cycles in Software with MSH. In
Proceedings of the 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2024.

Yirong Lv, Bin Sun, Qinyi Luo, Jing Wang, Zhibin Yu, and Xuehai
Qian. CounterMiner: Mining Big Performance Data from Hardware
Counters. In 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-51), 2018.

Fabian Mahling, Marcel Weisgut, and Tilmann Rabl. Fetch Me If You
Can: Evaluating CPU Cache Prefetching and Its Reliability on High
Latency Memory. In 21st International Workshop on Data Management
on New Hardware (DaMoN), 2025.

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. TPP: Transparent
Page Placement for CXL-Enabled Tiered Memory. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2023.

Sanyam Mehta. Performance Analysis and Optimization with Little’s
Law. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2022.

Zhenlin Qi, Shengan Zheng, Ying Huang, Yifeng Hui, Bowen Zhang,
Linpeng Huang, and Hong Mei. Chrono: Meticulous Hotness
Measurement and Flexible Page Migration for Memory Tiering. In
Proceedings of the 20th European Conference on Computer Systems
(EuroSys), 2025.

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. HeMem: Scalable Tiered Memory Management for Big Data
Applications and Real NVM. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP), 2021.

Yan Sun, Yifan Yuan, Zeduo Yu, Zeduo Yu, Reese Kuper, Chihun
Song, Jinghan Huang, Houxiang Ji, Siddharth Agarwal, Jiagi Lou,
Ipoom Jeong, Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung
Kim. Demystifying CXL Memory with Genuine CXL-Ready Systems
and Devices. In 56th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-56), 2023.

Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao
Xiang, Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, Cheng
Chen, Hui Zhang, Fei Liu, Shuai Zhang, Xiaoning Ding, and Jianjun
Chen. Exploring Performance and Cost Optimization with ASIC-
Based CXL Memory. In Proceedings of the 19th European Conference
on Computer Systems (EuroSys), 2024.

John R. Tramm, Andrew R. Siegel, Tanzima Islam, and Martin Schulz.

17

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

XSBench - The Development and Verification of a Performance
Abstraction for Monte Carlo Reactor Analysis. In PHYSOR 2014 -
The Role of Reactor Physics toward a Sustainable Future, 2014.

Musa Unal, Vishal Gupta, Yueyang Pan, Yujie Ren, and Sanidhya
Kashyap. Tolerate It if You Cannot Reduce It: Handling Latency in
Tiered Memory. In Proceedings of the 20th Workshop on Hot Topics in
Operating Systems (HotOS), 2025.

Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking Data on Intel CPUs via Cache
Evictions. In IEEE Symposium on Security and Privacy (SP), 2021.

Midhul Vuppalapati and Rachit Agarwal. Tiered Memory Management:
Access Latency is the Key! In Proceedings of the 30th ACM Symposium
on Operating Systems Principles (SOSP), 2024.

Midhul Vuppalapati, Saksham Agarwal, Henry Schuh, Baris Kasikei,
Arvind Krishnamurthy, and Rachit Agarwal. Understanding the Host
Network. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2024.

Xi Wang, Jie Liu, Jianbo Wu, Shuangyan Yang, Jie Ren, Bhanu Shankar,
and Dong Li. Performance Characterization of CXL Memory and Its
Use Cases. In Proceedings of the 39th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2025.

Marcel Weisgut, Daniel Ritter, Pinar T6ziin, Lawrence Benson, and
Tilmann Rabl. CXL Memory Performance for In-Memory Data
Processing. In Proceedings of the 51st International Conference on Very
Large Data Bases (VLDB), 2025.

Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan
Yuan, and Ren Wang. NOMAD: Non-Exclusive Memory Tiering via
Transactional Page Migration. In Proceedings of the 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2024.

Ahmad Yasin. A Top-Down Method for Performance Analysis
and Counters Architecture. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2014.

Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong, and Haibo
Chen. MT?: Memory Bandwidth Regulation on Hybrid NVM/DRAM
Platforms. In Proceedings of the 20th USENIX Symposium on File and
Storage Technologies (FAST), 2022.

Xinyue Yi, Hongchao Du, Yu Wang, Jie Zhang, Qiao Li, and Chun Jason
Xue. ArtMem: Adaptive Migration in Reinforcement Learning-Enabled
Tiered Memory. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture (ISCA), 2025.

Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar
Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill,
Mosharaf Chowdhury, and Asaf Cidon. Managing Memory Tiers with
CXL in Virtualized Environments. In Proceedings of the 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2024.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The Predictability Gap: Why Metrics Fail
	2.2 The Limits of Reactive Management
	2.3 Microarchitectural Pressure Points
	2.4 Camp vs. Melody and SoarAlto

	3 Camp Overview
	3.1 Core Insight: From Attribution to Prediction
	3.2 The Camp Framework
	3.3 Camp Use Cases

	4 CXL Slowdown Prediction
	4.1 Slowdown from Demand Reads (SDRd)
	4.2 Slowdown from Prefetching (SCache)
	4.3 Slowdown from Stores (SStore)
	4.4 Implementation and Evaluation

	5 Synthesizing Interleaving Performance
	5.1 Characterization: The Shape of Slowdown
	5.2 The Synthesis Model
	5.3 Profiling Workflow
	5.4 Interleaving Model Evaluation
	5.5 Limitations and Future Work

	6 Camp Use Cases
	6.1 Best-shot Interleaving Policy
	6.2 ``Best-shot'' vs. Existing Tiering Policies
	6.3 Colocated Workload Scheduling
	6.4 Discussion

	7 Conclusion
	References

