Pond: CXL-Based Memory Pooling Systems for Cloud Platforms Huaicheng Li¹, Daniel S. Berger²³, Lisa Hsu, Daniel Ernst², Pantea Zardoshti², Stanko Novakovic, Monish Shah, Samir Rajadnya², Scott Lee², Ishwar Agarwal, Mark D. Hill²⁴, Marcus Fontoura, Ricardo Bianchini² Public clouds spend ~50% on memory & much is wasted. Pond pooling with fast CXL saves 7-9% memory. ### The Need for Memory Pooling #### Naive CXL Pooling is Inefficient - (1). DRAM is a major server cost: Azure (50%) - (2). Memory stranding and untouched memory ## Pond: An End-to-End CXL-Based Pooling Design for Datacenters (1). A small low-latency memory pool design (2). External memory controller (EMC) (3). zNUMA: zero-core NUMA for VMs (4). Pond control plane (5). Pond prediction models ### Pond Design is Effective in Saving 7-9% DRAM Needs (1). zNUMA is effective Workloads Video Database KV store Analytics zNUMA traffic 0.25% 0.06% 0.11% 0.38% (2). Pond overpredicts 4% of VMs #### **(3).** Pond saves 7-9% DRAM