Pond: CXL-Based Memory Pooling Systems for Cloud Platforms

Huaicheng Li¹, Daniel S. Berger²³, Lisa Hsu, Daniel Ernst², Pantea Zardoshti², Stanko Novakovic, Monish Shah, Samir Rajadnya², Scott Lee², Ishwar Agarwal, Mark D. Hill²⁴, Marcus Fontoura, Ricardo Bianchini²

Public clouds spend ~50% on memory & much is wasted. Pond pooling with fast CXL saves 7-9% memory.

The Need for Memory Pooling

Naive CXL Pooling is Inefficient

- (1). DRAM is a major server cost: Azure (50%)
- (2). Memory stranding and untouched memory

Pond: An End-to-End CXL-Based Pooling Design for Datacenters

(1). A small low-latency memory pool design

(2). External memory controller (EMC)

(3). zNUMA: zero-core NUMA for VMs

(4). Pond control plane

(5). Pond prediction models

Pond Design is Effective in Saving 7-9% DRAM Needs

(1). zNUMA is effective

Workloads

Video

Database

KV store

Analytics

zNUMA traffic 0.25% 0.06% 0.11% 0.38%

(2). Pond overpredicts 4% of VMs

(3). Pond saves 7-9% DRAM

